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Abstract Refinement checking answers the question on whether an implementation model is a refinement

of a specification model, which is of great value for system verification. Some refinement relationships, e.g.,

trace refinement and failures/divergence refinement, have been recognized for different verification purposes.

In general, refinement checking algorithms often rely on subset construction, which incurs in the state space

explosion problem. Recently the anti-chain based approach has been suggested for trace refinement check-

ing, and the results show a significant improvement. In this paper, we investigate the problems of applying

the anti-chain approach to timed refinement checking (a timed implementation vs. a timed or untimed

specification) and probabilistic refinement checking (a probabilistic implementation vs. a non-probabilistic

specification), and show that the state space can be reduced considerably by employing the anti-chain ap-

proach. All the algorithms have been integrated into the model checking tool PAT, and the experiments have

been conducted to show the efficiency of the application of anti-chains.
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1 Introduction

Formal methods take advantage of a broad variety of mathematical theories to carry out the specification

and verification of software and hardware systems in computer science [1–3], and have been applied to

many real-life problems [4, 5]. Model checking is a powerful formal approach to verify the properties of

finite state models, which in a nutshell solves the problem described as follows: given a system model and

a property, automatically and exhaustively check if the model satisfies the property. One particularly

popular setting for model checking is that the property is given as a temporal logic formula (e.g., LTL

or CTL) which is to be expressed in a different language from the system modeling language. Another

technique is often referred to as refinement checking [6], which has been traditionally adopted for the

verification of CSP. The notion of refinement is a particularly useful concept in many engineering activities.

Refinement checking examines if there exists a refinement relationship between the implementation model

and the specification model both of which are in the same language. Suppose that the specification satisfies

a certain property of the system, we can infer that the implementation also satisfies that property if there

is a property preserving refinement relationship between them.
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The success of the verification tool FDR for CSP [1] evidences the usefulness of refinement checking.

A variety of refinement relationships have been well recognized to represent properties with different

purposes. For instance, trace refinement can be used to verify safety, while failures/divergence refinement

can be used to verify not only safety but also some classes of liveness properties [7]. However, there is

not much work on the refinement checking for timed and probabilistic systems.

The work in [8] has shown that trace refinement relationship can be extended to the verification of

probabilistic systems. A probabilistic implementation model (i.e., a Markov decision process) exhibits

a trace with a certain probability. Therefore, given a non-probabilistic specification model (a finite

state automaton) that captures desired system behaviours, we can calculate the probability that the

implementation model correctly executes the behaviours (i.e., the traces) of the specification model.

Intuitively, it can be seen as the probability that the implementation model behaves well according to

the specification model. In this work, this is referred to as probabilistic refinement checking.

Naturally, similar extensions can also be applied to timed systems. That is, given a timed implemen-

tation model (with the semantics of timed automata) and an untimed specification model (a finite state

automaton), we check whether the implementation exhibits the traces of the specification under some

timed conditions. It is useful since we can verify whether a timed system can execute the same behaviours

represented by the specification model. Moreover, a more complicated class of refinement checking for

timed systems is considered in this work, which is inspired by the work in [9–11]. That is, the specifi-

cation is also a timed model, and thus a timed trace refinement relationship is established between the

implementation model and the specification model, which enables us to verify timed properties. To the

best of our knowledge, there has not been any complete study of refinement checking approach for timed

systems.

For the aforementioned refinement checking with an untimed/non-probabilistic specification, the stan-

dard (and most popular) approach is to first determinize the specification that is usually a NFA (non-

deterministic finite-state automaton) using the subset construction, and then check for reachability in

the synchronous product of the implementation and specification. In the worst case, the subset construc-

tion could construct a DFA which is exponentially larger than the original NFA, which leads to the state

space explosion. In order to alleviate this problem, Wulf et al. [12] suggested the anti-chain method which

can be used in trace refinement checking. It was shown that this approach outperformed the standard

algorithm. The original definition of anti-chain is a subset of a partially ordered set such that any two

elements in the subset are incomparable. Anti-chain allows us to store only a ‘maximal’ subset of states

in the product. As a result, the complete subset construction can be avoided and we do not need to

construct the whole product. It will be shown in Sections 2–4 that all the refinement checking with an

untimed (and non-probabilistic) specification is based on subset construction.

For timed refinement checking with a timed specification, the specification can also be determinized.

The determinization procedure for timed automata has been proposed in [10], which is much more

complicated than for NFAs since timed systems transit from one state to another with timed conditions.

The determinization requires the transitions labeled with clock constraints to be mutually exclusive,

and it can be seen as a subset construction with time. The method of [10] is impractical since it is

based on region abstraction which is known to be very inefficient [13]. Our previous work [14] supplies a

construction based on a zone abstraction which is a more succinct representation for the verification [13].

However, the construction is complicated, i.e., the specification is transformed into an infinite timed tree

before determinization. Therefore, in this work we improve the construction and use a straightforward

determinization without transforming the specification.

It has been shown that not all timed automata can be determinized since in some cases the clocks are

added infinitely often which leads to an infinite state space. To avoid this problem, the work in [11] limits

the timed automata to have only one clock and proves that the language inclusion problem for one-clock

timed automata is decidable. It should be noted that anti-chain is the key for proving the decidability

of this problem. However, in this work we prefer a method which can be applied to arbitrary timed

automata. Then it is worthwhile to study the role of anti-chain in this settings.

For this work, we study the timed refinement and probabilistic refinement checking. The contributions
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are summarized as follows. Firstly, we first define timed refinement checking with an untimed specifi-

cation, and further show that anti-chain improves the performance. Secondly, for the timed refinement

checking with a timed specification, we use an algorithm with a straightforward determinization which is

an enhancement of our previous work and show that anti-chain can not only contribute to the termina-

tion of the algorithm, but also reduce the state space significantly. Thirdly, we first apply anti-chain to

probabilistic refinement checking with a non-probabilistic specification, and show improvements in some

cases. Lastly, we implement all the algorithms in the tool PAT [15].

Organization. Section 2 reviews the foundations of anti-chain based refinement checking. Section 3

shows the anti-chain algorithms for the timed refinement checking. Section 4 illustrates that anti-chain

can also contribute to probabilistic refinement checking. Section 5 reports the experimental results.

