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Appendix A Introduction

In appendixes below, we give some supplementary materials for our short paper. In Appendix B, we give some notations;

in Appendix C, we give the definition of function restrictions; in Appendix D, we give the notion of the correlated-input

secure hash functions; in Appendix E, we give some related notions with trapdoor hash proof system; in Appendix F, we

give some properties of Lossy Algebraic Filter (LAF); in Appendix G, we give the fomal definition of public-key functional

encryption (PK-FE); in Appendix H, we give the security proof of the concrete construction for PK-FE.

Appendix B Notations

Throughout the paper, N denotes the set of natural numbers and λ ∈ N denotes the security parameter. Let y ←
A(x1, · · · ;R) denote the operation of running algorithm A on inputs x1,· · · and coins R to output y. For simplicity, we

write y ← A(x1, · · · ;R) as y ←$ A(x1, · · · ) with implied coins. If n ∈ N, we let [n] denote the set {1, · · · , n}. We call a

function negl negligible in λ if negl(λ) ∈ λ−ω(1) and a function poly a polynomial if poly ∈ λO(1). If X is a random variable

over the set S, then we write maxa∈SPr[X = a] to denote the predictability of X and − log(maxa∈SPr[X = a]) denote the

min-entropy H∞(X) of X. If −→x denotes a vector, then |−→x | denotes the number of components in −→x . If P denotes circuit,

then we use notation P[z](·) to emphasize the fact that the value z is hard-coded into P. x ←$ SampleD(r) denotes an

efficiently computable sampler Sample which on input a randomness r ←$ R, outputs a uniform and random x sampled

from D, where D denotes an efficiently sampleable domain and R denotes the random number space.

In the following, for security definition and proofs we use a code-based game playing framework in [1, 7]. A game G has

a main procedure, and possibly other procedure. G begins by executing the main procedure which runs an adversary A

after some initialization. A can make oracle calls permitted by G. When A finishes execution, G continues to execute with

A’s output. By GA ⇒ y, we denote the event that G executes with A to output y. Generally, we abbreviate GA ⇒ true or

GA ⇒ 1 as G, and boolean flags and sets are initialized to false and ∅ respectively.

Appendix C Function Restrictions

In this section, we give some restrictions on the collection of functions Φ = {Φλ}λ∈N that the adversary is allowed to access

in its queries. These restrictions are necessary to preventing trivial attacks in our schemes. Note that the functions here

refer to those the adversary chooses to act on the random numbers in our security notions.

Definition 1 (Output-Unpredictability for Functions Φλ). . For all sufficiently large λ ∈ N, let Φλ be a set of functions

from Rλ to Rλ and α = poly1(λ), β = poly2(λ) be positive integers. Then Φλ is (α, β)-output-unpredictability, if the

probability defined below

max
P⊆Φλ,X⊆Rλ,|P |6α,|X|6β

{Pr[r ←$ Rλ : {φ(r) : φ ∈ P} ∩X 6= ∅]},
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is negligible in λ.

Definition 2 (Collision-Resistance for Functions Φλ). . For all sufficiently large λ ∈ N, let Φλ be a set of functions from

Rλ to Rλ and α = poly(λ) be positive integers. Then Φλ is α-collision-resistance, if the probability defined below

max
P⊆Φλ,|P |6α

{Pr[r ←$ Rλ : |{φ(r) : φ ∈ P}| 6 |P |]},

is negligible in λ.

Let Φ be a family of functions with output-unpredictability and collision-resistance, we call A Φ-restricted adversary if

the functions that the adversary chooses to act on the randomness belongs to Φ. In addition, note that, throughout this

paper, we assume that Φ implicitly excludes all constant functions.

Appendix D Correlated-Input Secure (CIS) Hash Functions

The security notion of multi-key selective correlated-input pseudorandomness (MK-SCI-PR) [5] for the family of keyed hash

functions H via the game shown in Figure D1.

Initialise(λ, l)

desc = (CIH.K,CIH.D,CIH.R, h)← GenFun(1λ);
For i = 1 to l

ki
$←− CIH.K;

x
$←− CIH.D;

b
$←− {0, 1};

S′ ← ∅;
fq ← false, ch← false;

b′ ← AHash,Func,Chal(1λ, desc).

Hash(i, j)

If fq = false or ch = true

then return ⊥;
S′ ← S′ ∪ {(i, j)};
Return hki (φj(x)).

Func(φ1, · · · , φqφ )
If fq = true, return ⊥;
fq ← true;

Return k1, · · · , kl.

Chal(i∗, j∗)

If fq = false or ch = true

return ⊥;
If (i∗, j∗) ∈ S′

return ⊥;
y0

$←− CIH.R;

y1 ← hki∗ (φj∗ (x));

ch = true

Return yb.

Finalise(b′)

If b = b′ Return 1.

Figure D1 Game l-MK-SCI-PR for a family H of keyed hash functions defined by GenFun.

Definition 3 (l-mk-sci-pr Security for CIS Hash Function [5]). A family H of keyed hash functions is said to be l-mk-sci-pr

secure if for all Φλ-restricted adversaries A, the advantage of A against H defined as

Advl-mk-sci-pr
H,A (λ) := 2.Pr[l-MK-SCI-PRAH(λ)⇒ 1]− 1,

is negligible in the security parameter λ.

Appendix E Trapdoor Hash Proof System (THPS)

Here, we redefine the hash proof system (HPS), which we call trapdoor hash proof systems (THPS), by additionally

providing some properties such as witness-invertibility on the original HPS proposed by Cramer et al. [2]. Briefly, the

witness-invertibility says that under a universal trapdoor, the witness for a valid ciphertext can be effectively recovered.

Definition 4 (Trapdoor Projective Hash Function). Let PK be a public key set, SK a secret key set, K an encapsulated

key set, T K a trapdoor set, C a ciphertext set and V ∈ C a valid ciphertext set and we assume that there exists efficient

algorithms which can sample sk ←$ SK, (C,w)←$ V and C ←$ C\V, where w is a witness indicating C ∈ V. Let Λsk be

a hash function indexed with sk ∈ SK that maps ciphertexts to encapsulated keys. The hash function Λsk is projective if

there exists a projection function µ : SK → PK such that µ(sk) ∈ PK determines the behavior of Λsk over the subset V of

valid ciphertexts. Moreover, we say that Λsk is trapdoor projective hash function if there exists a trapdoor td ∈ T K
and a PPT algorithm Invert which on input the trapdoor td and a ciphertext C ∈ V, recovers the witness w ← Invert(td, C)

from C. Besides, we assume that both Λ(·) and µ are efficiently computable.

Definition 5 (Universal [2]). A trapdoor projective hash function Λsk is ε-universal, if for all pk ∈ PK, C ∈ C\V, K ∈ K
and td ∈ T K, the probability Pr[Λsk(C) = K|(pk, C, td)] 6 ε1 holds and it follows that H∞(Λsk(C)|(pk, C, td)) > log(1/ε1),

where the probability is over all sk ∈ SK with pk = µ(sk).

Definition 6 (Subset Membership Problem (SMP) [6]). We say that the subset membership problem with respect to a

trapdoor hash proof system THPS holds if the ciphertexts C0 ←$ V and C1 ←$ C\V are computationally indistinguishable,

formally, if for all PPT adversary A, the advantage function Advsmp
THPS,A defined below

Advsmp
THPS,A(λ) = |Pr[A(C,V, C0) = 1|C0 ←$ V]− Pr[A(C,V, C1) = 1|C1 ←$ C\V]|,

is negligible in the security parameter λ.

In addition, note that C0 and C1 can be easily distinguished with the universal trapdoor td.
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Appendix F Lossy Algebraic Filter (LAF) [4]

Indistinguishability. Lossy tags are indistinguishable from random ones. Formally, for all PPT adversary A, if the

advantage function AdvindLAF,A(λ) defined below

AdvindLAF,A(λ) = Pr[A(1λ, lpk)LAF.Ltag(ltk,·) = 1]− Pr[A(1λ, lpk)OTc (·) = 1],

is negligible in λ, where (lpk, ltk)← LAF.KG(1λ) and OTc (·) is the oracle that samples a random core tag tc.

