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Abstract A considerably large class of critical applications run in distributed and real-time environments,

and most of the correctness requirements of such applications must be expressed by time-critical properties.

To enable the specification and verification of these properties in both qualitative and quantitative manners,

we propose a new real-time temporal logic RTCTL∗, by incorporating both the quantitative (bounded)

future and past temporal operators from the qualitative temporal logic CTL∗. First, we propose a symbolic

method for constructing the temporal tester for arbitrary principally temporal formulas. A temporal tester is

constructed as a non-deterministic transducer with a fresh boolean output variable, such that at any position

the output variable is set to be true if and only if the corresponding formula holds starting from that position.

Then we propose a symbolic model checking method for RTCTL∗ over finite-state transition systems with

weak fairness constraints based on the compositionality of testers. The soundness and completeness of the

model checking method, the expressiveness of RTCTL∗, and the complexity of the tester construction are

described and proven. We have already implemented an efficient model checking prototype for the real-time

linear temporal logic RTLTL, which is a quantifier-free version of RTCTL∗, by building upon the NuSMV

model checker. The theoretical and the experimental results from the prototype both confirm that for

checking bounded temporal formulae of the form fU[0,b]g or fS[0,b]g, our method performs exponentially

better than the translation-based method in NuSMV.
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1 Introduction

The formal verification of reactive systems constitutes one of the main technical challenges in computer

science. Model checking [1] turns out to be the most popular and powerful verification technique for

addressing this issue, where desired behavioral properties can be automatically verified with respect

to a given system. For specifying the expected properties of behaviors in a reactive system, temporal

logics [1, 2] are widely employed as formal modeling languages. The majority of state-of-the-art model
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checkers for discrete systems are based on temporal logics such as LTL (linear temporal logic), branching-

time temporal logics such as CTL (computation tree logic) and CTL∗ (a superset of CTL and LTL), or

their fragments and extensions. For example, SPIN [3] is based on LTL, and NuSMV [4] and SMV [5]

are based on CTL and LTL. In addition, JTLV [6] and the model checker MCTK [7] developed by the

present authors embrace all three of these logics. These temporal logics can be seen as mathematical

formalisms of qualitative reasoning concerning the evolution of a system over time, and only deal with

“before and after” properties, without an explicit reference to time. For example, the LTL formula Ff

means that the subformula f will eventually hold, but LTL cannot formalize quantitative properties such

as “the exact time at which f will take place”.

For many critical applications running in distributed and real-time environments, such as network

communication protocols and embedded real-time control systems, it is very important to guarantee

the time-critical properties that relate the occurrences of events. For such applications (quantitative)

temporal logics are a critical requirement for expressing quantitative properties relating to time evolution

during the computations of a given system. The real-time temporal logics adopted in most state-of-the-

art model checkers for real-time systems (e.g., Uppaal [8], HyTech [9], Kronos [10], and FSMT-MC [11])

are based on CTL and interpreted over timed transition systems (automata). Uppaal supports a subset

of CTL, such that its expressive power is restricted to specify reachability, safety, and liveness. HyTech,

Kronos, and FSMT-MC utilize timed CTL [12], which is an extension of CTL that allows quantitative

temporal reasoning over dense times. Meanwhile, some other real-time temporal logics are based on LTL,

including MTL (metric temporal logic) [13] and TPTL (timed temporal logic) [14], which are defined over

integer-time semantics, and MITL (metric interval temporal logic) [15], which employs the nonnegative

real numbers as the time domain. However, the major drawback of existing real-time logics based on

timed automata is that the computational overhead for model checking is high in such cases [12, 16].

In order to address this challenge, the work presented in this paper aims at striking a good balance

between the expressive power of real-time temporal logics and the computational complexity. More

specifically, we first propose a new real-time temporal logic RTCTL∗ (real-time computation tree logic)

by extending CTL∗ with bounded future and past temporal operators so that its expressive power is

stronger than those real-time logics that are based mainly on LTL or CTL. Then, we develop an efficient

model checking algorithm for RTCTL∗. We restrict the computation models for RTCTL∗ to be discrete

transition systems, in which each transition is assumed to run for a single time unit, so that we can

measure the elapse of time between events by counting the number of transition steps between those

events. Discrete transition systems provide a reasonable method for specifying synchronous systems, such

as digital circuits, protocols [17]. Furthermore, the tight timing constraints and predictability required

by real-time systems can easily be satisfied using synchronous design techniques. Therefore, real-time

systems can often be verified by model checking techniques based on discrete time [1]. To demonstrate the

significance of RTCTL∗, consider the scenario of a network communication protocol that should satisfy

the following property: whenever process P1 receives a request signal (denoted by req) from process P2,

it is possible for P1 to send acknowledgment signals (denoted by ack) back to P2 at least once every k

steps. This property can be specified through the following RTCTL∗ formula:

AG(req → E(F[0,k]ack ∧ G(ack → F[1,k]ack))), (1)

where there are two path quantifiers A (for all paths) and E (for some path), an unbounded temporal

operator G (always), and a bounded temporal operator F[a,b] (eventually within the interval [a, b]). We say

that F[a,b]f is true for some path starting from state s0 if f holds in some future state s on that path, and

the distance from s0 to s is within [a, b]. Such properties are very useful for verifying periodic real-time

tasks, but they cannot be specified using any other real-time temporal logics based on the proper subsets

(CTL or LTL) of CTL∗. The main contributions of this paper are summarized as follows:

(1) We propose a new real-time temporal logic RTCTL∗, which is an extension of CTL∗ with future and

past time-bounded temporal operators, such that one can express and analyze the real-time behaviors of

a system both over the computation tree and single computation;
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(2) We construct the symbolic temporal testers for (bounded) future and past temporal operators, and

propose a symbolic model checking algorithm for RTCTL∗ based on testers;

(3) We prove that RTCTL∗ is exponentially more succinct than the equivalent CTL∗. For each bounded

temporal formula of the form fU[0,b]g or fS[0,b]g (where U denotes “Until” and S denotes “Since”), only a

linear number of fresh boolean variables are introduced when constructing the tester using our method.

Therefore, the state space of our tester can be made exponentially smaller than for the tester constructed

using the translation-based method in NuSMV;

(4) We implement an efficient symbolic model checking prototype for the real-time linear temporal logic

RTLTL, which is a quantifier-free version of RTCTL∗, by building upon NuSMV 2.6.0. This prototype

enhances the real-time expressive power of the extended LTL in NuSMV, and the experimental results

show that our method performs significantly better than NuSMV for the verification of bounded temporal

formulae, especially for those of the form fU[0,b]g or fS[0,b]g;

(5) Thanks to the compositionality of testers, an important advantage of our tester-based verification

method is that it can also easily be incorporated into any other existing temporal model checker as well as

NuSMV without requiring any modification, as long as the checker supports fairness constraints and the

synchronous parallel composition of modules, such as the temporal model checkers SMV, JTLV, SPIN,

and the model checkers MCTK and MCMAS for multi-agent systems [18].

This paper is structured as follows. First, we introduce the computational model in Section 2. The

syntax and semantics of RTCTL∗ are presented in Section 3. The symbolic model checking algorithm for

RTCTL∗ is then presented in Section 4. In Section 5, we implement a symbolic model checking prototype

for RTLTL, and present an experimental comparison between NuSMV and our method. In Section 6, we

discuss related work and compare this with our approach. Finally, we conclude the paper and describe

directions for future work in Section 7.

2 Computational model

We adopt a just discrete system (JDS) as our computational model, which is a finite-state transition

system with weak fairness constraints.

Definition 1 (Just discrete system). A just discrete system D = (V,Θ,R,J ) consists of the following

components:

• V = {v1, . . . , vn} is a finite set of typed state variables over finite domains. We define a state s to

be a type-consistent interpretation of V , assigning to each variable v ∈ V a value s[v] in its domain. By

S, we denote the set of all states.

• Θ is the initial condition. This is an assertion (state formula over V ) characterizing all of the initial

states of D. A state is called initial if it satisfies Θ; that is, Θ(s) holds.

• R is a transition relation. This is an assertion R(V, V ′) relating a state s ∈ S to its D-successor

s′ ∈ S, by referring to both V and V ′. The transition relation R(V, V ′) identifies the state s′ as a D-

successor of the state s if R(s, s′) holds under the joint interpretation that interprets v ∈ V as s[v] and

v′ ∈ V ′ as s′[v′]. Without loss of generality, we require that R(V, V ′) must be total; that is, for every

state s ∈ S there exists a state s′ ∈ S such that R(s, s′) holds.

• J = {J1, . . . , Jk} is a set of assertions expressing the justice (weak fairness) constraints. The justice

constraint J ∈ J requires that every computation contains infinitely many J-states (states satisfying J).

Given a JDS D = (V,Θ,R,J ), let r : s0, s1, . . . be a sequence of states in D, ϕ be an assertion, and

i > 0 be a natural number. We say that i is a ϕ-position of r if si is a ϕ-state, i.e., si satisfies ϕ. A run

of D is a sequence of states r : s0, s1, . . . satisfying the following two requirements: (1) Initiality. Θ(s0)

holds; that is, s0 is the initial state. (2) Consecution. For each i > 0, R(si, si+1) holds; that is, si+1 is a

D-successor of si. By runs(D), we denote the set of runs of D. From the requirement that the transition

relation must be total, it is easy to infer that every run in runs(D) is infinitely long. An infinite run of

D is called fair if for each J ∈ J , the run contains infinitely many J-states. Let r : s0, s1, . . . be a run

of D. To facilitate the definition of the semantics of the temporal logic over runs, we first denote each
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state si by r(i). Then, the run r : s0, s1, . . . can be rewritten as r : r(0), r(1), . . .. We denote the suffix

r(i), r(i+1), . . . by ri. We refer to a pair (r, i) consisting of a run r and position i as a point. We use the

terms path and fair path as synonymous to run and fair run, respectively. Let X be a set of variables.

We define |X | as the number of bits representing the variables X in binary. We use |D| to denote the size

of D, and define |D| = |S|+ |R|, where |S| is the number of reachable states of D and |R| is the number

of transitions of D. Because |S| = O(2|V |) and R is over V ∪ V ′, we have that |D| = O(22|V |).

Given two JDSs D1 = (V1, Θ1, R1,J1) and D2 = (V2, Θ2, R2,J2), we define the synchronous parallel

composition of D1 and D2, denoted by D1 ‖ D2, as a JDS D = (V,Θ,R,J ), where V = V1 ∪ V2,

Θ = Θ1 ∧Θ2, R = R1 ∧R2, and J = J1 ∪ J2. We can view a run of D as the synchronous combination

of two runs respectively in runs(D1) and runs(D2). The synchronous parallel composition is mainly used

to combine a JDS to be checked with a tester Tϕ for a given formula ϕ.