Section 6 gives the related work. Lastly, Section 7 concludes the paper.

2 Foundations of anti-chain based refinement checking

Let Σ be a set of observable events, τ be a hidden event, and Act = Σ ∪ {τ}. A Labeled Transition

System (LTS) is a tuple L = (S, Init,Act, T ), where S is a set of locations, Init ⊆ S is a set of initial

locations, and T ⊆ S ×Act× S is a transition relation.

We define s
e
→ s′ if (s, e, s′) ∈ T and e ∈ Σ. We define s

τ
 s′ if L contains a sequence 〈s0, s1, . . . , sn〉

where (si, τ, si+1) ∈ T for all 0 6 i < n and s = s0 and s′ = sn. We write s1
e
 s2 if s1

τ
 s′ and s′

e
→ s′′

and s′′
τ
 s2. If there exists a sequence 〈s0, s1, . . . , sn〉 where si

ei
 si+1 for all 0 6 i < n and s0 ∈ Init,

the finite sequence of events 〈e0, e1, . . . , en−1〉 is a trace in L. The set of all the traces in L is denoted by

traces(L).

Definition 1 (Trace refinement). Let L1 and L2 be two LTSs. L1 refines L2 in trace semantics iff

traces(L1) ⊆ traces(L2).

According to the subset construction for trace refinement checking [1], the LTS as the specification

can be reconstructed as a trace-equivalent (to the original LTS) and deterministic one without τ events.

The determinized LTS of L is denoted by det(L) = (S′, Init′,Act′, T ′), such that S′ ⊆ 2S, Init′ = {s′ ∈

S | ∃i ∈ Init. i
τ
 s′}, Act′ = Act \ {τ}, and T ′ is the transition relation such that (Nd, e,N

′
d) ∈ Td iff

N ′
d = {s′ ∈ S | ∃s ∈ Nd. s

e
 s′}.

Definition 2 (Synchronous product of LTSs). Let L1 = (S1, Init1 ,Act1, T1), L2 = (S2, Init2,Act2, T2)

be two LTSs. Given det(L2) = (S′
2, Init

′
2,Act

′
2, T

′
2), the synchronous product of L1 and det(L2), written as

L1×det(L2), is the LTS L = (S, Init,Act, T ) where S = S1×S′
2; Init = {(i1, i2) | i1 ∈ Init1 ∧ i2 = Init′2};

Act = Act1 ∪ Act′2; and T is the transition relation such that for all (s,N) with s ∈ S1 and N ∈ S′
2,

• if (s, τ, s′) ∈ T1, then ((s,N), τ, (s′, N)) ∈ T ;

• if (s, e, s′) ∈ T1 and (N, e,N ′) ∈ T ′
2, then ((s,N), e, (s′, N ′)) ∈ T .

The trace refinement checking tries to find a target state (s,N) in L1 × det(L2) such that N is the

empty set, which is named as a TR-witness state in this paper (TR: trace refinement).

Given s ∈ S and s′ ∈ S, we say that s simulates s′, denoted s′ ≺ s, iff for any s′
e
 s′1, there exists

s
e
 s1 and s′1 ≺ s1. The anti-chain based approach actually infers a “simulation” relation in L1×det(L2).

Given any two product states (s1, N1) and (s2, N2) of L1×det(L2), let (s2, N2) � (s1, N1) denote s1 = s2
and for any n1 ∈ N1, there is n2 ∈ N2 where n1 ≺ n2. If (s2, N2) � (s1, N1) and ((s1, N1), e, (s

′
1, N

′
1)) is

a transition in the product, then there exists (s′2, N
′
2) such that ((s2, N2), e, (s

′
2, N

′
2)) is also a transition

in the product and (s′2, N
′
2) � (s′1, N

′
1). As a result, we have the following lemma.

Lemma 1 ([16]). Let (s1, N1) and (s2, N2) be two product states in L1×det(L2). If (s2, N2) � (s1, N1),

then a TR-witness state is reachable from (s2, N2) implies a TR-witness state is reachable from (s1, N1).

As a result, we can skip (s2, N2) if (s1, N1) has been explored. Only the “maximal” states like (s1, N1)

are stored, which constitute the Anti-chain subset.
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3 Timed refinement checking

3.1 Background: timed automata and zone abstraction

In this paper, timed safety automata are the focus [17] (simply referred to as timed automata), which

are often used to model timed systems in practice. Suppose that there is a clock set C, let Φ(C) be the

set of clock constraints. A clock constraint is inductively defined as δ := true | x ∼ d | δ1 ∧ δ2 where

∼ ∈ {=,6,>, <,>}; x is a clock in C and d is an integer. Φ6,<(C) is obtained with ∼ ∈ {6, <}.

Definition 3 (Timed automata). A Timed Automaton (TA) is denoted by a tuple A = (S, Init,Σ, C,

L, T ), such that S is a set of locations, Init ⊆ S is a set of initial locations, C is a finite set of clocks,

Σ is a set of visible events, L : S → Φ6,<(C) is a function that maps an invariant to each location, and

T ⊆ S × Σ× Φ(C) × 2C × S is a transition relation.

The transition (s1, e, δ, Y, s2) ∈ T is a jump from s1 to s2 where the clock constraint δ and the location

invariant L(s2) are satisfied. After that, the clocks in Y are set to zero. A timed automaton A is

deterministic iff Init contains only one location and for any two transitions (s0, e0, δ0, Y0, s
′
0) ∈ T and

(s1, e1, δ1, Y1, s
′
1) ∈ T , if s0 = s1 and e0 = e1, then δ0 and δ1 are mutually exclusive.

A clock valuation is a map v : C → R+. Let d ∈ R+, for any t ∈ C, v+d represents the clock valuation

v′ where v′(t) = v(t) + d. For a clock set Y ⊆ C, [Y 7→ 0]v represents the v′ where v′(t) = v(t) for any

t ∈ C ∧ t /∈ Y , and v′(y) = 0 for any y ∈ Y . Let C = 0 be the clock valuation where each clock t ∈ C

equals to 0.