Evasiveness. Non-injective tags are hard to find, even if given multiple lossy tags. Formally, for all PPT adversary A, the

advantage function AdvevsLAF,A defined below

AdvevsLAF,A(λ) = Pr[t ∈ T \Tinj |t← A(1λ, lpk)LAF.Ltag(ltk,·)],

is negligible in λ, where (lpk, ltk) ← LAF.KG(1λ) and t = (ta, tc) is a non-injective tag such that tc is not obtained

via oracle LAF.Ltag(ltk, ·).

Appendix G Public-Key Functional Encryption (PK-FE) for Randomized Functions

In this section, we adopt the definitions of public-key functional encryption (PK-FE) for randomized functions in [3]. Here

we simply review the definition and give our proposed security notion. Likewise, let X = {Xλ}λ∈N, R = {Rλ}λ∈N and

Y = {Yλ}λ∈N denote three finite sets. Let F = {Fλ}λ∈N be a finite set of randomized functions. Each function f ∈ Fλ
takes as input a string x ∈ Xλ and a randomness r ∈ Rλ and outputs f(x; r) ∈ Yλ.

Appendix G.1 PK-FE for Randomized Functions [3]

We denote a public-key functional encryption for randomized function space F = {Fλ}λ∈N by rFE = (rFE.Setup, rFE.KG, rFE.E, rFE.D)

over plaintext space X = {Xλ}λ∈N. All the fourth algorithms are PPT.

Setup. The algorithm rFE.Setup(1λ) takes as input 1λ and outputs a master public key mpk, a master secret key msk and

a trapdoor td. Note that the trapdoor td is designed to recover a witness of a ciphertext c ∈ V and is only used in

the security proof of the scheme.

Key Generation. The key generation algorithm rFE.KG(msk, f) takes as input the master secret key msk and a function

f ∈ Fλ and outputs the secrete key skf .

Encryption. The encryption algorithm rFE.E(mpk, x) takes as input the master public key mpk and a plaintext x ∈ Xλ
and outputs a ciphertext ct.

Decryption. The decryption algorithm rFE.D(skf , ct) takes as input a secret key skf and a ciphertext ct, which encrypts

plaintext x, outputs f(x) or ⊥.

The correctness for the PK-FE scheme for randomized function rFE requires that for all polynomial n′′ = n′′(λ), all
−→
f ∈ Fn′′λ and all −→x ∈ Xn′′λ , the following two distributions are computationally indistinguishable:

1. Real : {rFE.D(skfj , cti)}
n′′,n′′

i=1,j=1, where:

• (mpk,msk)← rFE.Setup(1λ)

• cti ← rFE.E(mpk, xi) for i ∈ [n′′], xi ∈ −→x
• skfj ← rFE.KG(msk, fj) for j ∈ [n′′], fj ∈

−→
f

2. Ideal : {fj(xi; ri,j)}n
′′,n′′

i=1,j=1, where ri,j ←$ Rλ.

Appendix G.2 Simulation-Based LR-RRA-CCA Security for PK-FE for Randomized Func-

tions

In this section, we define a new security model for public-key functional encryption for randomized functions, called

simulation-based LR-RRA-CCA security (short for “Sim-LR-RRA-CCA security”), by combining the notions of leakage-

resilient (LR), related-randomness attacks (RRA) [5] and chosen-ciphertext attacks (CCA) for public-key encryption.

Clearly, our Sim-LR-RRA-CCA security is stronger than the one proposed in [3]. Let rFE=(rFE.Setup, rFE.KG, rFE.E,

rFE.D) denote a public key functional encryption scheme for randomized functions, our Sim-LR-RRA-CCA security notion

for rFE is defined via the games in Figure G1. Here, we require A to be a Φ-restricted adversary where Φ is a deterministic

function set, but we do not strictly restrict the type of the set Φ, which can be a set of polynomial functions or affine

functions or other functions which relies on the concrete instantiations. For simplicity, applying the Lemma 1 from [5], we

only consider the case that the adversary uses one randomness index.

DISCUSSION . We extend the existing definition from [3] to include the security against related-randomness attacks

and master key-leakage in our security notion in which a target key pair (mpk∗,msk∗) for the FE scheme rFE is honestly

provided, where mpk∗ denotes the target master public key and msk∗ denotes the target master secret key. In order to

formalize the intuition on the security against RRA, we allow the adversary to control which random values (since we use

one randomness case in our definition, the random value here refers to the unique r initialized at the beginning of the game)

and functions will be used in oracle queries where the random values are needed. To obtain the LR security, we also allow
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the adversary to learn a bounded amount of information about the target master secret key msk∗. Like the CCA security

in the standard definition of Goyal et al., the adversary is also allowed to have access to a regular decryption oracle with

the private keys skg which is generated with msk∗ in the real world; while in the ideal world, the simulator must be able

to “compute” the plaintext x from each decryption query and output f ′(x; r) for some true random value r. The adversary

is considered successful if it distinguishes the output of the boolean relation R applied to its interaction in the real world

from the output of R applied to its interaction in the ideal world.

Experiment LRRRACCAREALArFE,lL,F,R
(λ)

ChS ← ∅; XS ← ∅; fS ← ∅; gS ← ∅;
target← false; lrq ← false; fq ← false;

LRS ← ∅; ENS ← ∅; DES ← ∅;
lfS ← ∅; KGS ← ∅; ctr ← 0;

(−→x , (φ1, · · · , φqφ ), st1)← A1(1
λ);

For i = 1 to l

(mpki,mski, tdi)← rFE.Setup(1λ);

α← AFunc,Target,KeyGen,ENC,LR,DEC,LEAK
2 (st1).

Func(φ1, · · · , φqφ
)

If fq = true return ⊥;
fq = true; Return {mpki}i∈[l].
Target(j)

If target = true

then return ⊥;
(mpk∗,msk∗, td∗)← (mpkj ,mskj , tdj);

target← true;

Return {mski}i6=j .
LEAK

lL,λ

msk∗ (f
′′)

If fq = false or target = false

then return ⊥;
lfS ← lfS ∪ f ′′; Return f ′′(msk∗).

KeyGen(f, 1, n)

If fq = false or target = false or lrq = false or

φn ∈ (KGS ∪ ENS ∪DES ∪ LRS) or

((∃x ∈ −→x ) ∩ (f(0|x|; r) 6= f(x; r)))

then return ⊥, where r ∈ Rλ;
skf ← rFE.KG(msk∗, f ;φn(r)); fS ← fS ∪ {f};
KGS ← KGS ∪ {φn};
Return skf .

ENC(mpk, x, 1, n)

If fq = false or target = false or (x ∈ −→x ) or

φn ∈ (LRS ∪KGS) or (mpk /∈ {mpki}i∈[l])
then return ⊥;

ct← rFE.E(mpk, x;φn(r)); ENS ← ENS ∪ {φn};
Return ct.

LR({xi}i∈[qlr ], 1, n)
If fq = false or target = false or

φn ∈ (ENS ∪DES)
then return ⊥;

For each i ∈ [qlr]

compute ct∗i ← rFE.E(mpk∗, xi;φn(r));
ctr = ctr + 1;

LRS ← LRS ∪ {φn}; ChS ← ChS ∪ {ct∗i }i∈[qlr ];
If ctr = qlr then lrq ← true;

Return {ct∗i }i∈[qlr ].
DECmsk∗ (ct, g, 1, n)

If fq = false or target = false or ct ∈ ChS or

φn ∈ (LRS ∪KGS)
then return ⊥;

skg ← rFE.KG(msk∗, g;φn(r));
DES ← DES ∪ {φn}; gS ← gS ∪ {g};
Return y = rFE.D(skg, ct).

Finalise(α)

Return R(−→x , fS, gS, {y}, lfS, α).

Experiment LRRRACCAIDEALSrFE,lL,F,R
(λ)

ChS ← ∅; XS ← ∅; fS ← ∅; gS ← ∅;
target = false; lrq = false; fq ← false;

KGS ← ∅; LRS ← ∅; ENS ← ∅;
lfS ← ∅; DES ← ∅; ctr ← 0;

(−→x , (φ1, · · · , φqφ ), st1)← A1(1
λ);

({mpki}i∈[l], st′)← S1(1
λ);

α← AFunc′,Target′,KeyGen′,ENC′,LR′,DEC′,LEAK′
2 (st1).

Func′(φ1, · · · , φqφ
)

If fq = true return ⊥;
fq = true; Return {mpki}i∈[l].
Target′(j)

If target = true

then return ⊥;
(mpk∗,msk∗, td∗)← (mpkj ,mskj , tdj);

target← true;

Return {mski}i6=j .
LEAK′

lL,λ

msk∗ (f
′′)

If fq = false or target = false

then return ⊥;
lfS ← lfS ∪ f ′′; Return f ′′(msk∗).

