SCIENCE CHINA
Information Sciences

@ CrossMark
&click for updates

« PERSPECTIVE -

May 2018, Vol. 61 056101:1-056101:3
https://doi.org/10.1007/s11432-017-9355-3

Can big data bring a breakthrough for software
automation?

Hong MEI?" & Lu ZHANG!

LKey Laboratory on High-Confidence Software Technologies (Ministry of Education), Peking University,
Beijing 100871, China;
2Beijing Institute of Technology, Beijing 100081, China

Received 15 December 2017/Accepted 15 January 2018/Published online 9 April 2018

Citation

Mei H, Zhang L. Can big data bring a breakthrough for software automation? Sci China Inf Sci, 2018,
61(5): 056101, https://doi.org/10.1007/s11432-017-9355-3

Software automation [1] aims to automatically
generate computer programs from formal or infor-
mal requirements. Since it may release program-
mers from tedious programming tasks, software
automation has long been a dream of computer
scientists. Practically, since software systems con-
stantly evolve during their life cycles, software au-
tomation should cover all development activities
related to both generating new code and changing
existing code. Compilers for high-level program-
ming languages (e.g., C and FORTRAN) can be
viewed as pioneer work in the field of software
automation. With compilers, programs written
in high-level programming languages can be auto-
matically transformed into their executable forms
using some transformation rules. However, to re-
alize software automation in the modern sense,
where software systems written in high-level pro-
gramming languages need to be automatically gen-
erated based on their requirements, three major
challenges need to be further addressed: informal-
ity, non-operationality, and incompleteness.

e Informality. Instead of representing require-
ments for computers to process (e.g., a formal lan-
guage), humans tend to represent requirements
in a manner for humans to process (e.g.7 a nat-
ural language). To address this challenge, re-
searchers have investigated various specification
languages [2] (which can be either formal, semi-
formal, or graphical) to provide a compromise.

* Corresponding author (email: meih@pku.edu.cn)

© Science China Press and Springer-Verlag GmbH Germany 2018

However, informality remains challenging because
it implies that computers should understand nat-
ural languages in an accurate manner.

e Non-operationality. Instead of describing
“how to do” in requirements, humans tend to de-
scribe only “what to do”. To address this chal-
lenge, researchers have investigated various declar-
ative languages (e.g., functional languages [3]),
where developers can describe only “what to do”
requirements and a compiler or an interpreter
automatically maps them to their corresponding
“how to do” requirements. However, declarative
languages can manage only a limited set of such
“what to do” requirements. To accommodate a
broader scope of “what to do” requirements, a
search procedure to synthesize programs satisfy-
ing the “what to do” requirements is needed. This
kind of program synthesis is very difficult because
it needs to search an infinite program space.

e Incompleteness. Instead of describing the
full set of requirements, humans tend to explic-
itly provide a small subset of the requirements,
keeping the remaining requirements latent. To ad-
dress this challenge, researchers have investigated
various domain-specific languages [4] for mature
domains, where software systems differ from each
other on a well-defined set of variation points.
Thus, developers can use a domain-specific lan-
guage to concisely describe a target system, thus
alleviating the situation. The difficulty of fully ad-

info.scichina.com link.springer.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-017-9355-3&domain=pdf&date_stamp=2018-4-9
https://doi.org/10.1007/s11432-017-9355-3
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-017-9355-3

Mei H, et al.

dressing this challenge is that the large number of
unknown variation points in general domains poses
an intrinsic barrier for humans to design and im-
plement suitable domain-specific languages.

This article proposes that the vast accumulation
of source code and related documentation (i.e.,
big data in software development) may shed some
new insights into software automation. Here, big
data in software development at least include soft-
ware code bases, software revisions, software doc-
uments, software issues in issue tracking systems,
and development-related emails among developers.
Similar to other types of big data, these data are
also accumulating at a rapid pace, although the
absolute volume is far smaller than that of some
typical kinds of big data (e.g., video data). How-
ever, due to their complex structures, efficient pro-
cessing of these data is already a challenge.