A concrete configuration in A is a pair denoted by (s, v) such that s ∈ S, v is a clock valuation

and v |= L(s). Given a timed event (d, e) (where d ∈ R+ is a duration and e is an event), a concrete

transition of A is denoted by ((s, v), (d, e), (s′, v′)), where a transition (s, e, δ, Y, s′) ∈ T exists; v+ d |= δ;

v+d |= L(s); [Y 7→ 0](v+d) = v′; and v′ |= L(s′). Given a concrete configuration (s, v) and a timed event

(d, e), we define post((s, v), (d, e),A) = {(s′, v′) | ((s, v), (d, e), (s′, v′)) is a concrete transition of A}. For

a set of concrete configurations X , we define post(Conf, (d, e),A) = {(s′, v′) | ∃(s, v) ∈ X. ((s, v), (d, e),

(s′, v′)) is a concrete transition of A}.

A run ofA is a finite sequence 〈(s0, v0), (d1, e1), (s1, v1), (d2, e2), . . . (sn, vn)〉 where ((si, vi), (di+1, ei+1),

(si+1, vi+1)) is a concrete transition of A for any 0 6 i < n. Then we can obtain a timed trace which

is a sequence of timed events: 〈(d1, e1), (d2, e2), . . . , (dn, en)〉. We define tmtraces(A, (s, v)) to be the

set of timed traces obtained from all runs starting with (s, v). We also define tmtraces(A) as the timed

traces obtained from any run of A starting from {(s, C = 0) | s ∈ Init}. If two timed automata have

the same set of timed traces, they are equivalent. Given the above sequence 〈(s0, v0), (d1, e1), (s1, v1),

(d2, e2), . . . (sn, vn)〉, we define the finite sequence of events 〈e1, e2, . . . , en〉 as an untimed trace of A. The

set of all the untimed traces of A is denoted by tracesTA(A).

Zone abstraction is an effective technique for model checking Timed Automata [13]. Given a clock

constraint δ, let δ↑ denote the zone (which is also a clock constraint) reached by delaying by an arbitrary

amount of time. We write v ∈ δ iff the clock valuation v is evaluated to be true with δ. For a set Y ⊆ C,

[Y 7→ 0]δ denotes the zone by setting the clocks in Y to 0; and let δ[Y ] denote the projection of δ on Y .

The result of zone abstraction is a zone graph, the definition of which is shown as below.

Definition 4 (Zone graph). Given a timed automaton A = (S, Init,Σ, C, L, T ), the zone graph of A,

denoted by ZG(A), is the tuple (Sz , Initz,Σ, Tz) such that

• Sz = {(s, δ) | s ∈ S ∧ δ is a clock constraint};

• Initz = {(init, (C = 0)↑ ∧ L(init)) | init ∈ Init} is a set of initial nodes;

• Tz ⊆ Sz×Σ×Sz is a transition relation such that for all ((s1, δ1), e, (s2, δ2)) ∈ Tz iff (s1, e, δT , YT , s2) ∈

T , δ1∧ δT is not empty, [YT 7→ 0](δ1∧ δT )∧L(s2) is not empty and δ2 = N (([YT 7→ 0](δ1∧ δT ))
↑ ∧L(s2)).

Note that N 1) is a zone normalization function, which is to make sure that the total number of zones is

1) For any clock c ∈ C, let ceil(c) be the clock ceiling obtained from A. N (δ) can be computed by (y ∈ C): (1) removing

all constraints of the form c < m, c 6 m, c− y < m, c− y 6 m where m > ceil(c); (2) replacing all constraints of the form

c > m, c > m, c− y > m, c− y > m where m > ceil(c) with c > ceil(c) and c− y > ceil(c) respectively. Therefore, the zones

that may contain arbitrarily large constants can be transformed to a unique representation whose constants are bounded

by clock ceilings.
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finite [18,19]. An abstract run of ZG(A) is a finite sequence: πz = 〈(s0, δ0), e0, (s1, δ1), e1, (s2, δ2), e2, . . . ,

en−1, (sn, δn)〉 such that (s0, δ0) ∈ Initz and ((si, δi), ei, (si+1, δi+1)) ∈ Tz for all 0 6 i < n. A concrete

run 〈(s0, v0), (d0, e0), (s1, v1), (d0, e0), . . . , (dn−1, en−1), (sn, vn)〉 of A is an instance of πz if vi ∈ δi for all

0 6 i 6 n. Zone graph preserves reachability and linear properties [20]. We can obtain a finite sequence

of events 〈e0, e2, . . . , en−1〉 from πz. All these untimed sequences of ZG(A) are denoted by tracesZG(A).

It is easy to show that tracesZG(A) equals to tracesTA(A).

3.2 Trace refinement checking for timed automata

3.2.1 Definitions of trace refinement

We give the definition of the refinement checking between a timed automaton and an LTS as below.

Definition 5 (TA-Trace refinement). Let A be a timed automaton, L be an LTS. A refines L in trace

semantics iff tracesTA(A) ⊆ traces(L).

From the definition, intuitively it is to decide whether A can exhibit a trace of L under the timed

constraints. Since tracesZG(A) equals to tracesTA(A), we can reduce this problem to decide whether

tracesZG(A) ⊆ traces(L), and build the synchronous product of a timed automaton and an LTS with the

zone abstraction.

Definition 6 (Synchronous product of TA and LTS). Given a timed automaton A = (Sa, Inita,Σa, Ca,

La, Ta) and an LTS L = (Sl, Initl,Actl, Tl), the determinized LTS of L is denoted by det(L) = (S′
l , Init

′
l,

Act′l, T
′
l ). The synchronous product of A and det(L) is a zone graph ZGAL = (S, Init,Σa, T ) as follows.

• An element in S is an abstract configuration in the form of (s, δ,W ) such that s is a location in Sa,

δ is a clock constraint on Ca and W is a state in S′
l .

• Init = {(inita, (Ca = 0)↑ ∧ La(inita), Init
′
l) | inita ∈ Inita}.

• T : S × Σ × S is a transition relation such that ((s1, δ1,W1), e, (s2, δ2,W2)) ∈ T iff the following

conditions are satisfied: (1) (s1, e, δa, Ya, s2) ∈ Ta, δ1 ∧ δa is not empty, [Ya 7→ 0](δ1 ∧ δa)
↑ ∧ L(s2) is not

empty and δ2 = N ([Ya 7→ 0](δ1 ∧ δa)
↑ ∧ L(s2)); (2) (W1, e,W2) ∈ T ′

l .