KeyGen′(f ′, 1, n)

If fq = false or target = false or lrq = false or

φn ∈ (KGS ∪ ENS ∪DES ∪ LRS)
((∃x ∈ −→x ) ∩ (f ′(0|x|; r) 6= f ′(x; r)))

then return ⊥, where r ∈ Rλ;
skf′ ← S

KeyIdeal(−→x ,·)
2 (st′, ·);

where f ′(x, ri)KeyIdeal(
−→x , f ′); ri ←$ Rλ;

fS ← fS ∪ {f ′}; KGS ← KGS ∪ {φn};
Return skf′ .

ENC′(mpk, x, 1, n)

If fq = false or target = false or (x ∈ −→x ) or

φn ∈ (LRS ∪KGS) or (mpk /∈ {mpki}i∈[l])
then return ⊥;

ct← rFE.E(mpk, x;φn(r));
ENS ← ENS ∪ {φn}; Return ct.

LR′({xi}i∈[qlr ], 1, n)
If fq = false or target = false or

φn ∈ (ENS ∪DES)
then return ⊥;

For each i ∈ [qlr]

compute ct∗i ← rFE.E(mpk∗, 0|xi|;φn(r));
ctr ← ctr + 1;

LRS ← LRS ∪ {φn}; ChS ← ChS ∪ {ct∗i }i∈[qlr ];
If ctr = qlr then lrq ← true;

Return {ct∗i }i∈[qlr ].
DEC′DecIdeal(·,·)(ct, g′, 1, n)

If fq = false or target = false or ct ∈ ChS or

φn ∈ (LRS ∪KGS)
then return ⊥;

g′(x, r)← S
DecIdeal(·,·)
3 (st′, ·); r ←$ Rλ;

DES ← DES ∪ {φn}; gS ← gS ∪ {g′};
Return y′ = g′(x, r).

Finalise(α)

Return R(−→x , fS, gS, {y′}, lfS, α).

Figure G1 SIM-LR-RRA-CCA??

In addition, note that in the ideal game, KeyGen′ denotes the simulator algorithm S2(st′, ·) that has oracle access to

the ideal functionality KeyIdeal(−→x , ·). The functionality KeyIdeal accepts key queries f ′ and returns f ′(xi; ri) for every

xi ∈ −→x and ri ←$ Rλ. The set fS denotes the key queries made by S2 to KeyIdeal. DEC′ denotes the simulator algorithm

S3(st′, ·) that has oracle access to ideal functionality DecIdeal(·, ·). The functionality DecIdeal accepts input queries (x, g′)

and returns y′ = g′(x; r) for r ←$ Rλ. The set gS denotes the functions that appear in the queries of S3 and {y′} denotes
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the responses of DecIdeal.

Definition 7 (Sim-LR-RRA-CCA Security for rFE). A functional encryption scheme rFE for randomized function family

F is said to be lL-leakage-resilient simulation-based RRA and CCA secure (lL-Sim-LR-RRA-CCA secure) if for all PPT

Φ-restricted adversary A = (A1,A2), the advantage of the Sim-LR-RRA-CCA adversary A against the FE scheme rFE with

respect to the lL-bit leakage, simulator S = (S1,S2, S3), randomized function family F and boolean relation R, namely,

AdvSim-LR-RRA-CCA
rFE,lL,S,F,R,A (λ) = Pr[LRRRACCAREALArFE,lL,F,R(λ)]− Pr[LRRRACCAIDEALSrFE,lL,F,R(λ)],

is negligible in the security parameter λ.

Appendix H Security

Theorem 1. Assume that the ε1-universal trapdoor hash proof system THPS exists, let rFE be a public-key functional

encryption for randomized function family F . Let LAF be an (lLAF, n
′) lossy algebraic filter, Ext : K×{0, 1}d → {0, 1}m an

average-case ((ν−(qlr−1).m−qlr.lLAF− lL), ε2)-strong extractor, DIO a secure differing-inputs obfuscator, h an l-mk-sci-pr

secure CIS hash function, PF a secure puncturable PRF, A = (A1,A2) a PPT Φ-restricted adversary, lL a bounded amount

of leakage, R a boolean relation and let ν − (qlr − 1).m − qlr.lLAF − lL > m + ω(log λ) and ν = log(1/ε1), where m is the

message length, then there exists a simulator S = (S1,S2, S3) and adversaries Acis, Aind, Asmp, Adio, Aprf , A′prf and

Aevs such that

AdvSim-LR-RRA-CCA
rFE,lL,S,F,R,A (λ) 6 qr.qφ.Adv

l-mk-sci-pr
h,Acis

(λ) + qr.(qφ + qd).AdvprfPF,Aprf
(λ) + qr.Adv

ind
LAF,Aind (λ)

+ qr.qlr.Adv
smp
THPS,Asmp (λ) + qr.qsk.Adv

dio
Gf ,S.Gf ,Adio (λ) + qr.qsk.Adv

prf
PF,A′

prf
(λ)

+ qr.qd.Adv
evs
LAF,Aevs (λ) + qr.qd.2

lL+qlr.lLAF+qlr.m/(2ν − qd) + 2.qr.qlr.ε2

+
l2.qr

|HashKeySpace|
. (H1)

Adversaries Acis, Aind, Asmp, Adio, Aprf , A′prf and Aevs run in approximately the same time as A which uses at most qr
randomness indices and qφ functions in its oracle queries, and makes at most qlr LR queries, qsk KeyGen queries and qd DEC

queries. Proof. In the following, we first give a description about the simulator S = (S1, S2, S3), then define a sequence

of games and prove that the output of every game is computationally indistinguishable from that of its adjacent game. In

each game, we assume that the adversary A makes at most qd queries to the DEC oracle, qsk queries to the KeyGen oracle,

qe queries to the ENC oracle, qlr queries to the LR oracle and uses at most qr randomness indices and qφ functions in the

KeyGen, LR, ENC and DEC oracle queries altogether.

Description of Simulator.

In the following, we describe a simulator S = (S1, S2, S3) that makes black-box use of a real world adversaryA = (A1,A2).

Simulator S1. S1 performs a simulated setup procedure, namely, for all i ∈ [l], it first computes (ppi, tdi)←$ THPS.Gen(1λ),

(lpki, ltki) ←$ LAF.KG(1λ), ki ←$ CIH.K(1λ), ski ←$ SK, pki = µ(ski) and then sets {mpki = (ppi, lpki, ki, pki)}i∈[l],

{mski = ski}i∈[l].

Simulator S2. S2 simulates the key generation oracle and the challenge ciphertext generation oracle.

When the adversary A2 makes a LR′ query ({|xi|}i∈[qlr ], 1, n) priori to the key generation query, the simulator S2

computes ct∗i = (C∗, s∗, U∗, π∗, t∗c) as follows. For each i ∈ [qlr], it first picks a true random r ←$ Rλ, then samples

(C∗, s∗)← SampleC\V×{0,1}d (r), and computes K∗ = THPS(sk∗, C∗), U∗ = Ext(K∗, s∗)⊕0|xi|, and π∗ = LAFlpk∗,t∗ (K∗),

where t∗ = (t∗a, t
∗
c), t∗a = (C∗, s∗, U∗) and t∗c = LAF.Ltag(ltk∗, t∗a). This can be done since, at this time, the adversary

A2 has finished the Func′ and the Target′ queries, the simulator has known the target key mpk∗ = (pp∗, lpk∗, k∗, pk∗),

msk∗ = sk∗, td∗ and ltk∗.

When the adversary A2 makes KeyGen′ query (f, 1, n), the simulator S2 executes the following steps. Note that in this

phase, since the adversary A2 has finished all LR′ queries, S2 has known the resulting challenge ciphertext {ct∗i }i∈[qlr ] and

thus can proceed the following steps.

1. First query the ideal functionality KeyIdeal(−→x , ·) on input f ′. Let {y∗i }i∈[qlr ] be the output of KeyIdeal(−→x , f ′), namely,

for every i ∈ [qlr], y
∗
i = f ′(xi, ri) with ri ←$ Rλ and |−→x | = qlr.