3 Real-time temporal logic RTCTL∗

To facilitate the analysis of real-time temporal properties over both the computation tree or a linear

computation path of a system, we propose a new real-time temporal logic RTCTL∗, which is an extension

of the computation tree logic CTL∗ with (bounded) future and past temporal operators. We assume a

finite set of variables V over finite domains, and an underlying assertion language L that is a first-order

language over the integers, and contains interpreted symbols for expressing the standard operations and

relations over integers. An assertion is a formula in L. For example, the formula x < y+5 is an assertion

that includes two variables x and y, one constant 5, the “+” operation, and the “<” relation over integers.

An RTCTL∗ formula is constructed of assertions, to which we apply boolean operators, basic (bounded)

future/past temporal operators, and path quantifiers. The (bounded) future temporal operators are X

(neXt), U (Until), and U[a,b] (bounded Until). The (bounded) past temporal operators are Y (previ-

ously), S (Since), and S[a,b] (bounded Since). The path quantifier is E (for some computation path). For

convenience, we add the dual path quantifier A (for all computation paths) to RTCTL∗.

3.1 Syntax of RTCTL∗

There are two types of formulae in RTCTL∗: state formulae and path formulae. State formulae are

interpreted over states, and path formulae are interpreted over paths. Let ϕ be a state formula and ψ a

path formula. Then, the syntax of RTCTL∗ is defined inductively as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ and ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ | ψU[a,b]ψ | Yψ | ψSψ | ψS[a,b]ψ,

where p is an assertion in L, and a and b are nonnegative integers such that 0 6 a 6 b. RTCTL∗

comprises the set of state formulae generated by the above syntax. Let f and g be RTCTL∗ formulae.

We employ standard abbreviations from propositional logic, such as ⊥ for f ∧ ¬f , ⊤ for ¬⊥, f ∨ g for

¬(¬f ∧ ¬g), f → g for ¬f ∨ g, and f ↔ g for (f → g) ∧ (g → f).

We write ψ ∈ ϕ to denote that ψ is a subformula of ϕ. A formula ψ is called principally temporal

if its main operator is temporal. A subformula of the form Ef or Af in ϕ is called a maximal state

subformula of ϕ iff it is not a strict subformula of any strict subformula of the form Eg or Ag in ϕ. To

facilitate the analysis of the model checking algorithm for RTCTL∗, we first define vars(ϕ), also denoted

by ϕ-variables, to be the set of variables on which the formula ϕ depends. We then consider the length

(or size) of a formula as the length of the string used to write the formula down in a sufficiently succinct

manner. We define the length of a formula using Definition 2.

Definition 2 (Length of a formula). The length of a formula ϕ, denoted by |ϕ|, is calculated as follows:

• If ϕ is an assertion, then |ϕ| is the sum of the number of atomic propositions that encode each

variable in vars(ϕ) and the number of arithmetic and relational operators;

• If ϕ is of the form ¬f , Xf , Yf , Ef , or Af , then |ϕ| = |f |+ 1;

• If ϕ is of the form f ∧ g, fUg, or fSg, then |ϕ| = |f |+ |g|+ 1;

• If ϕ is of the form fU[a,b]g or fS[a,b]g, then |ϕ| = |f |+ |g|+ ⌈log2 a⌉+ ⌈log2 b⌉+1, where ⌈log2 0⌉ = 1;
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Figure 1 The (bounded) future and past temporal operators derived from RTCTL∗.

• Otherwise, |ϕ| = 0.

3.2 Semantics of RTCTL∗

The semantics of RTCTL∗ is inductively defined with respect to a JDS D = (V,Θ,R,J ). We define the

notion of an RTCTL∗ formula ϕ holding at a point (r, i) of D, denoted by (D, r, i) |= ϕ, as follows:

(D, r, i) |= p, iff p is an assertion over V in L, and p holds at the state r(i).

(D, r, i) |= ¬f , iff (D, r, i) 6|= f .

(D, r, i) |= f ∧ g, iff (D, r, i) |= f , and (D, r, i) |= g.

(D, r, i) |= Ef , iff ∃r′ ∈ runs(D) and ∃i′ > 0. (r′(i′) = r(i) and (D, r′, i′) |= f).

(D, r, i) |= Af , iff ∀r′ ∈ runs(D) and ∀i′ > 0. (r′(i′) = r(i) implies (D, r′, i′) |= f).

(D, r, i) |= Xf , iff (D, r, i + 1) |= f .

(D, r, i) |= fUg, iff ∃i′ > i. ((D, r, i′) |= g and ∀i′′ ∈ [i, i′). (D, r, i′′) |= f).

(D, r, i) |= fU[a,b]g, iff ∃i′ ∈ [i+ a, i+ b]. ((D, r, i′) |= g and ∀i′′ ∈ [i, i′). (D, r, i′′) |= f).

(D, r, i) |= Yf , iff i > 0, and (D, r, i − 1) |= f . This implies that (D, r, 0) 6|= Yf .

(D, r, i) |= fSg, iff ∃i′ 6 i.((D, r, i′) |= g, and ∀i′′ ∈ (i′, i]. (D, r, i′′) |= f).

(D, r, i) |= fS[a,b]g, iff ∃i′ ∈ [i− b, i− a].((D, r, i′) |= g, and ∀i′′ ∈ (i′, i]. (D, r, i′′) |= f).

Sometimes, we denote the notion of a state formula ϕ holding at a state r(i) of D as (D, r(i)) |= ϕ,

where r(i) is the state located at the position i of the run r of D. From the semantics, it is easy to have

that Af ≡ ¬E¬f . In fact, many other useful standard future/past temporal operators can be derived from

RTCTL∗ by rewriting rules. We list some equations in Figure 1, which can be viewed as the rewriting

rules that convert the additional formula on the left hand side of “≡” into the formula on the right

hand side. Therefore, any formula can be converted into RTCTL∗ by applying the rewriting rules to

each additional subformula recursively. For conciseness, we do not list the semantics of these additional

operators. One can understand these through the equations and semantics of RTCTL∗.

The subset of RTCTL∗ in which each (bounded) temporal operator is immediately preceded by a path

quantifier is called RTCTL. The subset of RTCTL without any bounded temporal operators is exactly

CTL. The subset of RTCTL∗ without any path quantifiers or bounded temporal operators is exactly

LTL. We denote the subset of RTCTL∗ without path quantifiers by RTLTL.

3.3 The model checking problem for RTCTL∗

Consider a JDS D = (V,Θ,R,J ) and an RTCTL∗ formula ϕ. If ϕ is a state formula, then we say that

ϕ holds over a state s of D, denoted by (D, s) |= ϕ, if s satisfies ϕ. If ϕ is a path formula, then we say

that ϕ holds over a path r, denoted by (D, r) |= ϕ, if r satisfies the semantics of ϕ. We say that ϕ holds

on the JDS D, denoted by D |= ϕ, if (D, s) |= ϕ for every initial state s satisfying Θ. Note that if ϕ is a

path formula, then the model checking problem of whether ϕ holds on D is equivalent to D |= Aϕ. ϕ is
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called satisfiable if it holds on some JDS. ϕ is called valid if it holds on all JDSs. Our goal is to verify

whether or not all runs of D satisfy ϕ, i.e., D |= ϕ.

4 Tester-based symbolic model checking for RTCTL∗

For a composite RTCTL∗ formula, it is essential for the model checking methods for various operators to

be compositional to each other. This compositionality will also contribute to the further extension of the

logic language, because this is sufficient for constructing the testers for only newly introduced operators.

To achieve this compositionality, the core problem is to determine whether any suffix of a run starting

from any position satisfies the given formula. To solve this problem, given a JDS D and a principally

temporal formula ϕ, we wish to construct another JDS Tϕ called a temporal tester for ϕ. This can be

viewed as a non-deterministic transducer that keeps observing a run r of D, and at each position i > 0

sets a fresh boolean variable xϕ to be true iff (D, r, i) |= ϕ. xϕ is also called the output variable of Tϕ,

because the output value of xϕ can be viewed as representing the satisfiability of ϕ.

By taking advantage of the compositionality of testers, we are able to reduce the model checking

problem of a composite formula over a given JDS to that of a state formula over the synchronous parallel

composition of the given JDS and the testers for the principally temporal subformulae of the composite

formula, where the state formula is generated by replacing each principally temporal subformula with the

corresponding fresh output variable. Next, we define the so-called temporal tester Tϕ for a principally

temporal RTCTL∗ formula ϕ.

Definition 3 (Temporal tester). Let ϕ be a principally temporal RTCTL∗ formula. A temporal tester

Tϕ for ϕ is a JDS with a fresh boolean output variable xϕ, such that

• Soundness: For every fair run ρ of Tϕ and each position i > 0, (Tϕ, ρ, i) |= ϕ iff (Tϕ, ρ, i) |= xϕ.

• Completeness: Let D = (V,Θ,R,J ) be a JDS. Then, for every fair run r in D, there is a corre-

sponding fair run ρ of Tϕ such that for each i > 0, (Tϕ, ρ, i) |= xϕ iff (D, r, i) |= ϕ.

For convenience, a temporal tester will simply be referred to as a tester from this point on. A tester

is independent of any JDS, and accepts all possible runs of a JDS. For every suffix of these runs, Tϕ
guarantees that the output variable xϕ is true at the starting state of the suffix if and only if the suffix

satisfies ϕ. Let D = (V,Θ,R,J ) be a JDS and ϕ an RTCTL∗ formula. After constructing the tester

Tϕ for ϕ and mapping ϕ to its corresponding state formula ϕ′, the model checking problem D |= ϕ is

reduced to the model checking problem D ‖ Tϕ |= ϕ′, which is easy to tackle using the symbolic model

checking method. Occasionally, we will simply denote D ‖ Tϕ as Dϕ.

4.1 Mapping RTCTL∗ formulae to state ones

Given a JDS D and an RTCTL∗ formula ϕ, the basic problem for model checking ϕ over D is checking

the subformula of the form Ef in ϕ, where f is a path formula that may include its own maximal state

subformula(e), which are also of the form Eg. Therefore, we can design a top-down model checking

procedure to check ϕ on its syntax tree. Thanks to the symbolic model checking method, we can obtain

the symbolic representation (OBDDs-ordered binary decision diagrams [19]) of the set of states that

satisfies a state formula. For an RTCTL∗ formula Ef , assume that all maximal state subformulae of f

have already been symbolically model checked. Then, f can be converted into an RTLTL formula f ′ by

accordingly replacing the maximal state subformulae in f with the resulting OBDDs. Thus, the RTCTL∗

model checking problem of D |= Ef is reduced to the RTLTL model checking problem of D |= Ef ′.