We denote the successors of an abstract configuration ps in ZGAL as post(ps,ZGAL).

Theorem 1. Given a timed automaton A and an LTS L, tracesZG(A) ⊆ traces(L) iff there is no

reachable state (s, δ, ∅) in ZGAL.

The abstract configuration (s, δ, ∅) is called a TATR-witness state (TATR: timed automata trace re-

finement).

3.2.2 Algorithm based on anti-chains for trace refinement checking

Next, we show how to apply two kinds of anti-chains to this problem to reduce the state space. First,

the lower-upper bounds simulation reduction method from [21] is used. Two functions Lw and Up are

defined as follows. Given a clock x and a state st in A, a depth-first-search is used to gather all the

transitions that are reachable from st until meeting a transition which resets x. Then, Lw(st, x) is set to

be the maximal constant c where a constraint x > c or x > c exists in these transitions; Up(st, x) is set

to be the maximal constant c where a constraint x < c or x 6 c exists in these transitions. If such a c

does not exist, Lw(st, x) or Up(st, x) is set to be −∞.

With Lw and Up, a relation between two zones is defined. Given two clock valuations v and v′ in

(s, δ,W ), v ≺LU v′ represents that if for any clock x, either v′(x) = v(x) or Lw(s, x) < v′(x) < v(x) or

Up(s, x) < v(x) < v′(x). Then, for two zones δ and δ′, δ ≺LU δ′ represents that for any v |= δ, there

exists v′ |= δ′ where v ≺LU v′. If (s, δ,W ) is searched, it can be replaced by (s, δ′,W ) if δ ≺LU δ′ where

the zone δ is expanded to δ′, and the reachability analysis is still preserved. This is an anti-chain since

only the “maximal” elements are kept. For a state ps = (s, δ,W ), we use LU(ps) to denote the above

method.

Another kind of anti-chain is based on the direct comparison of two zones. Given two clock constraints

δ and δ′ on the same set of clocks, we define δ ⊆ δ′ iff v |= δ implies v |= δ′. We use (s, δ,W ) . (s, δ′,W ′)

to denote δ ⊆ δ′ and W ′ ⊆ W .
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Figure 1 Synchronous product of a TA and an LTS.

Lemma 2. Let (s, δ,W ) and (s, δ′,W ′) be two abstract configurations in ZGAL. If (s, δ,W ) . (s, δ′,W ′),

then a TATR-witness state is reachable from (s, δ,W ) implies a TATR-witness state is reachable from

(s, δ′,W ′).

The anti-chain based trace refinement checking algorithm for timed automata, denoted by Algorithm 1,

constructs ZGAL on-the-fly with reachability analysis using anti-chain. Lines 5 and 12 ensure that anti

is an anti-chain. The following theorem states that the algorithm always produces correct results.

Theorem 2. Algorithm 1 returns true iff tracesZG(A) ⊆ traces(L).

Algorithm 1 Anti-chain based trace refinement checking for timed automata

1: Let working := Init;

2: Let anti := ∅;

3: while working 6= ∅ do

4: remove ps := (s, δ,W ) from working;

5: remove all ps′ ∈ anti s.t. ps′ . ps;

6: add ps into anti;

7: if W = ∅ then

8: return false;

9: end if

10: for all (s′, δ′,W ′) ∈ post(ps,ZGAL) do

11: ps′′ := LU((s′, δ′,W ′));

12: if ∄ ps′ ∈ anti s.t. ps′′ . ps′ then

13: add ps′′ into working;

14: end if

15: end for

16: end while

17: return true;

Example 1. We illustrate a simple example in Figure 1 to show how anti-chain works. In the figure,

the timed automaton A has a location invariant x < 5 on s2, which means that the system must leave

s2 before the clock is greater than or equal to 5. ZGAL shows the product of the timed automaton and

the LTS. Let ps0 = (s1, {s′1}, x > 0), ps1 = (s1, {s′1, s
′
2}, x > 2) and ps2 = (s1, {s′1, s

′
2}, x > 3). It is not

necessary to search from ps1 and ps2 because ps1 . ps0 and ps2 . ps0.

3.3 Timed trace refinement checking between timed automata

According to our definition of timed traces of timed automata, a timed automaton can be transformed

to an equivalent one without location invariants [14], which can simplify the following presentation. The

idea is to move the location invariants to the incoming and outgoing transitions for each location. Given

a timed automaton A = (S, Init,Σ, C, L, T ) and any s ∈ S (1) if (s, e, δ, Y, s′) is a transition from s,

conjunct δ with L(s); (2) if (s′, e, δ, Y, s) is a transition to s, conjunct δ with L(s)[C\Y ].

The set of timed traces of the resultant timed automaton equals to the set of timed traces of original A.

In the following, we fix two timed automata P = (Sp, Initp,Σp, Cp, Lp, Tp) and Q = (Sq, Initq,Σq, Cq, Lq,

Tq) without location invariants.

3.3.1 Definitions of timed trace refinement

Definition 7 (Timed trace refinement). P refines Q in timed trace semantics iff tmtraces(P) ⊆

tmtraces(Q).

Given P and Q, the problem of checking tmtraces(P) ⊆ tmtraces(Q) can be converted to a problem

that explores a product of P and Q, and ensures that any timed trace that P accepts can be accepted

by Q. This procedure requires a synchronous product of P and a determinization of Q. In the following,

we formally define this product in concrete semantics.
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Definition 8 (Concrete synchronous product of timed automata). The concrete synchronous product,

denoted by P ⊗Q, is a tuple (S, Init,Σ, T ) where

• the set S contains product configurations, each of which is in the form ((sp, vp), X) where (sp, vp) is

a concrete configuration of P , and X is a set of concrete configurations of Q;

• Init is a set of initial product configurations, each of which is in the form ((sp, Cp = 0), X0) where

sp ∈ Initp and X0 = {(sq, Cq = 0) | sq ∈ Initq};

• the transition relation T is the smallest relation such that for any product configuration ((sp, vp), X),

(((sp, vp), X), (d, e), (s′, post(X, (d, e),Q))) ∈ T for any s′ ∈ post((sp, vp), (d, e),P). Recall that the func-

tion post is defined in Subsection 3.1.