2. Choose a PRF key r′ ←$ Rλ and computes the punctured key r′P ← PF.Punc(r′, {ct∗i }i∈[qlr ]).

3. Compute the secret key skf ′ ← DIO(S.G[mpk∗,td∗,r′
P
,{ct∗i }i∈[qlr ],{y

∗
i }i∈[qlr ],f

′]) and return skf ′ , where the circuit

S.G[mpk∗,td∗,r′
P
,{ct∗i }i∈[qlr ],{y

∗
i }i∈[qlr ],f

′]) is constructed in Figure H1.

Simulator S3. The simulator S3 simulates the decryption oracle. In fact, in this phase, S3 has got the state information

from simulator S2, therefore S3 can proceed the following steps smoothly. When A2 makes a decryption query (ct, g′, 1, n)

with ct = (C, s, U, π, tc), the simulator S3 performs the following steps.

1. If C ∈ C\V or ct ∈ {ct∗i }i∈[qlr ] (C ∈ C\V can be decided with the corresponding universal trapdoor), then output ⊥
and stop, otherwise continue the next step.

2. Compute K = THPS.Priv(sk∗, C) and π′ = LAFlpk∗,t(K), if π′ 6= π, output ⊥ and stop, otherwise continue the next

step.

3. Compute x = Ext(K, s)⊕ U .

4. Return g′(x; r) = DecIdeal(g′, x) with r ←$ Rλ.

The sequence of games.
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G0 : This is the real experiment. Here, each decryption query (ct, g, 1, n) is answered using a decryption key skg ←
DIO(G[mpk∗,msk∗,r′,g]) where G[mpk∗,msk∗,r′,g] is defined in the same manner as G[mpk∗,msk∗,r′,f ], except that it

has function g hardcoded in it. Let {ct∗i = (C∗, s∗, U∗, π∗, t∗c)}i∈[qlr ] be challenge ciphertext set in which ct∗i encrypts

xi ∈ −→x where |−→x | = llr. For convenience, we write the circuit G[mpk∗,msk∗,r′,g] as Gg which is shown in Figure ??.

G1 : This game is the same as G0 except for the queries on the target key. Rather than using the hash values hk∗ (φn(r)),

the game picks a uniformly random value from Rλ to replace hk∗ (φn(r)). Concretely, in the KeyGen queries, the

secret key skf is computed as skf ← DIO(G[mpk∗,msk∗,r′,f ]) with r′ = PFrh (mpk||f), where rh is chosen uniformly

and randomly from Rλ, instead of rh = hk∗ (φn(r)). The values hk∗ (φn(r)) in the LR and ENC queries are also

replaced with uniformly random values. While in the DEC query, the same replacement is done as in KeyGen queries.

In fact, the gaps between games G0 and G1 may be reduced to the security of the CIS hash function h. Note that in

order to prevent trivial attacks, we require that the functions φn used in the KeyGen query must be different from

each other and cannot appear in other oracle queries.

G2 : This game is the same as G1 except for the queries on the target key. Rather than using PFrh (·), the game picks a

uniformly random value fromRλ to replace PFrh (·). Concretely, in the KeyGen queries, the secret key skf is computed

as skf ← DIO(G[mpk∗,msk∗,r′,f ]), where r′ is chosen uniformly and randomly from Rλ, instead of r′ = PFrh (mpk||f).

The value PFrh (mpk||xi) in the LR queries and the value PFrh (mpk||x) in the ENC queries are also replaced with

uniformly random values. While in the DEC query, the same replacement is done as in KeyGen queries. In fact, the

gaps between games G1 and G2 may be reduced to the security of the puncturable PRF PF.

G3 : This game is the same as G2 with the exception that the generation of the core tag t∗c in every challenge ciphertext in

the set {ct∗i }i∈[qlr ] is computed as t∗c = LAF.Ltag(ltd∗, t∗a) instead of sampling t∗c randomly and uniformly from Tc,
where t∗a = (C∗, s∗, U∗).

G4 : This game is the same as G3 except for the computation of K∗ in every challenge ciphertext in the set {ct∗i }i∈[qlr ].

This game computes K∗ = THPS.Priv(sk∗, C∗) rather than K∗ = THPS.Pub(pk∗, C∗, w∗).

G5 : This game is the same as G4 except for the generation of C∗ in every challenge ciphertext in the set {ct∗i }i∈[qlr ]. We

samples C∗ ←$ C\V instead of C∗ ←$ V.

G6 : This game is the same as G5 except that for every key query for function f , the secret key is answered with

skf ← DIO(S.G[mpk∗,td∗,r′p,{ct∗i }i∈[qlr ],{y
∗
i }i∈[qlr ],f ]), where y∗i = f(xi; ri) with ri = PF.Eval(r′, ct∗i ) and r′p =

PF.Punc(r′, {ct∗i }i∈[qlr ]) and S.G[mpk∗,td∗,r′p,{ct∗i }i∈[qlr ],{y
∗
i }i∈[qlr ],f ] is constructed in Figure H1. Similarly, we write

the circuit S.G[mpk∗,td∗,r′p,{ct∗i }i∈[qlr ],{y
∗
i }i∈[qlr ],f ] as S.Gf .

G7 : This game is the same as G6 except that for every key query for function f , the secret key is answered with skf ←
DIO(S.G[mpk∗,td∗,r′p,{ct∗i }i∈[qlr ],{y

∗
i }i∈[qlr ],f ]) in the same manner as the simulator S2, where y∗i = f(xi; ri) with

ri ←$ Rλ.

G8 : This game is the same as G7 except that when the adversary delivers a decryption query (ct, g, 1, n) such that

ct = (C, s, U, π, tc) with C ∈ C\V, the decryption oracle outputs ⊥.

G9 : This game is the same as G8 except that U∗ in every challenge ciphertext in the set {ct∗i }i∈[qlr ] is computed as

U∗ = Ext(K∗, s∗)⊕ 0|xi| instead of U∗ = Ext(K∗, s∗)⊕ xi.

G10 : This game is the same as G9 except that we now answer the decryption queries of A2 in the same manner as simulator

S3. Note that this is the ideal experiment.

Obviously, in game G0, we are in an identical setting to the real game in the Sim-LR-RRA-CCA security definition, while

in game G10, we are in an identical setting to the ideal game. Let coll denotes the event that collisions happen in the hash

function keys, then the advantage of a Sim-LR-RRA-CCA adversary A = (A1,A2) can be defined as

AdvSim-LR-RRA-CCA
rFE,lL,S,F,R,A (λ) = Pr[LRRRACCAREALArFE,lL,F,R(λ)]− Pr[LRRRACCAIDEALSrFE,lL,F,R(λ)]

= Pr[G0]− Pr[G10]

6 Pr[G0|coll]− Pr[G10|coll] + Pr[coll]

=
9∑
i=0

(Pr[Gi|coll]− Pr[Gi+1|coll]) + Pr[coll] (H2)

For simplicity, we invoke Lemma 1 from [5], so that we now only have to prove the theorem for an adversary using just one

random value. In the following, we first give the descriptions of a series of Claims, then prove them in Appendix 10.

Lemma 1. Let Pr[G0|coll] and Pr[G1|coll] respectively denote the probability that adversary A = (A1,A2) outputs 1 in

game G0 and game G1 when no collisions happen in the hash function keys. Then we can construct an adversary Acis
which tries to break the l-mk-sci-pr security of the CIS hash function h such that

Pr[G0|coll]− Pr[G1|coll] 6 qφ.Adv
l-mk-sci-pr
h,Acis

(λ). (H3)

Lemma 2. Let Pr[G1|coll] and Pr[G2|coll] respectively denote the probability that adversary A = (A1,A2) outputs 1 in

game G1 and game G2 when no collisions happen in the hash function keys. Then we can construct an adversary Aprf
which tries to break the security of the puncturable PRF PF such that

Pr[G1|coll]− Pr[G2|coll] 6 qφ.Adv
prf
PF,Aprf

(λ). (H4)
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Constants : mpk∗, td∗, r′p, {ct
∗
i }i∈[qlr ], {y

∗
i }i∈[qlr ], f

Input : ct

1. If ct = ct∗i ∈ {ct
∗
i }i∈[qlr ] output y∗i and stop;

2. Parse ct into C, s, U, π, tc and parse mpk∗ into pp∗, lpk∗, k∗, pk∗.

3. If C ∈ C\V output ⊥ and stop.

4. Compute w = THPS.Invert(td∗, C).

5. Compute K = THPS.Pub(pk∗, C, w).

6. Compute π′ = LAFlpk∗,t(K), where t = (ta, tc), ta = (C, s, U).

7. If π′ 6= π, output ⊥ and stop, else proceed the following steps.

8. Compute x = Ext(K, s)⊕ U .

9. Compute r′′ = PF.Eval(r′p, ct).

10. Compute y = f(x; r′′) and output y.

Figure H1 Functionality S.G[mpk∗,td∗,r′p,{ct∗i }i∈[qlr ],{y
∗
i }i∈[qlr ],f ]