For informality, the parallel relation between
source code and its functionality descriptions in
natural languages provides an opportunity to learn
how to map descriptions in natural languages to
source code. For non-operationality, since these
data may generally characterize a space of exist-
ing software, confining the search space within this
software space may both accelerate the search pro-
cedure and help produce human readable code.
For incompleteness, since different software sys-
tems may share some common functionalities
(which may not be specified formally and/or in an
explicit form), these common functionalities may
provide an opportunity for identifying latent re-
quirements and their implementations in existing
code.

Analog. By considering software automation as
transforming requirement description into source
code, software automation can be viewed as an
analog to machine translation [5]. Although var-
ious rule-based approaches have been intensively
investigated, the vast accumulation of parallel nat-
ural language corpora makes data-driven machine
translation competitive or even more effective.

For software automation, what has been done
in data-driven machine translation is mainly suit-
able to address only informality. To address the
other two challenges, invention of new methodolo-
gies and/or techniques becomes unavoidable, be-
cause the other two challenges do not essentially
involve pure translation but more or less involve
creation of non-existing source code.

Noticeable research. In general, there are two
noticeable lines of research on utilizing existing
data to assist software development.

First, many software researchers tried to mine
existing data accumulated in previous software de-
velopment to acquire useful knowledge for software

Sci China Inf Sci

May 2018 Vol. 61 056101:2

development. Techniques with this focus generally
summarize some patterns from existing data and
use these patterns as guidelines for future software
development. A typical example is defect predic-
tion [6], where various attributes are extracted and
a prediction model is built. Typically, existing
techniques in this line can acquire patterns with
only low accuracy at the current stage. Therefore,
it is only feasible to use these patterns to aid hu-
man developers, but it is infeasible to perform soft-
ware automation solely based on these patterns.

Second, artificial intelligence researchers have
recently started studying models (e.g., neural net-
work models) for learning from big data in software
development. Their primary concern is proper
treatment of the highly structural information
(e.g., source code). For example, tree-based convo-
lutional neural networks [7] are proposed to accom-
modate complex structures of code. These neural
networks are demonstrated to be effective for dis-
tinguishing functionalities of code snippets. Con-
ceptually, this research line complements the pre-
vious line from the perspective of software automa-
tion because automatic code generation relies on
a wide range of knowledge including both knowl-
edge specific to the development tasks and com-
mon coding knowledge. However, the accuracy of
the existing techniques in this line of research can
be competitive in very few tasks.

Ezxpecting a breakthrough. A breakthrough of
software automation with the help of big data may
occur in the foreseeable future. There may be
two criteria that determine such a breakthrough
(which may be also called data-driven software au-
tomation) has occurred. First, source code for a
wide range of daily software development tasks can
be automatically generated. In other words, the
breakthrough techniques should be able to oversee
a large portion of activities for developing soft-
ware with a typical size and written in a main-
stream programming language. Second, the auto-
matically generated code should have comparable
or even higher quality than human-written code.
In particular, the maintainability of the automati-
cally generated code should be high enough so that
human developers can work with it comfortablly.

In fact, daily software development tasks nowa-
days are mainly based on mature algorithmic and
architectural designs. That is, instead of inventing
totally new algorithms and architectures, develop-
ers usually adopt ideas and patterns from existing
successful algorithms and architectures. Further-
more, with the accumulation of various useful soft-
ware libraries, there seems to be a trend that daily
software development becomes less creative. Thus,
daily software development tasks involve more of

Mei H, et al.

building with existing libraries than inventing new
code.

Approaching the breakthrough. In the following,
we focus on discussing where data-driven software
automation might replace human developers in the
near future.

First, it is more practical and viable to apply
data-driven software automation during software
evolution than during initial software develop-
ment. During software evolution, the history of a
software system is typically a burden for human
developers to evolve the system, but for data-
driven software automation, the history of the sys-
tem can be a valuable data source. Thus, the his-
torical data may serve as a benefit instead of a
hindrance for data-driven software automation to
produce quality code to evolve the system.