Given a product configuration ((sp, vp), X), notice that if (d, e) is enabled at (sp, vp) but not at any

concrete configuration in X , then post(X, (d, e),Q) is empty. Thus we have the following theorem.

Theorem 3. tmtraces(P) ⊆ tmtraces(Q) iff there is not a reachable state ((sp, vp), ∅) in P ⊗Q.

According to the above theorem, we can reduce the language inclusion problem to a reachability

problem of finding a state ((sp, vp), ∅) in P ⊗Q. We also remark that given a configuration ((sp, vp), X)

in P ⊗ Q, for all ((sp, vp), X
′), if X ′ ⊆ X , then a witness state (in the form of ((s, v), ∅)) is reachable

from ((sp, vp), X) implies that a witness state is also reachable from ((sp, vp), X
′).

The remaining problem is that P ⊗ Q is an infinite-state system which must be reduced before the

checking is feasible, which is focused in Subsection 3.3.2.

3.3.2 Synchronous product with zone abstraction

The method for generating the synchronous product of timed automata with zone abstraction has been

proposed in [14], where the specification Q is determinized. However this procedure is complicated, i.e.,

the specification Q is unfolded to an infinite timed tree. In the following, we represent it in a simplified

way which yields an equivalent synchronous product to [14].

Given a clock c, we define c+ = {c0, c1, c2, . . .} as an infinite set of clocks, which adds subscripts to

the original clock c (it will be used for the construction of the synchronous product, where any clock in

c+ can represent the clock c). For any clock c ∈ Cq, define a function Cq⊕(c) that maps the clock c to a

unique clock cx from c+ (written as Cq⊕(c) = cx). We use Cq⊕ to represent that every clock c ∈ Cq is

mapped to a unique clock cx from c+. We use C0
q⊕ to denote that every clock c ∈ Cq is mapped to c0.

For example, given x, y ∈ Cq, Cq⊕(x) = x2 and Cq⊕(y) = y3 are feasible.

The synchronous product is a zone graph Z(P ⊗ Q) = (S, Init,Σ, T ). A state in S is an abstract

configuration of the form (sp, Xq, δ) such that sp ∈ Sp; Xq is a set of states, each of which is of the form

(sq, Cq⊕) where sq ∈ Sq; and δ is a clock constraint. For any (sq, Cq⊕) ∈ Xq, Cq⊕ represents a set of

clocks that are active for the location sq, which will be further explained together with the construction

of T . For the set Xq, we write Act(Xq) to denote the set of all active clocks, i.e., {t | ∃(((sq , Cq⊕) ∈

Xq) ∧ (c ∈ Cq)). t = Cq⊕(c)}. δ constraints all the clocks in Act(Xq) ∪Cp. The Init of the zone graph is

defined as {(sp, Xq, ((Act(Xq) ∪ Cp) = 0)↑) | sp ∈ Initp ∧Xq = {(sq, C0
q⊕) | sq ∈ Initq}}. Σ equals to Σp.

Next, we define T by illustrating how to generate successors of a given abstract configuration (sp, Xq, δ).

Step 1. The set of transitions, denoted by Tr(e,Xq), is defined as follows. For any state (sq, Cq⊕) ∈ Xq

and any transition (sq, e, gq, Y, s
′
q) in Tq which starts with the location sq and is labeled with event e,

a transformed transition ((sq, Cq⊕), e, g
′
q, Y

′, (s′q, C
′
q⊕)) is added into Tr(e,Xq): gq and g′q are the same

except that for any clock c appearing in gq, the corresponding clock in g′q is Cq⊕(c); Y and Y ′ are the same

except that for any clock c appearing in Y , the corresponding clock in Y ′ is also Cq⊕(c); for any clock

c ∈ Cq, if Cq⊕(c) /∈ Y ′, then C′
q⊕(c) = Cq⊕(c), otherwise C′

q⊕(c) = R whose value will be decided later

in Step 3. Intuitively, if a clock is not reset on the transition, the clock is still active for the successors.

Step 2. Notice that for the purpose of determinization, the clock guards of transitions in Tr(e,Xq)

must be mutually exclusive. We define a set of clock constraints Ex(e,Xq) such that each element in

Ex(e,Xq) is a clock constraint, which conjuncts either the transition guard or the negation of the guard

for each transition in Tr(e,Xq)
2). Thus, the elements in Ex(e,Xq) are mutually exclusive by definition.

2) The negation of a clock constraint (a zone) may not be convex, and it can be represented as a set of clock constraints.
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Figure 2 Synchronous product of two timed automata.

For an element in Ex(e,Xq), if the guard on a transition is not negated, we say that the transition is

enabled.

Step 3. Given (sp, Xq, δ) and an outgoing transition (sp, e, gp, Yp, s
′
p) from (sp, Xq, δ), for each g ∈

Ex(e,Xq) we generate a successor (s′p, X
′
q, δ

′) such that (1) for any state (sq, Cq⊕) ∈ Xq and any transition

((sq, Cq⊕), e, gq, Yq, (s
′
q, C

′
q⊕)) ∈ Tr(e,Xq), if δ ∧ gp ∧ g ∧ gq is not false which means that the transition

is enabled, then (s′q, C
′
q⊕) ∈ X ′

q; (2) we define two sets of clocks Reset and Active such that for any

(s′q, C
′
q⊕) ∈ X ′

q and any clock c ∈ Cq, if C
′
q⊕(c) 6= R and C′

q⊕(c) /∈ Active, then it is added to Active;

if C′
q⊕(c) = R and c /∈ Reset, then c is added to Reset; (3) for any c ∈ Reset, we choose a clock cx in

c+ such that cx /∈ Active, and for any (s′q, C
′
q⊕) ∈ X ′

q, if C
′
q⊕(c) = R, then C′

q⊕(c) is set to cx; (4) let

δ′′ = (δ ∧ gp ∧ g)[Active], and then δ′ = N (([Yp 7→ 0](δ′′ ∧ (Reset = 0))↑). Notice that with (3), all the

active clocks in Act(X ′
q) are decided.