Lemma 3. Let Pr[G2|coll] and Pr[G3|coll] respectively denote the probability that adversary A = (A1,A2) outputs 1 in

game G2 and game G3 when no collisions happen in the hash function keys. Then we can construct an adversary Aind
which tries to break the indistinguishability property of the lossy algebraic filter LAF such that

Pr[G2|coll]− Pr[G3|coll] 6 AdvindLAF,Aind (λ). (H5)

Lemma 4. Let Pr[G3|coll] and Pr[G4|coll] respectively denote the probability that adversary A = (A1,A2) outputs 1 in

game G3 and game G4 when there are no collisions in the hash function keys. Then we have

Pr[G3|coll] = Pr[G4|coll]. (H6)

Lemma 5. Let Pr[G4|coll] and Pr[G5|coll] respectively denote the probability that adversary A = (A1,A2) outputs 1 in

game G4 and game G5 when there are no collisions in the hash function keys. Then we can construct an adversary Asmp
which can break the subset membership problem of the trapdoor hash proof system THPS such that

Pr[G4|coll]− Pr[G5|coll] 6 qlr.Adv
smp
THPS,Asmp (λ). (H7)

Lemma 6. Let Pr[G5|coll] and Pr[G6|coll] respectively denote the probability that adversary A = (A1,A2) outputs 1 in

game G5 and game G6 when there are no collisions in the hash function keys. Then we can construct an adversary Adio
which tries to break the security of the differing-inputs obfuscation such that

Pr[G5|coll]− Pr[G6|coll] 6 qsk.Adv
dio
Gf ,S.Gf ,Adio (λ). (H8)

Lemma 7. Let Pr[G6|coll] and Pr[G7|coll] respectively denote the probability that adversary A = (A1,A2) outputs 1 in

game G6 and game G7 when there are no collisions in the hash function keys. Then we can construct an adversary A′prf
which tries to break the security of the puncturable PRF PF such that

Pr[G6|coll]− Pr[G7|coll] 6 qsk.Adv
prf
PF,A′

prf
(λ). (H9)

Lemma 8. Let Pr[G7|coll] and Pr[G8|coll] respectively denote the probability that adversary A = (A1,A2) outputs 1 in

game G7 and game G8 when there are no collisions in the hash function keys. Then we can construct an adversary Aevs
which can break the evasiveness security of the lossy algebraic filter LAF such that

Pr[G7|coll]− Pr[G8|coll] 6 qd.Adv
evs
LAF,Aevs (λ) + qd.2

lL+qlr.lLAF+qlr.m/(2ν − qd). (H10)

Lemma 9. Let Pr[G8|coll] and Pr[G9|coll] respectively denote the probability that adversary A = (A1,A2) outputs 1 in

game G8 and game G9 when no collisions happen in the hash function keys. Then we have

Pr[G8|coll]− Pr[G9|coll] 6 2.qlr.ε2. (H11)

Lemma 10. Let Pr[G9|coll] and Pr[G10|coll] respectively denote the probability that adversary A outputs 1 in game G9

and game G10 when there are no collisions in the hash function keys. Then we can construct an adversary Aprf which can

break the security of the puncturable PRF PF such that

Pr[G9|coll]− Pr[G10|coll] 6 qd.Adv
prf
PF,Aprf

(λ). (H12)

We complete the description of these Claims. We give their proofs in Appendix 10. If let |HashKeySpace| denote the size

of the hash key space, then obviously we have Pr[coll] 6 l2

|HashKeySpace| . In addition, since the adversary is allowed to query
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at most qr randomness indices in oracle queries, by Eq. H2 and Eqs. H3, H4, H5, H6, H7, H8, H9, H10, H11 and H12, we

get Eq. H1, namely,

AdvSim-LR-RRA-CCA
rFE,lL,S,F,R,A (λ) = Pr[LRRRACCAREALArFE,lL,F,R(λ)]− Pr[LRRRACCAIDEALSrFE,lL,F,R(λ)]

6
9∑
i=0

(Pr[Gi|coll]− Pr[Gi+1|coll]) + Pr[coll]

6 qr.qφ.Adv
l-mk-sci-pr
h,Acis

(λ) + qr.(qφ + qd).AdvprfPF,Aprf
(λ) + qr.Adv

ind
LAF,Aind (λ)

+ qr.qlr.Adv
smp
THPS,Asmp (λ) + qr.qsk.Adv

dio
Gf ,S.Gf ,Adio (λ) + qr.qsk.Adv

prf
PF,A′

prf
(λ)

+ qr.qd.Adv
evs
LAF,Aevs (λ) + qr.qd.2

lL+qlr.lLAF+qlr.m/(2ν − qd) + 2.qr.qlr.ε2

+
l2.qr

|HashKeySpace|
.

This proves Theorem 1.

Completing Proof of Theorem 1

Here we give the complete proofs for Claim 1 to Claim 10 described above.

Proof of Claim 1 . If no collisions happen in the hash function keys, then the difference between G0 and G1 can be

reduced to the security of the CIS hash function h. That is, if there exists an adversary A = (A1,A2) can distinguish G0

and G1, we can construct an adversary Acis which uses A to break the security of the CIS hash function h. By a hybrid

argument, the reductions can be perfectly completed in the same way as Lemma 2 in [5] by the adversary Acis and thus,

we have equation H3 hold.

Proof of Claim 2 . If no collisions happen in the hash function keys, obviously the difference between G1 and G2 can be

reduced to the security of the puncturable PRF PF. That is, if there exists an adversary A = (A1,A2) can distinguish G1

and G2, we can construct an adversary Aprf which uses A to break the security of the puncturable PRF PF. In the same

way as Lemma 3 in [5], by a hybrid argument, the reductions can be perfectly simulated by the adversary Aprf and thus,

we have equation H4 hold.

Proof of Claim 3 . We show that when there are no collisions in the hash keys, if there exists a PPT adversary A =

(A1,A2) that can distinguish game G2 and game G3, then we can build a PPT adversary Aind that can break the

indistinguishability (IND) security of the lossy algebraic filter LAF. Let B denote the IND challenger of the LAF, then the

adversary Aind is constructed as follows.

1. The adversary Aind first honestly generates ({mpki′}i′∈[l], {mski′}i′∈[l], st
′) except that it gets {lpki′}i′∈[l] from its

IND challenger B. Then it flips a coin b ←$ {0, 1}. Note that although the adversary Aind may obtain the trapdoor tdi′ ,

since the generation of tdi′ is independent of LAF, it would not help the adversary Aind to win in this reduction.

2. For every LR query from A2, Aind first constructs t∗a = (C∗, s∗, U∗) by itself and then forwards t∗a to its challenger B
and receives t∗c which is either chosen uniformly and randomly from Tc or computed as LAF.Ltag(ltk∗, t∗a), where (C∗, s∗)←
SampleV×{0,1}d (r) with r ←$ Rλ. Next Aind computes K∗ = THPS.Pub(pk∗, C∗, w∗) and π∗ = LAFlpk∗,t∗ (K∗), where

t∗ = (t∗a, t
∗
c). Finally Aind sends the challenge ciphertext ct∗ = (C∗, s∗, U∗, π∗, t∗c) to the adversary A2. Note that all

the simulations in this phase can be done, since, priori to the LR query, both the Func query and Target query have been

completed in advance.

3. For every ENC query from A2 such that (mpk, x, 1, φ), where mpk = (ppi′ , lpki′ , ki′ , pki′ ) ∈ {mpki′}i′∈[l], since tc is

chosen uniformly and randomly, Aind can construct the ciphertext ct = (C, s, U, π, tc) by itself as in game G2 and game

G3. Namely, if mpk = mpk∗, then (C, s, tc) ← SampleV×{0,1}d×Tc (r) with r ←$ Rλ; otherwise, if mpk 6= mpk∗, then

(C, s, tc)← SampleV×{0,1}d×Tc (PFhk∗ (φn(r))(mpk||f)) with r ←$ Rλ.