Furthermore, for the RTLTL path formula f ′ we can also design a top-down procedure on the syntax

tree of f ′ to convert f ′ into a state formula f ′′, by replacing each principally temporal subformula g in

f ′ with the fresh boolean variable of the tester for g. Finally, the model checking problem of an RTLTL

formula f ′ overD can be reduced to that of the state formula f ′′ over the synchronous parallel composition

ofD and the testers constructed for the principally temporal subformulae of f ′. This problem can easily be

solved using the symbolic model checking method. To achieve this, in the following we design a function χ
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to map an RTCTL∗ formula ϕ to the corresponding state formula χ(ϕ), where ψ is a subformula of ϕ.

χ(ψ) =



















































ψ, ψ is an assertion, or ψ = Ef ;

¬χ(f), ψ = ¬f ;

χ(f) ∧ χ(g), ψ = f ∧ g;

xψ, ψ = Xf, fUg, fU[0,b]g,Yf, fSg or fS[0,b]g, where b > 0;

χ(g), ψ = fU[0,0]g or fS[0,0]g;

χ({f ∧ X(}afU[0,b−a]g{)}
a), ψ = fU[a,b]g and 0 6 a 6 b;

χ({f ∧ Y(}afS[0,b−a]g{)}
a), ψ = fS[a,b]g and 0 6 a 6 b,

where xψ is the fresh boolean (output) variable that represents the tester created for the principally

temporal subformula ψ of ϕ. Note that for a maximal state subformula Ef of ϕ, we preserve this in the

resulting formula such that it can be handled in a bottom-up approach.

To construct a tester for an RTCTL∗ formula ϕ, not only must the fresh boolean variable for each

principally temporal subformula in ϕ be created, but also the integer variable for counting the transition

steps for each bounded principally temporal subformula in ϕ. Note that the temporal subformulae in any

maximal state subformula of ϕ are excluded. We define the set of the fresh variables created for the tester

Tϕ as Xϕ = X1
ϕ ∪ X2

ϕ. One can better understand the set Xϕ after consulting the tester construction

method described in Subsection 4.2.

X1
ϕ =

{

xψ

∣

∣

∣

∣

∣

xψ is the fresh boolean variable for ψ. ψ is of the form Xf, fUg, Yf or fSg, which is a

subformula of ϕ but not in any maximal state subformula of ϕ.

}

,

X2
ϕ =















xψ , tψ

∣

∣

∣

∣

∣

∣

∣

∣

xψ is the fresh boolean variable for ψ, tψ is the fresh integer variable in interval

[0, b− 1] for ψ. ψ is of the form fU[0,b]g or fS[0,b]g, where b > 0. ψ is a subformula

of ϕ but not in any maximal state subformula of ϕ.















.

As an example, consider ϕ2 = ¬(fU[a,b]g ∨ EXh) ∧ pU(q ∨ Xr). Assume that x1, x2, x3 are the fresh

boolean variables of the testers TfU[a,b]g, TXr and TpU(q∨Xr), respectively, and the fresh integer variable

t ∈ [0, b−a−1] represents TfU[a,b]g. Then, we have that χ(ϕ2) = ¬(x1∨EXh)∧x3, vars(χ(ϕ2)) = {x1, x3, h},

and Xϕ2 = {x1, x2, x3, t}.

4.2 Construction of testers for principally temporal formulae

In this section, we present a symbolic method for constructing the tester Tϕ for a principally temporal

RTCTL∗ formula ϕ. Then, we will present a compositional method for constructing the tester for arbitrary

RTCTL∗ formulae. We first construct the testers for the basic future temporal operators X, U, and U[a,b].

4.2.1 Tester for Xf

For ϕ = Xf , it follows from the semantics of Xf that the tester TXf = (Vϕ, Θϕ, Rϕ,Jϕ) ‖ Tf is defined

by the (2), where xϕ is the fresh boolean variable for ϕ. Here, χ′(f) is the prime version of χ(f). That

is, χ′(f) is the formula resulting by replacing each occurrence of v ∈ vars(χ(f)) in χ(f) with the prime

version v′ of v. We have that χ(ϕ) = xϕ and Xϕ = {xϕ} ∪Xf :

TXf :























Vϕ : vars(χ(f)) ∪ {xϕ};

Θϕ : ⊤;

Rϕ : xϕ ↔ χ′(f);

Jϕ : ∅,

(2)
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Figure 2 The tester TfU[0,b]g.

TfUg :























Vϕ : vars(χ(f)) ∪ vars(χ(g)) ∪ {xϕ};

Θϕ : ⊤;

Rϕ : xϕ ↔ (χ(g) ∨ (χ(f) ∧ x′ϕ));

Jϕ : {xϕ → χ(g)}.

(3)

4.2.2 Tester for fUg

For ϕ = fUg, it follows from the expansion equation fUg ≡ g ∨ (f ∧ X(fUg)) that the tester TfUg =

(Vϕ, Θϕ, Rϕ,Jϕ) ‖ Tf ‖ Tg is defined by (3), where xϕ is the fresh boolean variable for ϕ and x′ϕ is

the prime version of xϕ. We have that χ(ϕ) = xϕ and Xϕ = {xϕ} ∪ Xf ∪ Xg. Note that without the

justice constraints Jϕ, the transition relation Rϕ cannot guarantee the correctness of the tester, because

it accepts infinite runs along which xϕ ∧ χ(f) ∧ ¬χ(g) holds forever, and in this case the runs do not

satisfy fUg. These runs can be ruled out by the justice constraint xϕ → χ(g).

4.2.3 Tester for fU[a,b]g

In this section, we want to construct the testers for bounded future temporal operators. However, from

Figure 1 we have that U and U[a,b] are the two basic operators for expressing arbitrary bounded future

temporal operators. The tester for U is presented in the previous section, and so in this section it is

adequate to construct the tester for fU[a,b]g. From the semantics of RTCTL∗, we first define 4, which

can be viewed as a rewriting rule such that we can convert fU[a,b]g into a formula that only includes the

temporal operators X and U[0,b].

fU[a,b]g =

{

{f ∧ X(}a fU[0,b−a]g {)}a, if 0 6 a < b;

{f ∧ X(}a g {)}a, if 0 6 a = b,
(4)

where {f ∧ X(}a denotes the string formed by repeatedly concatenating the word “f ∧ X(” a times,

so {f ∧ X(}0 denotes an empty string. By applying (4), we can rewrite fU[a,b]g with a < b as {f ∧

X(}afU[0,b−a]g{)}
a, the tester of which can be constructed using the two ways synchronous parallel com-

position of the two testers for fU[0,b−a]g and {f ∧ X(}ax{)}a, where x is the fresh boolean variable of the

tester for fU[0,b−a]g.

Without loss of generality, we construct the tester TfU[0,b]g as shown in Figure 2, where b > 1.

Formally, for a formula ϕ = fU[0,b]g the tester TfU[0,b]g = (Vϕ, Θϕ, Rϕ,Jϕ) ‖ Tf ‖ Tg is defined as
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follows:

TfU[0,b]g :























Vϕ : vars(χ(f)) ∪ vars(χ(g)) ∪ {xϕ, tϕ};

Θϕ : 0 6 tϕ 6 b− 1;

Rϕ : (0 6 tϕ 6 b− 1) ∧ (0 6 t′ϕ 6 b− 1) ∧RfU[0,b]g;

Jϕ : ∅,

(5)

where xϕ is the fresh boolean variable, and tϕ is the fresh integer variable in the interval [0, b − 1].

We have that χ(ϕ) = xϕ and Xϕ = {xϕ, tϕ} ∪ Xf ∪ Xg. We define s1 := (χ(f) ∧ ¬χ(g) ∧ ¬xϕ),

s2 := (χ(f)∧¬χ(g)∧xϕ), s3 := (χ(g)∧xϕ), and s4 := (¬χ(f)∧¬χ(g)∧¬xϕ), and define s1′, s2′, s3′, and

s4′ as the prime versions of s1, s2, s3, and s4, respectively. For example, s1′ := (χ′(f) ∧ ¬χ′(g) ∧ ¬x′ϕ).

According to Figure 2, the assertion RfU[0,b]g is defined as follows:

RfU[0,b]g := (s1 ∧ s1′) ∨ (s1 ∧ s2′ ∧ t′ϕ = 0) ∨ (s1 ∧ s4′)

∨(s2 ∧ 0 6 tϕ < b− 1 ∧ s2′ ∧ t′ϕ = tϕ + 1) ∨ (s2 ∧ tϕ > b− 1 ∧ s3′)

∨(s3 ∧ s1′) ∨ (s3 ∧ s2′) ∨ (s3 ∧ s3′) ∨ (s3 ∧ s4′)

∨(s4 ∧ s1′) ∨ (s4 ∧ s2′) ∨ (s4 ∧ s3′) ∨ (s4 ∧ s4′).

In the following we start constructing the testers for (bounded) past temporal operators Y, S and S[a,b].

4.2.4 Tester for Yf

It follows from the semantics of ϕ = Yf that the tester TYf = (Vϕ, Θϕ, Rϕ,Jϕ) ‖ Tf is defined by (6),

where xϕ is the fresh boolean variable for ϕ and x′ϕ is the prime version of xϕ. Note that the initial

condition Θϕ = ¬xϕ corresponds to the semantics stating that for any subformula f , Yf must be false

over any initial state; that is, (D, r, 0) 6|= Yf . We have that χ(ϕ) = xϕ and Xϕ = {xϕ} ∪Xf .

TYf :























Vϕ : vars(χ(f)) ∪ {xϕ};

Θϕ : ¬xϕ;

Rϕ : x′ϕ ↔ χ(f);

Jϕ : ∅,

(6)

TfSg :























Vϕ : vars(χ(f)) ∪ vars(χ(g)) ∪ {xϕ};

Θϕ : xϕ ↔ χ(g);

Rϕ : x′ϕ ↔ (χ′(g) ∨ (χ′(f) ∧ xϕ));

Jϕ : ∅.

(7)

4.2.5 Tester for fSg

For ϕ = fSg, it follows from the expansion equation fSg ≡ g ∨ (f ∧ Y(fSg)) that the tester TfSg =

(Vϕ, Θϕ, Rϕ,Jϕ) ‖ Tf ‖ Tg is defined by (7), where xϕ is the fresh boolean variable for ϕ and x′ϕ is the

prime version of xϕ. We have that χ(ϕ) = xϕ and Xϕ = {xϕ} ∪ Xf ∪ Xg. Consider an initial state s0
satisfying ¬χ(g). Owing to the fact that there is no predecessor for s0, it follows from the semantics we

have that there is no run to s0 satisfying fSg. Furthermore, if s0 satisfies χ(g), then we immediately

have that any run to s0, i.e., s0 itself, satisfies fSg. Therefore, we set the initial condition Θϕ to be

xϕ ↔ χ(g). We set the justice constraints Jϕ to be the empty set, because any run from the state under

consideration back to any initial state is finite, so that the initial condition Θϕ and the transition relation

Rϕ are adequate for implementing the semantics of fSg.