Given a configuration (sp, Xq, δ) and v ∈ δ, the concrete configuration can also be written as (sp, Xq, v).

We denote the successors of an abstract configuration ps in Z(P ⊗Q) as post(ps,Z(P ⊗Q)). Notice that

one of the constraints in Ex(e,Xq) conjuncts the negations of all clock guards of transitions in Tr(e,Xq),

which is denoted by negCons. Assume that the successor generated by negCons is (s′p, X
′
q, δ

′) and δ′ is

not false. Obviously X ′
q is empty since no transition is enabled. It is easy to see that P can perform e in

some time point whereas Q cannot. Therefore there exists a timed trace in P but not in Q.

Theorem 4. tmtraces(P) ⊆ tmtraces(Q) iff there is no reachable state (sp, ∅, δ) in Z(P ⊗ Q) where δ

is not false.

The abstract configuration (sp, ∅, δ) is called a TTR-witness state (TTR: timed trace refinement).

Given two abstract configurations (sp, Xq, δ) and (s′p, X
′
q, δ

′) of Z(P⊗Q), because of different clock names,

we cannot directly check the equivalence of them. For example, the two configurations (s1, {(s′1, y0),

(s′2, y1)}, x = y0 > 0 ∧ y1 > 5) and (s1, {(s′1, y1), (s
′
2, y0)}, x = y1 > 0 ∧ y0 > 5) are actually equivalent, if

we exchange y0 and y1 in the second configuration. Therefore, we do not need to care about the exact

names of the clocks in Act(Xq) or Act(X ′
q). The equivalence can be checked as follows. If sp = s′p

and there exists a bijection between Xq and X ′
q such that for any (sq, Cq⊕) ∈ Xq, there is a unique

(s′q, C
′
q⊕) ∈ X ′

q with sq = s′q (and vice versa). That is, we try to find a mapping from Act(Xq) to

Act(X ′
q) which is a bijective function bi: Act(Xq) → Act(X ′

q). Given a constraint δ on the clocks in

Act(Xq), we write bi(δ) to denote the constraint obtained by renaming the clocks according to bi. If

bi(δ) = δ′, the two abstract configurations are equivalent.

Example 2. We illustrate an example in Figure 2 to see how to generate the product with zone

abstraction. Let ps0 = (s1, {(s′1, y0)}, 0 6 x = y0) which is the initial configuration, ps1 is one of the

successors of ps0 at the bottom, ps2 is another successor of ps0 on the top of ps1, ps3 is the successor of

ps1, and ps4 is the successor of ps2.

Step 1. For (s′1, y0) in ps0, there are two transitions from s′1 which are with the guards y > 3 and y > 1

respectively. Since the initial active clock for y is y0, then two transitions ((s′1, y0), a, y0 > 3, ∅, (s′1, y0))

and ((s′1, y0), a, y0 > 1, {y0}, (s′2, R)) are added to Tr(a, (s′1, y0)). The variable R in the latter transition

will be decided in Step 3.

Step 2. In order to make the guards mutually exclusive, from Tr(a, (s′1, y0)) we can get four guards

y0 > 3 ∧ y0 > 1, y0 6 3 ∧ y0 > 1, y0 > 3 ∧ y0 6 1 and y0 6 3 ∧ y0 6 1, which constitute Ex(a, (s′1, y0)).

Two of them are feasible, i.e., y0 > 3 and 1 < y0 6 3, which are shown on the two transitions from ps0
in the figure. For y0 > 3, both of the transitions from s′1 are enabled. For 1 < y0 6 3, only the transition

from s′1 to s′2 is enabled.
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Step 3. Given the transition from ps0 with y0 > 3: for the self-transition of s′1, clock y0 is not reset,

therefore (s′1, y0) can transit to (s′1, y0) in ps1 where clock y0 is still used; for the transition from s′1 to

s′2, clock y0 is reset but it is active in (s′1, y0), so we initiate a new clock y1 in (s′2, y1) of ps1 (notice that

now R = y1). For the transition from ps0 with 1 < y0 6 3, only the transition from s′1 to s′2 is enabled,

and clock y0 can be reused in ps2. The zone in ps1 is calculated from the initial zone in ps0 and the

transition guard. Thus, we can construct the synchronous product step by step.

For the searching of TTR-witness states, it is easy to see that the negCons in Ex(a, (s′1, y0)) of ps0 is

y0 6 1. Then the conjunction of 0 6 x = y0 (the zone in ps0) and x > 1 and negCons is not true, thus a

TTR-witness state cannot be generated for ps0 (a TTR-witness state is not reachable and the refinement

checking holds in this example).

Notice that the path 〈ps0, ps1, ps3, . . .〉 is infinite because the clocks are added infinitely many times,

and therefore the state space is infinite. It will be shown that with anti-chain, the algorithm can still

terminate for this example in Subsection 3.3.3.

3.3.3 Algorithm based on anti-chains for timed trace refinement checking

For the refinement checking between timed automata, we can infer an anti-chain relation by comparing

abstract configurations (sp, Xq, δ) and (s′p, X
′
q, δ

′) of Z(P⊗Q). A clock mapping is defined for comparing

Xq and X ′
q (and also δ and δ′) which may have different number of locations and different sets of clocks. A

mapping from Act(Xq) to Act(X ′
q) is an injective function m : Act(Xq) → Act(X ′

q). We define Xq ⊆m X ′
q

if there exists a mapping m such that for all (sq, Cq⊕) ∈ Xq, there exists (s
′
q, C

′
q⊕) ∈ X ′

q such that sq = s′q
and for all c ∈ Cq, m(Cq⊕(c)) = C′

q⊕(c). Note that there may be some clocks in Act(X ′
q) that are not

mapped to, and X ′
q may contain more elements than Xq. We use mapsm to denote the set of clocks which

are mapped to in Act(X ′
q). Similarly, given a constraint δ on the clocks in Act(Xq), we write δm to denote

the constraint obtained by renaming the clocks according to m. δ′[mapsm] denotes the clock constraint

obtained by projecting δ′ onto clocks in mapsm. We write δ′ ⊆m δ if δ′[mapsm] ⊆ δm, which means that

the clock valuations which satisfy the constraint δ′[mapsm] also satisfy δ after the clock renaming. We

define (sp, X
′
q, δ

′) 4 (sp, Xq, δ) iff there exists a mapping m such that Xq ⊆m X ′
q and δ′ ⊆m δ. Then we

get the following lemma.