4. Aind continues to simulate the rest of the experiment in the same manner as in G2 and G3.

5. Finally, Aind sends the output of the experiment to A2 and returns its results to B.

Now if B returns t∗c = LAF.Ltag(ltk∗, t∗a), then Aind perfectly simulates game G3 for A2, else it simulates game G2 for

A2. Thus, we have

Pr[G2|coll]− Pr[G3|coll] 6 AdvindLAF,Aind (λ).

Proof of Claim 4 . In game G3, K∗ is computed as K∗ = THPS.Pub(pk∗, C∗, w∗), while in game G4, the computation

of K∗ is replaced with K∗ = THPS.Priv(sk∗, C∗). When no collisions happen in the hash keys, by the projectiveness of the

trapdoor hash proof system THPS, this conversion is equivalent and thus we have

Pr[G3|coll] = Pr[G4|coll].

Proof of Claim 5 . Assume that the adversary makes a total of qlr LR queries. We consider qlr intermediate hybrids G4,i

for 0 6 i 6 qlr. In G4,i, we respond to the first qlr − i LR queries as in game G4 and the remaining i LR queries as in G5.

We show that if there exists a PPT adversary A = (A1,A2) that can distinguish game G4,i and game G4,i+1, then we can

build a PPT adversary Asmp that can break the subset membership problem of the trapdoor hash proof system THPS.

The construction of Asmp is as follows.
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1. The adversary Asmp first honestly generates ({mpki′}i′∈[l], {mski′}i′∈[l], st
′) where for every i′ ∈ [l], ppi′ in mpki′

comes from the THPS challenger B and mski′ = ski′ is chosen uniformly and randomly from the set SKi′ . Note that the

adversary Asmp does not get the trapdoor tdi′ which is generated and maintained secretly by the challenger B.

2. For the first qlr − i − 1 LR queries from A2, Asmp responds in the same manner as in game G4. For the last i LR

queries, Asmp responds in the same manner as in game G5.

3. For the (qlr − i)′th LR query, Asmp first gets C∗ from his challenger B, where C∗ denotes either a sampled value from

V or a sampled value from C\V. It then constructs the rest parts of the challenge ciphertext ct∗ as in game G4. Finally

Asmp sends the challenge ciphertext ct∗ = (C∗, s∗, U∗, π∗, t∗c) to the adversary A2.

4. Asmp continues to simulate the rest of the experiment in the same manner as in G4 and G5.

5. Finally Asmp sends the output of the experiment to A2 and returns its results to B.

Now if B returns C∗ ←$ SampleV (r), then Asmp perfectly simulates game G4,i for A2, else it simulates game G4,i+1 for

A2. Where r is chosen uniformly and randomly from Rλ by the challenger B. Thus, by a hybrid argument, we have

Pr[G4|coll]− Pr[G5|coll] 6 qlr.Adv
smp
THPS,Asmp (λ).

Note that we assume that all the Claims in the following implicitly contain the condition that no collisions happen in

the hash function keys. We would not stress it any more in the proofs below.

Proof of Claim 6 . Note that the only difference between G5 and G6 is that in the former, we output DIO(Gf ) as the key

for function f , while in the latter, we output DIO(S.Gf ) as the key for function f . In order to prove that the two hybrids are

computationally indistinguishable, we first show that the circuit family (Gf , S.Gf , z, Sam) is a differing-inputs distribution,

where (Gf , S.Gf , z) is sampled by algorithm Sam(1λ) and z is an auxiliary input. Then by the security of differing-inputs

obfuscation, we would have that DIO(Gf ) and DIO(S.Gf ) are computationally indistinguishable, which in turn would imply

that G5 and G6 are computationally indistinguishable.

In fact, as long as we can prove that there exists no PPT adversary who can efficiently find a ciphertext ct which

makes Gf (ct) 6= S.Gf (ct) hold with non-negligible probability, then the circuit family (Gf ,S.Gf , z, Sam) is a differing-inputs

distribution. In the following, we give the formal proofs in two cases, i.e., ct ∈ {ct∗j}j∈[qlr ] and ct /∈ {ct∗j}j∈[qlr ].

• In the first case, for each ct = ct∗j = (C∗j , s
∗
j , U

∗
j , π
∗
j , t
∗
c,j) ∈ {ct∗j}j∈[qlr ], the circuit Gf computes the value K∗

′
j =

THPS.Priv(sk∗, C∗j ) in the same manner as its previously generated appearance, so we have π∗j = π∗
′
j = LAF.Evallpk∗,t∗j

(K∗
′
j ),

where t∗j = ((C∗j , s
∗
j , U

∗
j ), t∗c,j). Thus the circuit Gf outputs yj = f(xj ; r

′′
j ) where r′′j = PF.Eval(r′, ct∗j ). Since the circuit S.Gf

has the hardcoded challenge ciphertexts {ct∗j}j∈[qlr ] and values {y∗j }j∈[qlr ], when its input ct = ct∗j = (C∗j , s
∗
j , U

∗
j , π
∗
j , t
∗
c,j) ∈

{ct∗j}j∈[qlr ], the hardcoded value y∗j is directly output by this circuit, where y∗j = f(xj ; r
′′
j ) and r′′j = PF.Eval(r′, ct∗j ), hence

the two circuits have the identical-output behavior at all points ct ∈ {ct∗j}j∈[qlr ].

• In the second case, if ct = (C, s, U, π, tc) is a ciphertext such that C ∈ V, then there exists a witness w such that

THPS.Priv(sk∗, C) = THPS.Priv(pk∗, C, w) holds, thus both circuits either output the same ⊥ or the same non-⊥. However,

when C ∈ C\V, there may exist some points ct = (C, s, U, π, tc) which make the circuit Gf output non-⊥, while the circuit

S.Gf output ⊥. In this case, we show that given (Gf , S.Gf , z, Sam), there exists no PPT adversary who can efficiently find

a ct = (C, s, U, π, tc) with C ∈ C\V that makes Gf (ct) 6= S.Gf (ct) with non-negligible probability. We now formalize this

case.

Assume that there exists an adversary A′ against the differing-inputs of the above circuit family (Gf ,S.Gf , z, Sam) which

receives as input (Gf , S.Gf , z) and outputs a ciphertext ct = (C, s, U, π, tc) such that Gf (ct) 6= S.Gf (ct). In other words,

the adversary can efficiently find a ciphertext ct = (C, s, U, π, tc) such that C ∈ C\V and π = LAFlpk∗,t(THPS.Priv(sk∗, C))

which makes the circuit Gf output non-⊥, while the circuit S.Gf outputs ⊥. In the following, we analyze the probability

that the adversary A′ finds such a ct.

Let a ciphertext ct = (C, s, U, π, tc) such that C ∈ C\V and π = LAFlpk∗,t(THPS.Priv(sk∗, C)) denote a bad ciphertext,

a tag t with t = t∗ denote a repeated tag, badct denote the event that A′ finds a bad ciphertext and T denote the event

that there exists a ct = (C, s, U, π, tc) with t = ((C, s, U), tc) being a non-injective, non-repeated tag, then we have

Pr[badct] = Pr[badct ∧ T ] + Pr[badct ∧ T ] 6 Pr[badct|T ] + Pr[T ].

Clearly, if the event T happens, it means that there exists a PPT adversary Aevs who can efficiently outputs a non-

injective, non-repeated tag t = ((C, s, U), tc) such that tc is never queried to its oracle. Assume that the adversary A′ does

a total of qbad searches, then by the evasiveness security of the lossy algebraic filter LAF, we have

Pr[T ] 6 qbad.Adv
evs
LAF,Aevs (λ). (H13)

Without loss of generality, assume that ct = (C, s, U, π, tc) is the first bad ciphertext that makes the event badct happen

conditioned on T . I.e., both C ∈ C\V and π = LAFlpk∗,t(THPS.Priv(sk∗, C)) hold and t = ((C, s, U), tc) is an injective tag.