4.2.6 Tester for fS[a,b]g

In this section, we want to construct the testers for bounded past temporal operators. From Figure 1,

we have that S and S[a,b] are the two basic operators for expressing arbitrary bounded past temporal
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Figure 3 The tester TfS[0,b]g.

operators. The tester for S was presented in the previous section, and so in this section it is adequate

to construct the tester for fS[a,b]g. From the semantics of RTCTL∗, we first define (8), which can be

viewed as a rewriting rule such that we can convert fS[a,b]g into a formula that only includes the temporal

operators Y and S[0,b]:

fS[a,b]g =

{

{f ∧ Y(}a fS[0,b−a]g {)}a, if 0 6 a < b;

{f ∧ Y(}a g {)}a, if 0 6 a = b,
(8)

where {f ∧ Y(}a denotes the string formed by repeatedly concatenating the word “f ∧ Y(” a times. By

recursively applying (8), we can rewrite fS[a,b]g (a < b) as {f ∧ Y(}afS[0,b−a]g{)}
a, which is a formula

that only includes the temporal operators Y and S[0,b]. Furthermore, its tester can be constructed using

the two ways synchronous parallel composition of the two testers for fS[0,b−a]g and {f ∧X(}ax{)}a, where

x is the fresh boolean variable of the tester for fS[0,b−a]g. Without loss of generality, we construct the

tester TfS[0,b]g as shown in Figure 3, where b > 1. A bidirectional edge denotes two transitions with

reverse directions. An edge without a starting node indicates that the node the edge points to is one of

the initial states, so that {s1, s2, s3, s5} is the set of initial states.

For ϕ = fS[0,b]g, the tester TfS[0,b]g = (Vϕ, Θϕ, Rϕ,Jϕ) ‖ Tf ‖ Tg is formally defined as follows:

TfS[0,b]g :























Vϕ : vars(χ(f)) ∪ vars(χ(g)) ∪ {xϕ, tϕ};

Θϕ : ¬(χ(f) ∧ ¬χ(g) ∧ xϕ ∧ 0 6 tϕ 6 b− 1) ∧ (xϕ ↔ χ(g));

Rϕ : (0 6 tϕ 6 b− 1) ∧ (0 6 t′ϕ 6 b− 1) ∧RfS[0,b]g;

Jϕ : ∅,

(9)

where xϕ is the fresh boolean variable, and tϕ is the fresh nonnegative integer variable (tϕ ∈ [0..b−1]) for

ϕ = fS[0,b]g. We have that χ(ϕ) = xϕ and Xϕ = {xϕ, tϕ}∪Xf ∪Xg. We define s1 := (¬χ(f)∧χ(g)∧xϕ),

s2 := (¬χ(f) ∧ ¬χ(g) ∧ ¬xϕ), s3 := (χ(f) ∧ ¬χ(g) ∧ ¬xϕ), s4 := (χ(f) ∧ ¬χ(g) ∧ xϕ), and s5 :=

(χ(f) ∧ χ(g) ∧ xϕ), and define s1′, s2′, s3′, s4′, and s5′ as the prime versions of s1, s2, s3, s4, and s5,

respectively. According to Figure 3, the assertion RfS[0,b]g is defined as follows:

RfS[0,b]g := (s1 ∧ s1′) ∨ (s1 ∧ s2′) ∨ (s1 ∧ s4′ ∧ t′ϕ = 0) ∨ (s1 ∧ s5′)

∨(s2 ∧ s1′) ∨ (s2 ∧ s2′) ∨ (s2 ∧ s3′) ∨ (s2 ∧ s5′)

∨(s3 ∧ s1′) ∨ (s3 ∧ s2′) ∨ (s3 ∧ s3′) ∨ (s3 ∧ s5′)

∨(s4 ∧ s1′) ∨ (s4 ∧ s2′) ∨ (s4 ∧ tϕ > b− 1 ∧ s3′) ∨ (s4 ∧ 0 6 tϕ < b− 1 ∧ s4′ ∧ t′ϕ = tϕ + 1)

∨(s4 ∧ s5′) ∨ (s5 ∧ s1′) ∨ (s5 ∧ s2′) ∨ (s5 ∧ s4′ ∧ t′ϕ = 0) ∨ (s5 ∧ s5′).
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4.3 Correctness of the tester construction for principally temporal formulae

Lemma 1 (Soundness of the tester for a principally temporal formula). Let ϕ be of the form Xf , Yf ,

fUg, fSg, fU[0,b]g, or fS[0,b]g, and let xϕ be the fresh boolean output variable for ϕ. Then, for each fair

run r of Tϕ and every position i, (Tϕ, r, i) |= ϕ iff (Tϕ, r, i) |= xϕ.

Lemma 2 (Completeness of the tester for a principally temporal formula). Let D = (V,Θ,R,J ) be a

JDS, where ϕ is of the form Xf , Yf , fUg, fSg, fU[0,b]g, or fS[0,b]g, and xϕ is the fresh boolean output

variable for ϕ. Then, for every fair run r in D, there is a corresponding fair run ρ of Tϕ such that for

each i > 0, (Tϕ, ρ, i) |= xϕ iff (D, r, i) |= ϕ.

The soundness and completeness of the tester for a principally temporal formula can be proven by

induction on the structure of the formula. These proofs are tedious and long, and so we omit them here

due to limited space.

4.4 Basic symbolic model checking for CTL with OBDDs

Given a JDS D = (V,Θ,R,J ), a state s in D, and an RTCTL∗ formula ϕ = Ef , the model checking

problem of (D, s) |= Ef is reduced to that of (D ‖ Tf , s′) |= Eχ(f), where s′ is the state s augmented with

some assignment to the fresh boolean variables in vars(χ(f)), where χ(f) is a state formula corresponding

to f , which may include some maximal state subformulae in the same form of Eg. Such maximal state

subformulae can be recursively treated in the same manner presented here.

For the method presented in this paper, the construction of testers for bounded temporal formulae

and the computation of fair states are based on the basic symbolic model checking method for CTL

with OBDDs. OBDDs represent a canonical representation form for boolean formulae. The following

CTL model checking algorithms are called symbolic because both the representations of JDSs and the

algorithms themselves can be implemented by OBDDs. Given a JDS D = (V,Θ,R,J ) and CTL formulae

f, g over V , we first define the preimage of f in D as EX(f,D) = ∃V ′.(R(V, V ′) ∧ f(V ′)). This follows

straightforwardly from the semantics of EXf , which is true in a state if that state has a D-successor in

which f is true. From the equation AXf ≡ ¬EX¬f , we define AX(f,D) = ∀V ′.(R(V, V ′) → f(V ′)), which

is true in a state if f is true in all D-successors of that state. The set of states in D satisfying E(fUg)

can be calculated through the following least fixpoint computation µZ.τ(Z) of the monotonic predicate

transformer τ(Z) = g ∨ (f ∧ EXZ) on a set Z of states: EU(f, g,D) = µZ.(g ∨ (f ∧ EX(Z,D))).

We say a run of D = (V,Θ,R,J ) is fair if each justice constraint in J holds infinitely often along the

run. A state of D is called fair if it is a state of a fair run. The set of fair states in D can be calculated

through the following greatest fixpoint computation νZ.τ(Z): Fair(D) = νZ.(
∧

J∈J EX(EU(⊤,Z ∧ J,D),

D)). From the calculation of fair states, it is easy to see that any state that can reach a fair state within

finite steps is also fair. Note that the calculations above for EX, AX, and EU are unfair, owing to the lack of

a justice constraint. To make these fair under the justice constraints J , we can simply execute them as

EX(f ∧Fair(D),D), AX(f ∧Fair(D),D), and EU(f, g∧Fair(D),D). If J = ∅, we simply let Fair(D) = ⊤.

From now on, we write Jϕ,DK to denote the set of fair states in a JDS D satisfying ϕ, where ϕ is an

RTCTL∗ formula over the set of state variables of D.

4.5 Symbolic model checking for arbitrary RTCTL∗ formulae

4.5.1 Symbolic model checking for Eψ

We say that an RTCTL∗ formula ϕ holds on a JDS D = (V,Θ,R,J ) if (D, s) |= ϕ for every state s

satisfying the initial condition Θ. To implement the symbolic model checking by using OBDDs, we first

symbolically calculate and store the set of fair states in the JDS D satisfying ϕ, denoted by Jϕ,DK, as an

OBDD. Then, Θ ⊆ Jϕ,DK implies that ϕ holds on D, i.e., D |= ϕ.

From the definition of the function χ(ϕ), each state subformula Eψ of ϕ will be model checked, and then

replaced by the resulting OBDD. Given an RTCTL∗ formula Eψ, the set of fair states in D satisfying Eψ

can be calculated by existentially quantifying the fresh variables in Xψ from the set of fair states satisfying

χ(ψ) in the augmented JDS D ‖ Tψ. That is, JEψ,DK = ∃Xψ.(χ(ψ) ∧ Fair(D ‖ Tψ)). Because Eψ is a
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state formula, we construct TEψ as a “valid” tester (∅,⊤,⊤, ∅), which is just used for the synchronous

parallel composition of testers for other subformulae. The correctness of the computation for JEψ,DK is

demonstrated by Lemma 3.

Lemma 3. Given a JDSD = (V,Θ,R,J ) and an RTCTL∗ formula Eψ, for each state s ofD, (D, s) |= Eψ

iff (D, s) |= ∃Xψ.(χ(ψ) ∧ Fair(D ‖ Tψ)).

4.5.2 Correctness of the tester construction for arbitrary RTCTL∗ formulae

Theorem 1 shows that the tester Tϕ for an arbitrary RTCTL∗ formula ϕ is sound and complete.

Theorem 1. The tester for any RTCTL∗ formula is sound and complete.

Proof. Let ϕ be an RTCTL∗ formula. We prove this theorem by induction on the structure of ϕ:

(1) If ϕ = ¬f , then Tϕ = Tf . We adopt the induction hypothesis that Tf is sound and complete, which

means that Tϕ is also sound and complete.

(2) If ϕ = f ∧ g, then Tϕ = Tf ‖ Tg. By the induction hypothesis that Tf and Tg are sound and

complete and the definition of synchronous parallel composition, we have that Tϕ is sound and complete.

(3) If ϕ is a state formula, i.e., an assertion over V or in the form of Ef , then χ(ϕ) = ϕ, Xϕ = ∅, and

Tϕ = (∅,⊤,⊤, ∅). The proof for this is trivial.

(4) If ϕ = Xf, Yf, fUg, fSg, fU[0,b]g or fS[0,b]g, then we conclude that Tϕ is sound and complete directly

by applying Lemmas 1 and 2, and the induction hypothesis that Tf and Tg are sound and complete.

(5) If ϕ = fU[a,b]g, then the tester Tϕ is exactly constructed for {f ∧ X(}a fU[0,b−a]g {)}a. By the

induction hypothesis that the testers for each of f and g are sound and complete, and by considering the

other cases, we conclude that the tester for {f ∧ X(}a fU[0,b−a]g {)}a is also sound and complete.