Lemma 3. Let (sp, Xq, δ) and (sp, X
′
q, δ

′) be two abstract configurations in Z(P ⊗Q). If (sp, X
′
q, δ

′) 4

(sp, Xq, δ), then a TTR-witness state is reachable from (sp, X
′
q, δ

′) implies a TTR-witness state is reach-

able from (sp, Xq, δ).

The anti-chain based timed trace refinement checking algorithm, denoted by Algorithm 2, constructs

Z(P ⊗ Q) on-the-fly with reachability analysis using anti-chain. Lines 5 and 11 ensure that anti is an

anti-chain. The following theorem states that the algorithm always produces correct results.

Theorem 5. Algorithm 2 returns true iff tmtraces(P) ⊆ tmtraces(Q).

Algorithm 2 Anti-chain based timed trace refinement checking between timed automata

1: Let working := Init;

2: Let anti := ∅;

3: while working 6= ∅ do

4: remove ps := (sp, Xq, δ) from working;

5: remove all ps′ ∈ anti s.t. ps′ 4 ps;

6: add ps into anti;

7: if Xq = ∅ then

8: return false;

9: end if

10: for all (s′p, X
′
q, δ

′) ∈ post(ps,Z(P ⊗ Q))

do

11: if ∄ ps′ ∈ anti s.t. (s′p, X
′
q, δ

′) 4 ps′

then

12: add (s′p, X
′
q, δ

′) into working;

13: end if

14: end for

15: end while

16: return true;

If Q is deterministic or can be determinized, Algorithm 2 terminates. However, Algorithm 2 does not

always terminate since there exist some cases where Q is not determinizable and the clocks are added
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infinitely, as shown in Figure 2. We show that the anti-chain can reduce the state space, as well as

contributing to the termination of the algorithm with the following example.

Example 3. In Figure 2, we show that ps1 4 ps2 (ps1 is denoted by (sp, X
′
q, δ

′) and ps2 is denoted by

(sp, Xq, δ)), and as a result, we do not need to search from ps1. We can find a clock mapping m(y0) = y1
for ps2 which replaces y0 with y1 in ps2. Then we have ps′2 = (s1, {(s′2, y1)}, 0 6 x = y1) which equals to

ps2 (δ is 0 6 x = y0 and δm is 0 6 x = y1). Since mapsm = {y1}, δ′[mapsm] is 0 6 x = y1. Compared

with ps1, it is easy to see that ps1 4 ps′2 and thus ps1 4 ps2. Although the path 〈ps0, ps1, ps3, . . .〉 is

infinite, it is pruned by the anti-chain. The infinite path 〈ps0, ps2, ps4, . . .〉 can also be pruned similarly.

4 Probabilistic refinement checking

4.1 Probabilistic model checking

A Markov Decision Process (MDP) can capture system behaviours with probabilistic choices and non-

determinism. The definition of MDP [22] is introduced as follows. For a set W , the map µ : W → [0, 1]

where Σw∈Wµ(w) = 1 represents a distribution. We use Distr(W ) to denote the set of all distributions

over W .

An MDP is denoted by a tuple M = (S, Ini, A, P ) such that S is a set of locations, Ini: S → [0, 1] is

the initial distribution such that Σs∈Sµ(s) = 1, A is a set of visible events, and P ⊆ S ×A×Distr(S) is

the transition function.

There could be multiple events and distributions from a location in MDP. A transition in M is rep-

resented as (s, e, µ) such that µ is a distribution. π = 〈s0, e0, µ0, s1, e1, µ1, s2, e2, µ2, . . .〉 represents an

infinite path in M where Ini(s0) > 0, (si, ei, µi) ∈ P and µi(si+1) > 0 for any i > 0.

We use a scheduler to decide how to choose an event and a distribution in the MDP. A scheduler

chooses in any state s one of the enabled events e and a distribution µ satisfying (s, e, µ) ∈ P . We write

β : S → A × Distr(S) to denote the scheduler. Given an MDP and a scheduler β, a Markov Chain

can be obtained [2], written as Mβ. A Markov Chain can be seen as an MDP such that just one event

(and one distribution) is enabled at each location. Notice that paths in Markov Chains are “maximal”

(i.e., infinite) paths in the underlying digraph [2]. For a path πβ = 〈s0, e0, µ0, s1, e1, µ1, s2, e2, µ2, . . .〉 in

M scheduled by β, which is also in Mβ , trace(π) is defined as a sequence of events 〈e0, e1, e2, . . .〉. For

the reachability analysis involved later, it is important to calculate the probability that a particular set

of locations is reached (the article [2] has described and proved the method of computing reachability

probabilities by infinite paths). Given a Markov Chain Mβ and a set of target locations Gt, we use

Pr(Mβ , s, Gt) to represent the accumulated probability of all paths from s to any location in Gt. Given

a Markov Chain Mβ and a trace tr, we use Pr(Mβ , s, tr) to denote the probability of running a trace

tr starting from s: from all the paths π in Mβ starting from s where trace(π) =tr, the accumulated

probability can be obtained. For a set of traces Tr, we use Σtr∈TrPr(Mβ , s, tr) to denote the probability

that Mβ runs any trace in Tr starting from s.

Notice that the probability for reaching Gt or running a trace can be different using various schedulers.

Thus maximal and minimal probabilities are measured. Derived from above, given an MDP M and

a target location set Gt, the maximal probability of reaching Gt starting from s is Prmax(M, s, Gt) =

supβ Pr(Mβ, s, Gt); the minimal is Prmin(M, s, Gt) = infβ Pr(Mβ , s, Gt). The maximal probability

of running a trace set Tr by M from s is Prmax(M, s,Tr) = supβ(Σtr∈TrPr(Mβ , s, tr)); the minimal

probability is Prmin(Mβ , s,Tr) = infβ(Σtr∈TrPr(Mβ , s, tr)).