Let z =({mpki}i∈[l], C, {cti}i∈[qe], lL-leak, {ct∗i }i∈[qlr ], Leak({skf}f∈{f})) denote the auxiliary input given to A′ , then

we have

H̃∞(THPS.Priv(sk∗, C)|z) (H14)

= H̃∞(THPS.Priv(sk∗, C)|{mpki}i∈[l], C, {cti}i∈[qe], lL-leak, {ct∗i }i∈[qlr ], Leak({skf}f∈{f})) (H15)

> H̃∞(THPS.Priv(sk∗, C)|{mpki}i∈[l], C, {ct∗i }i∈[qlr ], Leak({skf}f∈{f}))− lL (H16)

> H̃∞(THPS.Priv(sk∗, C)|{mpki}i∈[l], C, Leak({skf}f∈{f}))− lL − qlr.lLAF − qlr.m (H17)
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= H̃∞(THPS.Priv(sk∗, C)|{mpki}i∈[l], C, td
∗)− lL − qlr.lLAF − qlr.m (H18)

= H̃∞(THPS.Priv(sk∗, C)|mpk∗, C, td∗)− lL − qlr.lLAF − qlr.m (H19)

> ν − lL − qlr.lLAF − qlr.m (H20)

Since {cti}i∈[qe] are computed by the ENC oracle under the master public key {mpki}i∈[l], the leaked information about

the master secret key msk∗ = sk∗ from these ciphertexts has been implied in {mpki}i∈[l], then by Lemma ??, the Eq.

H16 holds. In the challenge ciphertext {ct∗i }i∈[qlr ], only {U∗i }i∈[qlr ] and {π∗i }i∈[qlr ] will leak the information about the

master secret key and since U∗i and π∗i have respectively at most 2m and 2lLAF possible values, therefore, Eq. H17 holds.

Moreover, as all randomness used for generating the private keys {skf}f∈{f} queried by the adversary are independent of

sk∗, hence, only the trapdoor td∗ may leak the information of sk∗. So Eq. H18 holds. Again, since each ski ∈ {ski}i∈[l]

is chosen uniformly and dependently from its space SKi, hence Eq. H19 holds. The last equation H20 follows from the

ε1-universal property of the THPS. In fact, the event T happening means that the tag t = ((C, s, U), tc) is an injective tag

which maintains the entropy of the injective function LAFlpk∗,t(·). In addition, since the probability that the adversary can

find a bad ciphertext is at most 2lL+qlr.lLAF+qlr.m/2ν , hence, when this ciphertext is not bad, the adversary can eliminate

one encapsulated key K from the space 2ν . Thus we have

Pr[badct|T ] 6 qd.2
lL+qlr.lLAF+qlr.m/(2ν − qbad). (H21)

Combining Eqs. H13 and H21, we get

Pr[badct] 6 qd.2
lL+qlr.lLAF+qlr.m/(2ν − qbad) + qbad.Adv

evs
LAF,Aevs (λ), (H22)

which is negligible in λ. As a result, the probability that the adversary A′ outputs a ciphertext ct = (C, s, U, π, tc) with

C ∈ C\V that makes Gf (ct) 6= S.Gf (ct) is negligible, which implies that the circuit family (Gf , S.Gf , z, Sam) is a differing-

inputs distribution. Subsequently, we use the the distinguishable advantage between DIO(Gf ) and DIO(S.Gf ) to bound

the difference between games G5 and G6. Assume that A2 makes a total of qsk KeyGen queries. We define hybrids G5,i,

0 6 i 6 qsk, in which we respond to the first qsk − i queries as in G5, and respond to the last i queries as in G6. Let B be

the DIO challenger, then the adversary Adio is constructed as follows:

1. Adio first honestly generates ({mpki′}i′∈[l], {mski′}i′∈[l], {tdi′}i′∈[l], st
′).

2. For the first (qsk− i−1) key queries, Adio computes the key for f as in G5 and for the last i key queries, Adio computes

the key for f as in G6.

3. For the (qsk − i)′th key query from A2, Adio chooses a PRF key r′ ←$ Rλ, computes r′P = PF.Punc(r′, {ct∗j}j∈[qlr ])

and {y∗j }j∈[qlr ] = {f(xj ;PF.Eval(r′, ct∗j ))}j∈[qlr ]. It then uses mpk∗, msk∗, r′ and f to construct the circuit Gf and uses

mpk∗, td∗, r′P, {ct∗j}j∈[qlr ] and {y∗j }j∈[qlr ] to build the circuit S.Gf . Next it sends the two circuits to B and receives

skf = DIO(cir) from B, where cir denotes either Gf or S.Gf . Finally, skf is sent to the adversary A2. Note that in this

phase, all these simulations can be done since, according to the security definition, the values {ct∗j}j∈[qlr ] and the target

key have been generated priori to the KeyGen oracle queries.

4. Adio simulates the rest parts of the experiment for A2 in the same manner as in G5 and G6.

5. At the end, Adio sends the output of the experiment to A2 and returns its results to B.

Now if B returns the obfuscation of Gf , then Adio simulates game G5,i for A, else it simulates game G5,i+1 for A. Thus,

by a hybrid argument, we have

Pr[G5|coll]− Pr[G6|coll] 6 qsk.Adv
dio
Gf ,S.Gf ,Adio (λ).

Proof of Claim 7 . Assume that A2 makes a total of qsk key queries. We consider qsk intermediate hybrids G6,i for

0 6 i 6 qsk in which we respond to the first qsk − i key queries as in G6, and the remaining i key queries as in G7. We

show that if there exists a PPT adversary A = (A1,A2) that can distinguish hybrid G6,i and hybrid G6,i+1 with non-

negligible probability, then we can construct a PPT adversary A′prf which can break the security of puncturable PRF PF

with non-negligible probability. Let B be the puncturable PRF challenger, then the construction of A′prf is as follows.

1. The adversary A′prf first honestly generates ({mpki′}i′∈[l], {mski′}i′∈[l], {tdi′}i′∈[l], st
′).

2. For the first qsk − i − 1 key queries from A2, A′prf responds in the same manner as in game G6. For the last i key

queries, A′prf responds as in game G7.

3. For the (qsk − i)′th key query, A′prf first sends {ct∗j}j∈[qlr ] to its challenger B and receives the pair (r′P, {rj}j∈[qlr ]),

where r′P = PF.Punc(r′, {ct∗j}j∈[qlr ]), while rj is either PF.Eval(r′, ct∗j ) or a uniform and random value in Rλ. The adversary

A′prf then computes y∗j = f(xj ; rj) for all j ∈ [qlr] and defines the circuit S.Gf using the values mpk∗, td∗, r′p, {ct∗j}j∈[qlr ],

{y∗j }j∈[qlr ] and f . Finally, A′prf sets skf = DIO(S.Gf ) and sends skf to the adversary A2. Note that all these simulations

can be done since the values {ct∗j}j∈[qlr ] and target key have been generated priori to the KeyGen oracle queries, so the

values {y∗j }j∈[qlr ] and skf can be computed by A′prf .

4. A′prf simulates the rest of the experiment in the same manner as in game G6 and game G7.

5. At the end, the adversary A′prf sends the outputs of the experiment to A2 and returns its results to B.

Therefore, if B returns rj = PF.Eval(r′, ct∗j ), then A′prf perfectly simulates game G6,i for A2, else it simulates game

G6,i+1 for A2. Thus, by a hybrid argument, we have

Pr[G6|coll]− Pr[G7|coll] 6 qsk.Adv
prf
PF,A′

prf
(λ).

Proof of Claim 8 . Let EventC denote the event that a ciphertext such that C ∈ C\V is rejected in game G8 while is not

rejected in game G7. Then G7 and G8 behave identical until the event EventC arises. Obviously, the advantage that an
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adversary distinguishes game G7 from G8 can be bounded by the probability that the event EventC happens. Thus we have

Pr[G7|coll]− Pr[G8|coll] 6 Pr[EventC ].

Now we analyze the upper bound of the probability Pr[EventC ]. If we call a tag t such that t = t∗ a repeated tag, then by

T we denote the event that in game G7, there exists a decryption query ct = (C, s, U, π, tc) with t = ((C, s, U), tc) being a

non-injective, non-repeated tag. Then we have

Pr[EventC ] = Pr[EventC ∧ T ] + Pr[EventC ∧ T ] 6 Pr[EventC |T ] + Pr[T ].

First we claim that if there exists an adversary Aevs that can break the evasiveness security of the lossy algebraic filter

LAF with advantage AdvevsLAF,Aevs (λ), then the probability Pr[T ] can be upper bounded by this advantage. We build the

algorithm Aevs as follows. Assume A2 makes a total of qd decryption queries and let B denote the LAF challenger.

1. The adversary Aevs first honestly generates ({mpki}i∈[l], {mski}i∈[l], {tdi}i∈[l], st
′) which are generated in the same

way as game G7 except that it receives {lpki}i∈[l] from his LAF challenger B.