(6) If ϕ = fS[a,b]g, then the tester Tϕ is exactly constructed for {f ∧ Y(}a fS[0,b−a]g {)}a. By the

induction hypothesis that the testers for each of f and g are sound and complete, and by considering the

other cases, we conclude that the tester for {f ∧ Y(}a fS[0,b−a]g {)}a is also sound and complete.

Corollary 1 provides the method for constructing the set of states inD satisfying an RTCTL∗ formula ϕ.

Corollary 1. Let D = (V,Θ,R,J ) be a JDS and ϕ an arbitrary RTCTL∗ formula. Then, Jϕ,DK, the

set of fair states of D satisfying ϕ, is characterized by ∃Xϕ.(χ(ϕ) ∧ Fair(D ‖ Tϕ)).

Proof. By Theorem 1, the model checking problem of the RTCTL∗ formula ϕ over runs of D is reduced

to that of the corresponding state formula χ(ϕ) over states of the combined JDS D ‖ Tϕ. We know that

Jχ(ϕ),D ‖ TϕK, the set of fair states of D ‖ Tϕ satisfying χ(ϕ), is characterized by χ(ϕ) ∧ Fair(D ‖ Tϕ).

From the fact that D ‖ Tϕ constitutes the synchronous parallel composition of D and Tϕ, we have that

each state of D ‖ Tϕ is a state of D augmented with an interpretation of the fresh variables in Xϕ.

Therefore, by existentially quantifying out Xϕ from χ(ϕ) ∧ Fair(D ‖ Tϕ), we obtain the set of fair states

of D satisfying ϕ, i.e., Jϕ,DK.

If we add the path quantifier A to RTCTL∗, then JAψ,DK must be calculated directly. For this, we

employ the following corollary and JAψ,DK = ∀Xψ .(Fair(D ‖ Tψ) → χ(ψ)).

Corollary 2. Given a JDS D = (V,Θ,R,J ) and an RTCTL∗ formula Aψ, for each state s of D,

(D, s) |= Aψ iff (D, s) |= ∀Xψ.(Fair(D ‖ Tψ) → χ(ψ)).

Proof. By the equation Aψ ≡ ¬E¬ψ and Lemma 3, we have that JAψ,DK = ¬JE¬ψ,DK = ¬∃Xψ.(χ(¬ψ)∧

Fair(D ‖ T¬ψ)) = ∀Xψ.(Fair(D ‖ T¬ψ) → ¬χ(¬ψ)), which is equivalent to ∀Xψ.(Fair(D ‖ Tψ) → χ(ψ))

by the fact that χ(¬ψ) = ¬χ(ψ) and T¬ψ = Tψ.

4.5.3 Symbolic model checking algorithm for RTCTL∗

In Algorithm 1, given a JDS D = (V,Θ,R,J ) and an RTCTL∗ formula ϕ, we propose the algorithm

Tester(ϕ,D, bϕ, Tϕ) to construct the tester Tϕ for ϕ and the OBDD bϕ characterizing χ(ϕ). Then, Jϕ,DK,

the set of fair states of D satisfying ϕ, is characterized by ∃Xϕ.(bϕ ∧ Fair(D ‖ Tϕ)).

To improve the efficiency of Algorithm 1, in lines 1–11 we apply the RTCTL model checking algorithm

once it is applicable. That is, when ϕ is of the form QT f , Q(fT g), Q¬T f , or Q¬(fT g), where Q is

a path quantifier and T is a (bounded) future temporal operator. Here, ϕ[f/bf , g/bg] is the formula
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resulting for ϕ by replacing f with bf and g with bg. We use checkRTCTL(ϕ,D) to denote the symbolic

model checking algorithm for RTCTL that outputs the set of fair states of D satisfying the RTCTL

formula ϕ. After generating bf (the OBDD of χ(f)) and bg (the OBDD of χ(g)), the problem of checking

the RTCTL∗ formula ϕ on D can be reduced to that of checking the RTCTL formula ϕ[f/bf , g/bg] on

D ‖ Tf ‖ Tg. Thus, the set of fair states in D satisfying ϕ can be characterized by existentially quantifying

Xf and Xg from checkRTCTL(ϕ[f/bf , g/bg],D ‖ Tf ‖ Tg), such that the resulting OBDD is only over

the set of state variables in D.

Algorithm 1: Tester(ϕ,D, bϕ, Tϕ)

input : (1) ϕ: an RTCTL∗ formula; (2) D: a JDS and D = (V,Θ,R,J ).

output: (3) bϕ: the OBDD characterizing χ(ϕ); (4) Tϕ: the tester for ϕ.

1 if ϕ = QXf and Q ∈ {A, E} then

2 Tester(f,D, bf , Tf ); Tϕ := (∅,⊤,⊤, ∅); bϕ := ∃Xf .checkRTCTL(ϕ[f/bf ],D ‖ Tf ); destroy Tf ;

3 else if ϕ = Q¬Xf and Q ∈ {A, E} then

4 Tester(f,D, bf , Tf ); Tϕ := (∅,⊤,⊤, ∅); if Q = A then Q′ := E; else Q′ := A;

5 bϕ := ∃Xf .checkRTCTL(¬Q
′
Xf [f/bf ],D ‖ Tf ); destroy Tf ;

6 else if ϕ = Q(fT g) and Q ∈ {A, E} and T ∈ {U, U[a,b]} then

7 Tester(f,D, bf , Tf ); Tester(g,D, bg , Tg); Tϕ := (∅,⊤,⊤, ∅);

8 bϕ := ∃Xf .∃Xg .checkRTCTL(ϕ[f/bf , g/bg],D ‖ Tf ‖ Tg); destroy Tf and Tg;

9 else if ϕ = Q¬(fT g) and Q ∈ {A, E} and T ∈ {U, U[a,b]} then

10 Tester(f,D, bf , Tf ); Tester(g,D, bg , Tg); Tϕ := (∅,⊤,⊤, ∅); if Q = A then Q′ := E; else Q′ := A;

11 bϕ := ∃Xf .∃Xg .checkRTCTL(¬Q
′(fT g)[f/bf , g/bg],D ‖ Tf ‖ Tg); destroy Tf and Tg;

12 else if ϕ = Ef then Tester(f,D, bf , Tf ); bϕ := ∃Xf .(Fair(D ‖ Tf ) ∧ bf ); Tϕ := (∅,⊤,⊤, ∅); destroy Tf ;

13 else if ϕ = Af then Tester(f,D, bf , Tf ); bϕ := ∀Xf .(Fair(D ‖ Tf ) → bf ); Tϕ := (∅,⊤,⊤, ∅); destroy Tf ;

14 else if ϕ is an assertion over V then bϕ := OBDD of ϕ; Tϕ := (∅,⊤,⊤, ∅); // Tϕ is set as a valid tester

15 else if ϕ = ¬f then Tester(f,D, bf , Tf ); bϕ := ¬bf ; Tϕ := Tf ;

16 else if ϕ = f ∧ g then

17 Tester(f,D, bf , Tf ); Tester(g,D, bg , Tg); bϕ := bf ∧ bg; Tϕ := Tf ‖ Tg; destroy Tf and Tg;

18 else if ϕ = Xf or Yf then

19 Tester(f,D, bf , Tf ); ϕ
′ := ϕ[f/bf ]; Tϕ′ := (Vϕ′ , Θϕ′ , Rϕ′ ,Jϕ′) ‖ Tf ; // by (2), (6)

20 bϕ := xϕ′ ; destroy Tf ; // xϕ′ is the fresh boolean output variable of Tϕ′

21 else if ϕ = fUg, fU[0,b]g, fSg or fS[0,b]g then

22 Tester(f,D, bf , Tf ); Tester(g,D, bg , Tg); ϕ
′ := ϕ[f/bf , g/bg];

23 Tϕ′ := (Vϕ′ , Θϕ′ , Rϕ′ ,Jϕ′) ‖ Tf ‖ Tg; // by (3), (5), (7), (9)

24 bϕ := xϕ′ ; destroy Tf and Tg; // xϕ′ is the fresh boolean output variable of Tϕ′

25 else if ϕ = fU[a,b]g and 0 < a 6 b then ϕ′ := {f ∧ X(}afU[0,b−a]g{)}
a; Tester(ϕ′,D, bϕ, Tϕ); //by (4)

26 else if ϕ = fS[a,b]g and 0 < a 6 b then ϕ′ := {f ∧ Y(}afS[0,b−a]g{)}
a; Tester(ϕ′,D, bϕ, Tϕ); //by (8)

Before model checking a given RTCTL∗ formula ϕ, it needs to be simplified by distributing negations

over logical connectives, path quantifiers, and the temporal operator X so that they are only applied

to temporal operators or assertions. For this, we define a function simp(ϕ) that repeatedly applies the

rewriting rules in Figure 1 and the equations f ≡ ¬¬f , f ∨ g ≡ ¬(¬f ∧ ¬g), ¬Xf ≡ X¬f , Af ≡ ¬E¬f ,

and ∀V.f ≡ ¬∃V.¬f to ϕ, until it is simplified completely such that the output formula does not contain

redundant “¬” signs and only includes six basic temporal operators X, Y, U, S, U[0,b], and S[0,b]. Thus,

χ(simp(ϕ)) is a state formula in which negations are only applied to assertions and the fresh boolean

variables for each principally temporal subformula.

Given a JDS D = (V,Θ,R,J ) and an RTCTL∗ formula ϕ, the main procedure Check(ϕ,D) in Algo-

rithm 2 determines the satisfiability of ϕ over D, i.e., D |= ϕ. Note that if ϕ is not a state formula, then

D |= ϕ iff ϕ holds over any run starting from any initial state, so that line 1 will add a path quantifier A

preceding ϕ when ϕ is not a state formula. Then, the negation of ϕ or Aϕ is simplified to ψ. Clearly, ψ is

a state formula such that Xψ = ∅ and D ‖ Tψ = D. Line 2 obtains the OBDD bψ over V characterizing

χ(ψ), i.e., ψ. The condition (Θ ∧ bψ ∧Fair(D)) = ⊥ of line 3 means that there is not any initial fair state

of D satisfying ψ. In other words, every fair run starting from every initial state of D satisfies ϕ, i.e.,
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Figure 4 Composition of transducers to form the tester for subformula β = (⊤U[0,k]ack)∧¬(⊤U(ack∧X¬(⊤U[0,k−1]ack))).

D |= ϕ. Otherwise, D 6|= ϕ, and the output is “No”.

Algorithm 2: Check(ϕ,D)

input : (1) ϕ: an RTCTL∗ formula; (2) D: a JDS and D = (V,Θ,R,J ).

output: If D |= ϕ then outputs “Yes”, or else outputs “No”.