Second, one particularly promising scenario
in data-driven software evolution is functional-
ity transplantation, which migrates the code im-
plementing certain functionalities from one soft-
ware system to another. Compared with data-
driven software evolution in the general sense, the
scenario of functionality transplantation explicitly
provides developers with the code that will be
transplanted. In other words, a technique for func-
tionality transplantation starts with some existing
code instead of some (partial) informal specifica-
tion. Thus, the search procedure can focus on a
small search space around the code at hand. An-
other promising scenario in data-driven software
evolution might be bug fixing, where some partial
specification represented as test cases is typically
available. Since it is convenient to execute the test
cases to check the satisfiability of the partial spec-
ification, the search procedure in this scenario can
be in a much simpler form.

Third, data-driven software automation may
also provide useful support for developing the ini-
tial version of a given software system. Let us con-
sider that developers are required to build a soft-
ware system or sub-system using existing software
libraries. On account of the abundance of software
libraries, the typical daily development require-
ment for developers is to compose application pro-
gramming interfaces (APIs) from various libraries
with some simple logic. Thus, with a knowledge
base that stores the up-to-date knowledge about
all the known libraries, a technique for data-driven
software automation may search in only a limited
search space that covers common composition log-
ics to fulfill most daily development tasks in this
scenario. Our early work called the architecture-
based component composition (ABC) approach [8]

Sci China Inf Sci

May 2018 Vol. 61 056101:3

is an existing attempt on reuse-based software au-
tomation. Given some specifications, the ABC ap-
proach matches the specifications against existing
components and finds the most suitable compo-
nents. Then, the ABC approach tries to gener-
ate glue code to compose the components. When-
ever the generation of glue code fails, the ABC
approach allows manual generation of glue code.
Typically, the glue code is tightly mapped to an
underlying mechanism (e.g., a middleware sys-
tem). Compared with data-driven software au-
tomation, ABC does not rely on big data to find
suitable components or to generate glue code.

Limit. To conclude, we briefly discuss the limit
of data-driven software automation. In our opin-
ion, software development may not become fully
automatic solely due to data-driven software au-
tomation. What has been discussed so far is to
intrinsically reuse existing software rather than in-
vent new software. The main difference between
data-driven software automation and traditional
software reuse is that what is reused in data-
driven software automation is primarily the im-
plicit knowledge buried in code. Reuse of exist-
ing knowledge may become a limiting factor for
data-driven software automation to be applicable
in the scenario of developing software without suit-
able precedent knowledge. Of course, this scenario
may occur with low frequency in a typical software
development process.

Acknowledgements This work was supported by
National Key Research and Development Program of
China (Grant No. 2017YFB1001803).

References

1 Xu J, Chen D, Lv J, et al. Software Automation (in
Chinese). Beijing: Tsinghua University Press, 1994

2 Pressman R. Software Engineering: a Practitioner’s
Approach. Boston: McGraw Hill Press, 2010

3 Hudak P. Conception, evolution, and application of
functional programming languages. ACM Comput
Surv, 1989, 21: 359411

4 Mernik M, Heering J, Sloane A M. When and how
to develop domain-specific languages. ACM Comput
Surv, 2005, 37: 316-344

5 Hutchins W, Somers H. An Introduction to Machine
Translation. London: Academic Press, 1992

6 D’Ambros M, Lanza M, Robbes R. Evaluating defect
prediction approaches: a benchmark and an extensive
comparison. Empir Softw Eng, 2012, 17: 531-577

7 Mou L L, Li G, Zhang L, et al. Convolutional neu-
ral networks over tree structures for programming
language processing. In: Proceedings of the 30th
AAAI Conference on Artificial Intelligence (AAAI-16),
Phoenix, 2016. 1287-1293

8 Mei H, Chang J C, Yang F Q. Software component
composition based on ADL and middleware. Sci China
Ser F-Inf Sci, 2001, 44: 136-151

https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1007/s10664-011-9173-9