2. For the LR queries from A2, the adversary Aevs first constructs t∗a, and then delivers t∗a to its LAF challenger B and

receives t∗c . Next, Aevs constructs the other parts of the challenge ciphertext ct∗ for A2 as in game G7.

3. For the DEC queries from A2, since the adversary Aevs has msk∗ = sk∗, he can perfectly simulates the decryption

queries for A2.

4. Aevs simulates the rest of the experiment in the same manner as in G7 and G8.

5. Finally, the adversary Aevs sends the output of the experiment to A2 and returns its results to B.

At the end of the simulation, Aevs chooses j ∈ [qd] uniformly and outputs the tag t = ((C, s, U), tc) extracted from

A2’s j-th decryption query (C, s, U, π, tc). Obviously, if the event T happens, t = ((C, s, U), tc) is a non-injective tag with

probability at least 1/qd, namely

Pr[T ] 6 qd.Adv
evs
LAF,Aevs (λ). (H23)

Next, we claim that the probability Pr[EventC |T ] can be upper bounded by

qd.2
lL+qlr.lLAF+qlr.m/(2ν − qd).

Without loss of generality, assume that ct = (C, s, U, π, tc) is the first ciphertext that makes EventC happen conditioned

on T . Namely, both C ∈ C\V and π = LAFlpk∗,t(THPS.Priv(sk∗, C)) hold and t = ((C, s, U), tc) is an injective tag. Since

the values {mpki}i∈[l], C, {cti}i∈[qe], lL-leak, {ct∗i }i∈[qlr ] and Leak({skf}f∈{f}) are in A’s view, let VA denote A’s view,

then according to the analysis of equation H14, we have

H̃∞(THPS.Priv(sk∗, C)|VA) (H24)

= H̃∞(THPS.Priv(sk∗, C)|{mpki}i∈[l], C, {cti}i∈[qe], lL-leak, {ct∗i }i∈[qlr ], Leak({skf}f∈{f})) (H25)

> H̃∞(THPS.Priv(sk∗, C)|{mpki}i∈[l], C, {ct∗i }i∈[qlr ], Leak({skf}f∈{f}))− lL (H26)

> H̃∞(THPS.Priv(sk∗, C)|{mpki}i∈[l], C, Leak({skf}f∈{f}))− lL − qlr.lLAF − qlr.m (H27)

= H̃∞(THPS.Priv(sk∗, C)|{mpki}i∈[l], C, td
∗)− lL − qlr.lLAF − qlr.m (H28)

= H̃∞(THPS.Priv(sk∗, C)|mpk∗, C, td∗)− lL − qlr.lLAF − qlr.m (H29)

> ν − lL − qlr.lLAF − qlr.m (H30)

Similar to Claim 6, the event T happening means that the tag t = ((C, s, U), tc) is an injective tag which maintains the

entropy of the injective function LAFlpk∗,t(·). In addition, since in game G7 the decryption algorithm accepts such an

invalid ciphertext with probability at most 2lL+qlr.lLAF+qlr.m/2ν , when such a ciphertext is rejected, the adversary can

eliminate one encapsulated key K from the space 2ν . Thus we have

Pr[EventC |T ] 6 qd.2
lL+qlr.lLAF+qlr.m/(2ν − qd). (H31)

Combining Eqs. H23 and H31, we get Eq. H10.

Proof of Claim 9 . For each i ∈ [qlr], conditioned on A’s view

V ′A = ({mpkj}j∈[l], {cti}i∈[qe], C
∗
i , {C∗j }i6=j∈[qlr ], {πj}j∈[qlr ], {U∗j }i 6=j∈[qlr ], lL-leak, Leak({skf}f∈{f})),

we can get the lower bound of H̃∞(THPS.Priv(sk∗, C∗i )|V ′A) as below.

H̃∞(THPS.Priv(sk∗, C∗i )|V ′A) (H32)

> H̃∞(THPS.Priv(sk∗, C∗i )|{mpkj}j∈[l], {C∗j }j∈[qlr ], {U∗j }i 6=j∈[qlr ], Leak({skf}f∈{f}))− qlr.lLAF − lL (H33)

> H̃∞(THPS.Priv(sk∗, C∗i )|{mpkj}j∈[l], {C∗j }j∈[qlr ], {U∗j }i 6=j∈[qlr ], td
∗)− qlr.lLAF − lL (H34)

> H̃∞(THPS.Priv(sk∗, C∗i )|{mpkj}j∈[l], {C∗j }j∈[qlr ], td
∗)− (qlr − 1).m− qlr.lLAF − lL (H35)

> H̃∞(THPS.Priv(sk∗, C∗i )|{mpkj}j∈[l], C
∗
i , td

∗)− (qlr − 1).m− qlr.lLAF − lL (H36)

> ν − (qlr − 1).m− qlr.lLAF − lL (H37)

Obviously, Eqs. H33,H34,H35 hold. Since for each i ∈ [qlr], C
∗
i is chosen uniformly and randomly from C\V and

independent of sk∗, thereby, Eq. H36 holds. The last equation H37 follows from the ε1-universal property of the THPS.
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We define an intermediate game G′8 which is the same as G8 except that U∗i in each challenge ciphertext in the set

{ct∗i }i∈[qlr ] is chosen uniformly and randomly from {0, 1}m. In the following, we first show that game G8 is indistinguishable

from game G′8, then in turn give proofs that G′8 and G9 are indistinguishable. We consider qlr intermediate hybrids G8,i for

0 6 i 6 qlr where in G8,i, we respond to the first qlr − i LR queries as in game G8 and the remaining i LR queries as in G′8.

Taking THPS.Priv(sk∗, C∗i ) as an input to the average-case ((ν−(qlr−1).m−qlr.lLAF− lL), ε2)-strong extractor, we have

that Ext(THPS.Priv(sk∗, C∗i ), s∗i ) is ε2-close to uniform distribution given A’s view, thus we have Pr[G8,i]− Pr[G8,i+1] 6 ε2
which leads to Pr[G8]− Pr[G8′ ] 6 qlr.ε2. Likewise, we can get Pr[G′8]− Pr[G9] 6 qlr.ε2. In addition, since for each i ∈ [qlr],

the security definition requires that the equation f(xi; r) = f(0; r) should hold for the information-theoretically fixed r by

xi, therefore, skf do not help the adversary distinguish games G8 and G9. Hence, we have

Pr[G8|coll]− Pr[G9|coll] 6 2.qlr.ε2.

Proof of Claim 10 . Assume that A2 makes a total of qd DEC queries. We consider qd intermediate hybrids G9,i for

0 6 i 6 qd in which we respond to the first qd − i decryption queries as in game G9, and the remaining i decryption queries

as in G10. We show that if there exists a PPT adversary A = (A1,A2) that can distinguish G9,i and G9,i+1, then there

exists a PPT adversary Aprf that can break the security of the puncturable PRF PF. Let B denote the PRF challenger,

then the reduction is as follows.

1. The adversary Aprf first honestly generates ({mpki′}i′∈[l], {mski′}i′∈[l], {tdi′}i′∈[l], st
′).

2. For the first qd − i − 1 DEC queries from A2, Aprf responds in the same manner as in game G9. For the last i DEC

queries, Aprf responds in the same manner as in game G10.

3. For the (qd − i)′th DEC query such as (ct, g, 1, n), if ct /∈ {ct∗i }i∈[qlr ], Aprf first gets x by decrypting ct with the

master secret key msk∗ = sk∗ and then submits ct to the PRF challenger B and receives r′′ which is either computed as

r′′ = PF.Eval(r′, ct) or chosen uniformly and randomly. Finally the adversary Aprf computes y = g(x; r′′) and sends it to

the adversary A2. If ct ∈ {ct∗i }i∈[qlr ], Aprf outputs ⊥ and stops.

4. Aprf simulates the rest of the experiment in the same manner as in G9 and G10.

5. At the end, Aprf sends the output of the experiment to A2 and returns its results to B.

If B returns r′′ = PF.Eval(r′, ct), then Aprf perfectly simulates game G9,i for A2, else it simulates game G9,i+1 for A2.

Where r′ is a random PRF key chosen by the challenger B. Thus, by a hybrid argument, we have

Pr[G9|coll]− Pr[G10|coll] 6 qd.Adv
prf
PF,Aprf

(λ).
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