1 if ϕ is not a state formula then ψ := simp(¬Aϕ); else ψ := simp(¬ϕ);

2 Tester(ψ,D, bψ, Tψ);

3 if (Θ ∧ bψ ∧ Fair(D)) = ⊥ then output “Yes”; else output “No” ;

4.5.4 Example to demonstrate the algorithm

We take the RTCTL∗ formula (1) from Section 1, i.e., ϕ = AG(req → E(F[0,k]ack ∧ G(ack → F[1,k]ack))),

as an example formula to demonstrate the model checking process. In the main algorithm Check(ϕ,D),

because ϕ is a state formula we first simplify ¬ϕ as ψ = simp(¬ϕ) = EF(req ∧ ¬E(F[0,k]ack ∧ G(ack →

F[1,k]ack))) = E(⊤U(req ∧ ¬Eβ)), where β = (⊤U[0,k]ack) ∧ ¬(⊤U(ack ∧ X¬(⊤U[0,k−1]ack))). Then, the

algorithm Tester(ψ,D, bψ, Tψ) is invoked to construct the OBDD bψ for χ(ψ) and the tester Tψ. We

explain the algorithm in a bottom-up manner over the syntax tree of ψ. β is a path subformula without

any path quantifier. Tester(β,D, bβ , Tβ) is invoked to construct the OBDD bβ of χ(β) and the tester Tβ.

The construction process is illustrated in Figure 4. A tester (transducer) is denoted by a triangle. A

triangle with one input (on the left side) denotes the tester for Xf , and the input is f . A triangle with

two inputs denotes the tester for fUg, and the inputs from top to bottom are f and g, respectively. A

triangle with three inputs denotes the tester for fU[0,b]g, and the inputs from top to bottom are b, f ,

and g, respectively. Each tester Ti has only one output (on the right side), which is represented by the

fresh boolean output variable (denoted by Ti.x) of the tester. Therefore, the four testers T1∼T4 are

constructed in bottom-up manner over the syntax tree of β: T1 for ⊤U[0,k]ack, T2 for ⊤U[0,k−1]ack, T3

for X¬T2.x, and T4 for ⊤U(ack ∧ T3.x). Thus, we take T1 ‖ T2 ‖ T3 ‖ T4 as the tester Tβ and take the

final output T1.x ∧ ¬T4.x as χ(β). Each input/output is a formula that contains arithmetic or boolean

operations, which can be efficiently encoded as an OBDD.

The OBDD of the set of states in D satisfying Eβ, i.e., JEβ,DK, is further encoded as ∃Xβ .(Fair(D ‖

Tβ) ∧ χ(β)) = ∃{T1.x,T1.t,T2.x,T2.t,T3.x,T4.x}.(Fair(D ‖ T1 ‖ T2 ‖ T3 ‖ T4) ∧ (T1.x ∧ ¬T4.x)). For

ψ = E(⊤U(req ∧ ¬Eβ)), the principal path quantifier E is immediately followed by the temporal operator

U, so we invoke the CTL algorithm EU(⊤, req∧¬JEβ,DK,D) to efficiently calculate the OBDD of Jψ,DK.

That is, bψ returned from the initially invoked Tester(ψ,D, bψ, Tψ). Recall the original formula ϕ = ¬ψ.

If there does not exist any fair initial state satisfying bψ (verified by (Θ ∧ bψ ∧ Fair(D)) = ⊥), then we

have that D |= ϕ. Otherwise, D 6|= ϕ.

4.6 Expressiveness and complexity of RTCTL∗

Theorem 2 (Expressiveness of RTCTL∗). Each RTCTL∗ formula can be translated into an equivalent

CTL∗ formula, and vice versa.

Proof. The direction from CTL∗ to RTCTL∗ is trivial, because any CTL∗ formula is in RTCTL∗. For

the opposite direction, owing to the fact that RTCTL∗ is an extension of CTL∗ with two basic bounded

temporal operators U[a,b] and S[a,b], we present the following two expansion equations:
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fU[a,b]g ≡















f ∧ X(fU[a−1,b−1]g), for a > 0, b > a;

g ∨ (f ∧ X(fU[0,b−1]g)), for a = 0, b > 0;

g, for a = 0, b = 0,

(10)

fS[a,b]g ≡















f ∧ Y(fS[a−1,b−1]g), for a > 0, b > a;

g ∨ (f ∧ Y(fS[0,b−1]g)), for a = 0, b > 0;

g, for a = 0, b = 0.

(11)

Then, if an RTCTL∗ formula ϕ is of the form fU[a,b]g, then ϕ can be translated into a pure CTL∗

formula ϕ′ by the exhaustive application of (10): {f ∧ X(}a{g ∨ (f ∧ X(}b−ag{)}2b−a. Similarly, if an

RTCTL∗ formula ϕ is of the form fS[a,b]g, then ϕ can be translated into a pure CTL∗ formula ϕ′ by the

exhaustive application of (11): {f ∧ Y(}a{g ∨ (f ∧ Y(}b−ag{)}2b−a. Thus, we conclude that any RTCTL∗

formula can be translated into CTL∗ by the exhaustive application of (10) and (11).

By Theorem 2, we conclude that RTCTL∗ has equal expressive power to CTL∗. After translating an

RTCTL∗ formula ϕ into a CTL∗ forumula ϕ′, the model checking problem of RTCTL∗ can be reduced

to that of CTL∗. We call this model checking method “translation-based.”

Theorem 3 (Complexity of the translation from RTCTL∗ to CTL∗). Any RTCTL∗ formula ϕ can be

translated into an equivalent CTL∗ formula of length 2O(|ϕ|).

As shown in the proof of Theorem 2, any RTCTL∗ formula ϕ can be translated into a CTL∗ formula

ϕ′. We prove the theorem by induction on the structure of ϕ.

(1) If ϕ is also a CTL∗ formula, then the theorem holds immediately.

(2) If ϕ = fU[a,b]g, then we have that |ϕ| = |f | + |g| + ⌈log2a⌉ + ⌈log2b⌉ + 1. By the induction

hypothesis, there are two CTL∗ formulae f ′ and g′ that are equivalent to two RTCTL∗ formulae f and g,

respectively. Meanwhile, |f ′| = 2O(|f |) and |g′| = 2O(|g|). Then, from the equation fU[a,b]g ≡ {f∧X(}a{g∨

(f∧X(}b−ag{)}2b−a, we have that |ϕ′| = a(|f ′|+2)+(b−a)(|f ′|+|g′|+3)+|g′| = b|f ′|+(b−a+1)|g′|+3b−a =

b2O(|f |)+(b−a+1)2O(|g|)+3b−a. In the case that a = 0, |ϕ| = |f |+ |g|+⌈log2b⌉+2, and |ϕ′| attains the

maximal value b2O(|f |)+(b+1)2O(|g|)+3b. Furthermore, we have that |ϕ′| 6 b2O(|f |)+(b+1)2O(|g|)+3b 6

(b+1)(2O(|f |)+2O(|g|)+22) = (b+1)2O(|f |+|g|+2) = 2O(|f |+|g|+log2(b+1)+2) 6 2O(|f |+|g|+⌈log2b⌉+2) = 2O(|ϕ|).

(3) If ϕ = fS[a,b]g, then the proof is similar to that for the case with ϕ = fU[a,b]g.

However, the translation-based model checking method is often infeasible, even for RTCTL∗ formulae

of small lengths. We know that the best currently known time complexity of a model checking algorithm

for the CTL∗ formula ψ over a JDS D is |D| · 2O(|ψ|) [1], which is exponential in the length of the CTL∗

formula. Furthermore, in light of the fact that |ϕ′| = 2O(|ϕ|), from Theorem 3 we can conclude that

checking ϕ′ using an existing CTL∗ model checking algorithm requires time |D| · 2O(2O(|ϕ|)), which is

doubly exponential in the length of the original RTCTL∗ formula ϕ.

Theorem 4 (Complexity of the tester construction for RTCTL∗). For an arbitrary RTCTL∗ formula ϕ,

there exists a tester with 2O(|ϕ|) fresh boolean variables. If every bounded principally temporal subformula

in ϕ is of the form fU[0,b]g or fS[0,b]g, then the number of fresh boolean variables is linear in the length

of ϕ.

Proof. We collect the fresh boolean variables introduced in constructing the tester of ϕ as νϕ. Assuming

that all additional operators have been eliminated by rewriting rules, we have the following assertions:

(1) If ϕ = Ef , then we will construct the tester for f . Thus, in the worst case ϕ should not include the

path quantifier E. In the following proof, we exclude this case.

(2) If the temporal operators in ϕ are restricted to X, Y, U, or S, then we have that |νϕ| = O(|ϕ|),

because one boolean variable is introduced for each principally temporal subformula, and there are only

a linear number of subformulae.

(3) If the temporal operators in ϕ are restricted to U[0,b] or S[0,b], then each bounded temporal operator

includes 1 + log20 + log2b = log2b + 2 characters. The tester construction for each principally temporal
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subformula introduces log2b+1 boolean variables to encode one boolean output variable and one integer

variable in the interval [0, b− 1]. We also have that |νϕ| = O(|ϕ|).

(4) If the temporal operators in ϕ are restricted to Ω[a,b], where Ω denotes U or S and 0 < a 6 b, then

we have that |ϕ| = |f | + |g| + ⌈log2a⌉ + ⌈log2b⌉ + 1. We first translate each subformula fΩ[a,b]g into

β = {f ∧∆(}a fΩ[0,b−a]g {)}a, where ∆ denotes X or Y when Ω is U or S, respectively. When constructing

the tester for β, ⌈log2(b−a)⌉+1 fresh boolean variables are introduced for fΩ[0,b−a]g and a(|νf |+1) fresh

boolean variables are introduced for {f ∧∆(}a . . . {)}a. We prove that |νϕ| = 2O(|ϕ|) by induction on

the structure of the formula. By the induction hypothesis, we have that |νf | = 2O(|f |) and |νg| = 2O(|g|).

Then, |νϕ| = a(|νf | + 1) + |νf | + |νg| + ⌈log2(b − a)⌉ + 1 = (a + 1)|νf | + |νg| + a + ⌈log2(b − a)⌉ + 1 =

(a + 1)2O(|f |) + 2O(|g|) + a + ⌈log2(b − a)⌉ + 1 = 2O(|f |+log2(a+1)) + 2O(|g|) + a + ⌈log2(b − a)⌉ + 1 6

2O(|f |+|g|+log2(a+1)) + 2b 6 2O(|f |+|g|+⌈log2a⌉+⌈log2b⌉+1) = 2O(|ϕ|).

According to (10) and (11), we translate an RTCTL∗ bounded temporal formula fU[a,b]g/fS[a,b]g to

a formula with a X/Y unbounded operators and U[0,b−a]/S[0,b−a] bounded operators. Furthermore, from

Theorems 3 and 4, we can conclude that the state space of our tester can be made exponentially smaller

than the tester constructed using fully translation-based methods.

5 Implementation and experimental results

There are two options for implementing model checking algorithms, either direct implementation or

reduction to existing tools. Developers often need to devote significant time and effort to a direct imple-

mentation. Furthermore, it is not easy to avoid introducing unexpected programming errors. Meanwhile,

in a reduction-based approach the proposed model checking method can be reduced to verification using

an existing model checker. This method is usually rapid, reliable, and extendable, because it constitutes

a mechanical translation process, and does not (or only does rarely) require modification to the original

checker. In this paper, we prefer to adopt a reduction-based approach.

To adopt this approach to the implementation of our method by building upon existing model checkers,

we should eliminate path quantifiers from RTCTL∗ and obtain the real-time linear temporal logic RTLTL.

As far as we know, this is still not fully supported by any existing model checker. The core problem of

symbolic model checking for RTCTL∗ is to compute the set of states in a JDS satisfying a formula of the

form Ef , where f is treated as an RTLTL subformula. The reason for this is that in checking an arbitrary

RTCTL∗ formula Ef , f is treated as an “RTLTL” formula by allowing not only its state subformulae to

be assertions, but also its maximal state subformulae of the form Eg, which have already been processed

in a bottom-up manner and replaced by their corresponding sets of states. Thus, the model checking

procedure for subformula of the form Ef may be invoked more than once, and the resulting set of states

must be integrated to obtain the final result. This process cannot be reduced to any existing model

checker. This is the reason for tailoring RTCTL∗ to RTLTL, such that the reduction-based method can

be adopted.

5.1 Implementation of symbolic model checking for RTLTL

We have already implemented a symbolic model checking prototype 1) for pure RTLTL, based on the well-

known symbolic model checker NuSMV, with the latest version 2.6.0. Figure 5 shows the model checking

framework of the prototype. The prototype is an M4 2)-based preprocessor, which produces the tester

Tϕ for an RTLTL specification ϕ and maps ϕ to a semantically-equivalent state formula χ(ϕ). Thus, the

model checking problem of D |= ϕ is reduced to that of D ‖ Tϕ |= χ(ϕ), which can be treated using the

CTL or LTL model checking algorithm in NuSMV. Therefore, the biggest advantage of the framework is

that it constitutes a rapid, reliable, extendable, and fully automatic method of implementing the proposed

1) We refer the reader to https://github.com/hovertiger/RTLTL-model-checker to download the source code of the

prototype.
2) M4 is a general-purpose macro processor, available on most UNIX platforms.
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Figure 5 (Color online) Model checking framework for RTLTL.

Table 1 RTLTLSPEC syntax for principally temporal formulae a)

RTLTL syntax RTLTL syntax RTLTL syntax RTLTL syntax

Xf NX(f) Yf NY(f) fU[a,b]g BU(a,b,f,g) fS[a,b]g BS(a,b,f,g)

fUg NU(f,g) fSg NS(f,g) F[a,b]f BF(a,b,f) fO[a,b]g BO(a,b,f,g)

Ff NF(f) Of NO(f) G[a,b]f BG(a,b,f) fH[a,b]g BH(a,b,f,g)

Gf NG(f) Hf NH(f) Zf NZ(f)

a) b < 0 denotes ∞

method, without any modification to the source code of NuSMV. The only manual intervention required

is the design of the NuSMV input program describing the JDS to be verified.

As shown in Figure 5, we design an extension of the NuSMV input language for RTLTL specifications.

The extension is an RTLTL specification defined as “RTLTL SPEC(f)”, where f is an RTLTL formula. In

Table 1, we list the RTLTLSPEC syntax for principally temporal RTLTL formulae.

According to Figure 1, we first design some M4 macros to rewrite a formula with an additional princi-

pally temporal operator NF,NG,NO,NH,NZ,BF,BG,BO,or BH into a formula including only NX,NU,NY,NS,BU,

and BS temporal operators. For example, BG(a,b,f) is written into !BU(a,b,TRUE,!f). Based on (4)/(8),

we design two M4 macros to further reduce each subformula BU(a,b,f,g)/BS(a,b,f,g) with a>0 to a

formula with subformula BU(0,b-a,f,g)/BS(0,b-a,f,g), such that this subformula can be efficiently

tackled based on its tester. The M4 macro for reducing BU(a,b,f,g) proceeds as (12a)–(12g), in which

the code of lines (12c), (12d) and (12f) constitutes the recursive implementation of (4), and the code of

lines (12b) and (12e) enacts the recursive implementation of fU[a,∞]g ≡ fU[a,a](fUg). Note that we allow

∞ to be denoted by a negative integer, and so fU[a,∞]g is denoted by BU(a,-1,f,g). The M4 macro for

reducing BS(a,b,f,g) is similar, and is omitted here,

BU(a,b,f,g)⇒























































“[Syntax error: a<0]”, if a < 0; (12a)

NU(f,g), if a = 0 and b < 0; (12b)

g, if a = 0 and b = 0; (12c)

BU(0,b,f,g), if a = 0 and b > 0; (12d)

f & NX(BU(a-1,b,f,g)), if a > 0 and b < 0; (12e)

f & NX(BU(a-1,b-1,f,g)), if a > 0 and a 6 b; (12f)

“[Syntax error: a>b]”, if a > 0 and a > b. (12g)

Given an RTLTLSPEC formula ϕ, we can now obtain a new RTLTLSPEC formula ϕ′ that includes only

the six basic temporal operators NX,NY,NU,NS, BU, and BS, with a lower bound of 0. After reducing ϕ to

ϕ′, we next construct the tester Tϕ′ and the formula χ(ϕ′) via M4. For each of the six basic temporal

operators, we then design an M4 macro to (1) declare a new tester module instantiation as the tester Tψ
for the matching principally temporal subformula ψ in ϕ′ in the variable declaration part of the main

module, and (2) convert ψ into the output variable x of the tester instantiation, i.e., χ(ψ). Thus, the

resulting formula converted from ϕ′ forms the state formula χ(ϕ′), which can be checked as a CTL or

LTL specification using NuSMV. The list of newly declared tester module instantiations forms the tester

for ϕ′. Finally, according to the tester construction method presented in Subsection 4.2, we design six

NuSMV modules as the tester construction templates for the six basic temporal operators NX, NY, NU, NS,

BU, and BS with 0 lower bound, as illustrated in Figure 6. The six tester module templates are appended

to the end of the original NuSMV input program. This accomplishes the reduction from RTLTL to
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Figure 6 The NuSMV modules representing the testers for the basic temporal operators X, Y, U, S, U[0,b], and S[0,b].

CTL/LTL.

We consider the RTLTL formula ϕ = fU[20,50]Xg as an example, where f and g are two boolean

variables. We add the line “RTLTLSPEC(BU(20,50,f,NX(g)))” to the original NuSMV input program.

This specification is first rewritten into the formula ϕ′ = {f & NX(}20 BU(0,30,f,NX(g)) {)}20, which

only includes basic temporal operators. On the syntax tree of ϕ′, all temporal operators are dealt with

in a bottom-up manner, which declares the following tester module instantiations and adds them to the

variable declaration part of the main module:

T1 : Tester_X(g); -- tester for NX(g)

T2 : Tester_BU0(30, f, T1.x); -- tester for BU(0,30,f,T1.x)

T3 : Tester_X(T2.x); -- tester for NX(T2.x)

T4 : Tester_X(f & T3.x); -- tester for NX(f & T2.x)

...

T22 : Tester_X(f & T21.x); -- tester for NX(f & T21.x)

where T1 and T2 are the testers for NX(g) and BU(0,30,f,T1.x), respectively. T3-T22 are the testers

for the NX operators, from right to left respectively, in ϕ′. Thus, ϕ′ is further translated into χ(ϕ′) =

f & T22.x by M4. After adding the NuSMV source code in Figure 6 to the end of the original NuSMV

input program, the line “RTLTLSPEC(BU(20,50,f,NX(g)))” is replaced with “LTLSPEC f & T22.x;”

(checked as LTL) or “SPEC f & T22.x;” (checked as CTL). The counterexample of fU[20,50]Xg can also

be generated by NuSMV when the specification is checked as false under the extended NuSMV input

program. One can understand this counterexample by replacing each output variable on the trace with

the corresponding principally temporal subformula.

5.2 Experimental results

Our model checking prototype is implemented based on the latest NuSMV version 2.6.0, and supports the

verification of full RTLTL formulae. NuSMV 2.6.0 supports BDD-based model checking for an extension

of LTL, which is a subset of RTLTL that includes the (bounded) future temporal operators X, U, G, G[a,b],

F, and F[a,b], and the (bounded) past temporal operators Y, Z, S, H, H[a,b], O, and O[a,b]. Thus, it is natural

to perform experimental comparisons between NuSMV and our method.

We now compare the efficiency of NuSMV with that of our method. Through our analysis of the source

code of NuSMV, we find that before verification NuSMV translates each bounded principally temporal
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Figure 7 The NuSMV input programs for testing.

subformula into an equivalent LTL formula that includes only the operators X or Y, by applying rewriting

rules. We have that the tester construction methods in NuSMV and in our method for X, Y, U, S, fU[a,a]g,

and fS[a,a]g are similar. The experimental results also show that the efficiency of verification for these

operators is similar, and so we omit these results here. The main difference between NuSMV and our

method lies in the tester constructions for fU[0,b]g and fS[0,b]g. In the following, we present and compare

the experimental results for the verification of the formulae of the two forms by NuSMV and our method.

We design two simple NuSMV input programs, presented in Figure 7, so that we can perform an

experimental comparison between NuSMV and our method. Program (1) is designred to test formulae

of the form fU[0,b]g, and program (2) is for testing formulae of the form fS[0,b]g. The two programs are

verified on a virtual machine (Parallels Desktop 12 for Mac), allocated with two virtual CPUs and 8 GB

memory. The virtual machine is installed on an Apple computer, equipped with a 3.3 GB Intel Core i5

CPU and 16 GB memory, which runs 64 bit Ubuntu Linux 16.04 LTS. The model checker employed by

our method is also NuSMV 2.6.0.

In Figure 7, program (1) models a system in which the variable p is true in the initial state and stays

true for the first mb steps. The constant cb is the upper bound for counting the number of steps. We

successfully verified the bounded temporal formula G[0,mb]p using both NuSMV and our method. For

testing NuSMV, the formula is verified as the LTL specification G [0,mb] p. For testing our method,

the formula is verified as the LTL specification !T1.x, where T1.x is the output variable of the tester

T1 for BU(0, mb, TRUE, !p). The two specifications are verified independently 10 times, with different

values for cb and mb, using the variable dynamic reordering function of the BDD package CUDD.

Program (2) models a system in which the variable p is true initially and stays true for the first cb-mb

steps. After that, p stays false forever. The constant cb is the upper bound for counting the number of

steps. We successfully verified the bounded temporal formula G((c = cb) → O[0,mb]p) using both NuSMV

and our method. For testing NuSMV, the formula is verified as the LTL specification G(c=cb -> (O [0,

mb] p)). For testing our method, the formula is verified as the LTL specification !T2.x, where T2.x is

the output variable of the tester T2 for TRUE U !(c=cb -> T1.x). T1 is the tester for BS(0, mb, TRUE,

p). The two specifications are verified independently 10 times with different values of cb and mb, using

the variable dynamic reordering function of the BDD package CUDD.

Figures 8 and 9 list the experimental results for the two programs, where the total verification time is

the elapsed time for the model construction and verification. The memory in use and the peak number

of BDD nodes show the space consumed by CUDD. In fact, to test the performance limit we also

verified program (1) using NuSMV and our method for cb = 50000 and mb = 45000. NuSMV collapsed

immediately, due to a memory segmentation fault. For our method, the total verification time was only

9 min 43.833 s, the memory in use by CUDD was 46 MB, the peak number of BDD nodes was 1103760,

and the number of BDD variables was 69. Clearly, these experimental results demonstrate that in terms

of the memory usage and particularly the time consumption, our method performs significantly better

than NuSMV.
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(a) (b)

(c) (d)

Figure 8 (Color online) Experimental comparison for checking G[0,mb]p in program (1) using NuSMV and our method.

(a) Total verification time; (b) memory in use; (c) number of BDD variables; (d) peak number of nodes.

(a) (b)

(c) (d)

Figure 9 (Color online) Experimental comparison for checking G(c = cb → O[0,mb]p) in program (2) using NuSMV and

our method. (a) Total verification time; (b) memory in use; (c) number of BDD variables; (d) peak number of nodes.

5.3 Discussion of experimental results

Regarding temporal succinctness, the extended LTL in NuSMV cannot directly express the RTLTL

formulae fU[a,b]g and fS[a,b]g, which are two basic bounded temporal operators in RTLTL supported

by our method. To verify an RTLTL formula of either of these forms using NuSMV, the formula must

be translated into an equivalent LTL formula. Theorem 3 shows that the length of the translated LTL

formula is exponential in the length of the RTLTL formula. Therefore, we can conclude that the temporal

expressiveness of RTLTL is exponentially more succinct than that of the equivalent LTL in NuSMV.

Regarding the efficiency of NuSMV and our method, we first analyze the source code of NuSMV, and
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learn that NuSMV adopts a fully translation-based method, which translates each bounded temporal

formula into an LTL formula including only X and Y. From Theorem 3, we have that the length of

the translated formula is exponential in the length of the original formula. We can further conclude

that for a bounded temporal formula, the translated-based model checking method in NuSMV is doubly

exponential in the length of the original formula. This means that for verifying a bounded temporal

formula, NuSMV is infeasible even for a system of small scale. Meanwhile, our method can be viewed

as an important optimization on the tester construction for most bounded temporal formulae, because

their testers are constructed based on the tester for fU[0,b]g or fS[0,b]g. In Theorem 4, we prove that

the number of variables in our tester for either formula fU[0,b]g or fS[0,b]g is linear in the length of the

formula, so that the state space of the tester of our method is exponential in the length of the original

formula. Therefore, for a bounded temporal formula the state space of our tester is exponentially smaller

than that of NuSMV. This assertion is also justified by the experimental results presented in Figures 8

and 9. Thus, we can strongly recommend NuSMV developers to adopt our method.

6 Related work

Emerson et al. [20] were the first to propose the use of time bounded modalities in the branching time

framework. They introduced a real-time computation tree logic RTCTL, which is an extension of CTL

with real-time modalities, and developed an RTCTL model checking algorithm for discrete systems. Let

Q be a path quantifier A or E. Then, the basic real-time (time bounded) formulae of RTCTL include

Q(fU6kg), Q(fU=kg), and Q(fU>kg), whose semantics are equivalent to the RTCTL∗ formulae Q(fU[0,k]g),

Q(fU[k,k]g), and Q(fU[k,∞]g), respectively. It is easy to see that the generic real-time formula Q(fU[a,b]g)

can be expressed by Q(fU=aQ(fU6b−ag)). However, in RTCTL any (time bounded) temporal operator

must be restricted directly by a path quantifier, while the RTCTL∗ in this paper does not entail such a

restriction. Therefore, the expressive power of RTCTL∗ is stronger than that of RTCTL.

In [21], Fruth proposed runtime verification methods for real-time systems. The system properties are

expressed through an extension of future LTL with real-time temporal operators Xa and Ua,b, where the

semantics of Ua,b is equal to that of U[a,b] in this paper. Xa denotes a successive applications of X. Thus,

the extended LTL is a fragment of RTLTL that only supports future temporal operators, and not past

temporal operators. The author proposed a tableau construction method to translate an extended LTL

formula into a nondeterministic finite automaton (NFA) that accepts precisely the traces satisfying the

formula. Then, the truth checking problem of whether a finite trace satisfies a formula can be solved by

forward depth-first search algorithms. Unlike testers, NFAs do not possess compositionality, so that for a

compound formula an NFA cannot be constructed by composing the NFAs of its subformulae. However,

owing to compositionality the testers introduced in this paper are more functionally complex than NFAs,

so that we can easily extend existing logics to support more valuable operators just by constructing the

testers for these new operators.

Pnueli and Zaks [22] proposed the construction of temporal testers for formulae specified in LTL, PSL,

and MITL, and also presented a general overview of the tester methodology. We list some comparisons

between [22] and our method.

(1) The efficiency of our method is significantly better than that of [22]. We know that the state space

of a JDS/tester is exponential in the number of variables. So for constructing a tester, the fewer number

of fresh variables are created, the better efficiency will be obtained. In [22], the authors construct the

tester of fU[a,b]g as that of 3a[⊟[0,a]f ∧ (fU[0,b−a]g)], where 3a is a “shift by a” operator that is equal to

⊤U[a,a], and ⊟[0,a]f is a past analog of �[0,a]f that is satisfied iff f has been continuously true for the last

a time units. The tester of fU[a,b]g is constructed as the synchronous parallel composition of the testers

of ⊟[0,a]f , fU[0,b−a]g, and 3a(x⊟[0,a]f ∧xfU[0,b−a]g). Via our analysis, one boolean variable and one integer

variable in [0, a] should be created for the tester of ⊟[0,a]f , and one boolean variable and one integer

variable in [0, b− a] should be created for the tester of fU[0,b−a]g. The tester of 3af is constructed as the

synchronous parallel composition of the testers U, P,ON[0],OFF[0], . . . ,ON[k− 1] and OFF[k− 1], where

one boolean variable and 2k + 1 integer variables in [0, a] should be produced. The authors assume that
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f undergos no more than k changes for each period of length a, but do not tell us how to determine the

value of k. However, we know that the value of k is at most a− 1. Therefore, to construct the tester of

fU[a,b]g, that method requires the creation of three boolean variables, one integer variable in [0, b − a],

and 2a + 2 integer variables in [0, a]. Meanwhile, for ψ = fU[a,b]g (a < b) our tester Tψ only needs to

create a+ 1 fresh boolean variables and one integer variable in [0, b− a− 1].

(2) For fU[0,b]g, our tester is different from that in [22], because we use the standard semantics of

fU[0,b]g, which does not restrict f to hold on the state where g holds. In [22], this restriction is added to

the semantics.

(3) Besides the (bounded) future temporal formulae, we construct the testers for Y, fSg, and fS[0,b]g,

so that our method also fully supports (bounded) past temporal formulae. Meanwhile, Ref. [22] only

presents the tester for ⊟[0,a]f (historically), which is not adequate to express full past temporal formulae.

Moreover, the tester for ⊟[0,a]f is only a special case of our tester for fS[0,b]g, because the former can be

constructed as our tester for ¬(⊤S[0,b]¬f).

As far as we know, to date there does not exist any state-of-the-art temporal model checker supporting

complete RTLTL, let alone RTCTL∗. The latest version 2.6.0 of NuSMV supports two real-time temporal

logics, RTCTL and an extension of LTL, both of which are subsets of RTCTL∗. We optimize our method

for RTCTL∗ by applying the RTCTL model checking method, instead of constructing the tester, when

checking a principally temporal subformula that is immediately preceded by a path quantifier. Therefore,

our method can achieve the same performance as NuSMV when checking RTCTL formulae. The extension

of LTL in NuSMV cannot directly support the operators U[a,b] and S[a,b], and the state space of the

translation-based method used by NuSMV will be exponentially larger than that of our tester-based

method for these operators with a = 0. This result is justified by the experimental results presented in

Section 5.

On the other hand, as shown in Section 1, the existing real-time temporal logics adopted by most

model checkers for real-time systems (including HyTech, Uppaal, Kronos, and FSMT-MC) are based

on CTL or LTL, and thus will be semantically weaker than RTCTL∗ for modeling complex scenarios.

Recently, substantial research effort has been dedicated to advancing the frontiers of traditional temporal

logics [23–26]. Meanwhile, the verification of hybrid systems with discrete and continuous transitions has

also been intensively studied, such as in [27,28]. This paper combines these two strands of research, and

has addressed this issue by providing a new modeling language that features flexibility and algorithmic

manageability.

7 Conclusion

In this paper, we presented a new real-time temporal logic RTCTL∗, as an extension of CTL∗ with

(bounded) future and past temporal operators. By constructing the testers for all temporal operators, we

proposed a tester-based symbolic model checking method for RTCTL∗. We have already implemented

an efficient model checking prototype for real-time linear temporal logic RTLTL, which is a subset of

RTCTL∗ without path quantifiers, by building upon NuSMV. The soundness and completeness of the

proposed method, the expressiveness of RTCTL∗, and the complexity of the tester construction have

been described and proven. Theoretical and experimental results for the prototype both show that for

checking bounded temporal formulae of the form fU[0,b]g or fS[0,b]g, our method performs exponentially

better than the fully translation-based one.

For future work, we plan to apply the proposed reduction-based method for RTLTL to other existing

model checkers, such as SPIN, MCMAS, and MCTK. To support full RTCTL∗ model checking, we also

plan to directly implement the proposed method for RTCTL∗ based on MCTK, which is an efficient

symbolic model checker for multi-agent systems that we have developed. Furthermore, generating coun-

terexamples is another important issue that siginificantly aids users in debugging verified systems. We

will provide a symbolic algorithm to generate tree-like counterexamples/witnesses for RTCTL∗, and in-

tegrate this into MCTK. Another important application of testers is deductive verification. Based on the

compositionality of the proposed testers, it is possible to establish a deductive proof system for RTCTL∗,
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such that the proof of an RTCTL∗ formula ϕ with respect to a JDS D can be reduced to the proof of

χ(ϕ) with respect to D ‖ Tϕ. Such a deductive proof system for RTCTL∗ would be valuable for verifying

more expressive real-time temporal properties over infinite-state real-time systems.
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