Definition 9 (Probabilistic refinement). Given an MDP M = (S, Ini, A, P ) and an LTS L. Let SI =

{s′ | ∃s′ ∈ S. Ini(s′) > 0} be the set of initial locations distributed by Ini. The maximal probability that

M refines L in trace semantics is Probmax(M, Ini, traces(L)) = Σs∈SI
Ini(s)×Prmax(M, s, traces(L)); the

minimal probability is Probmin(M, Ini, traces(L)) = Σs∈SI
Ini(s)× Prmin(M, s, traces(L)).

However, we cannot directly calculate the maximal/minimal probability of M trace-refines L with

above definition. From [8], one way is to (1) determine L using the standard powerset construction; (2)
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Figure 3 Synchronous product of an MDP and an LTS.

compute the synchronous product of M and determined L; (3) reduce the problem to a probabilistic

reachability one and calculate the probability of paths of the product.

Definition 10 (Synchronous product of MDP and LTS). Given an MDP M = (Sm, Inim, Am, Pm), an

LTS L = (Sl, Initl,Actl, Tl), and the determinized LTS det(L) = (S′
l , Init

′
l,Act

′
l, T

′
l ). The synchronous

product M × det(L), is denoted by an MDP which is a tuple (S, Ini, A, P ) where S = Sm × S′
l ; Ini :

Sm × {Init′l} → [0, 1] is an initial distribution such that for any sm ∈ Sm, Ini((sm, Init′l)) = Inim(sm);

A = Am; and P is a transition function which satisfies that for all (s,N) with s ∈ Sm and N ∈ S′
l ,

• if (s, τ, µ) ∈ Pm, then ((s,N), τ, µ′) ∈ P where for any s′ ∈ Sm, µ′((s′, N)) = µ(s′);

• if (s, e, µ) ∈ Pm, (N, e,N ′) ∈ T ′
l , then ((s,N), e, µ′) ∈ P : for any s′ ∈ Sm, µ′((s′, N ′)) = µ(s′).

A state (s,N) in M× det(L) is called a PR-witness state (PR: Probabilistic Refinement) iff N = ∅. It

means that if (s, ∅) is reachable, then there exists a trace that M exhibits but L does not, which decreases

the probability that M refines L. Let Gt be the target set of all the PR-witness states in M× det(L),

the problem can be reduced to a probabilistic reachability one by the following theorem [8].

Theorem 6. Given an MDP M = (Sm, Inim, Am, Pm), an LTS L = (Sl, Initl,Actl, Tl), and M ×

det(L) = (S, Ini, A, P ). Let SI = {s′ | ∃s′ ∈ S. Ini(s′) > 0} be the set of initial locations distributed by

Ini, and Gt be the set of all the PR-witness states in M× det(L):

• Probmax(M, Inim, traces(L)) = 1− Σs∈SI
Ini(s)× Prmin(M× det(L), s, Gt);

• Probmin(M, Inim, traces(L)) = 1− Σs∈SI
Ini(s)× Prmax(M× det(L), s, Gt).

We use value iterative approximation technique [2] which is more often applied for calculating the

probability in the probabilistic verification.

Example 4. Figure 3 illustrates how the iterative calculation works. In the MDP, s1 starts with two

distributions, followed by two events a and b. The synchronous product M×det(L) is shown in the figure

by following Definition 10. Let ps0 = (s1, {s3}), ps1 = (s1, {s3, s4}), ps2 = (s2, {s4}), ps3 = (s2, {s3, s4})

and Gt = {(s2, ∅)} which is the set of PR-witness states. We calculate the maximal probability of reaching

Gt step by step. After k iterations, we denote pski as the maximal probability of psi. All the probabilities

of the states in Gt equal to 1 in any iteration since they are always reachable from themselves. Initially,

the probabilities of all the other states are set to 0. In each iteration we update the probabilities on the

states according to the values of last iteration.

• Iteration 0. ps00 = ps01 = ps02 = ps03 = 0; Gt = 1.

• Iteration 1. ps13 = 1 × Gt = 1; ps12 = 1 × Gt = 1; ps11 = max{0.5 × ps01 + 0.5 × ps03, ps
0
2} = 0;

ps10 = max{0.5× ps01 + 0.5× ps03, ps
0
2} = 0.

• Iteration 2. ps21 = max{0.5× ps11 + 0.5× ps13, ps
1
2} = 1; ps20 = max{0.5× ps11 + 0.5× ps13, ps

1
2} = 1.

Iteratively, the probability of the initial state ps0 reachingGt can be calculated, which is 100%. According

to Theorem 6, the probability that M refines L is 0. Notice that the calculation of this example stops

quickly. However, in many situations the iterations are infinite. Therefore, a user-defined threshold is

often used to stop the calculation when the result is accurate enough.

4.2 Algorithm based on anti-chains for probabilistic refinement checking

Lemma 4. Given an MDP M, an LTS L. Let D = M × det(L), and the set Gt containing all the

PR-witness states of D. For any product states (s1, N1) and (s2, N2) of D s.t. (s2, N2) � (s1, N1),

Prmax(D, (s1, N1), Gt) > Prmax(D, (s2, N2), Gt) and Prmin(D, (s1, N1), Gt) > Prmin(D, (s2, N2), Gt).
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Table 1 Tests on refinement checking of TA and LTS

System
Time Visited states

Without AC (s) AC (s) Ratio Without AC AC Ratio

FIS×6(2) 12.2 8.9 1.37 260.7 K 172.7 K 1.51

FIS×6(6) 22.9 6.3 3.63 497.0 K 100.2 K 4.96

FIS×8(1) 4.2 4.9 0.86 88.4 K 88.4 K 1.00

RW×6(3) 1.53 0.68 2.25 68.7 K 23.0 K 2.99

RW×8(3) 124.1 42.3 2.93 4.3 M 1.1 M 3.91

LYN×7(2) 4.5 3.5 1.29 165.0 K 130.0 K 1.27

LYN×8(2) 26.0 19.3 1.35 659.1 K 519.0 K 1.27

CSMA×7(1) 15.6 16.9 0.92 146.2 K 146.2 K 1.00

Recall that (s2, N2) � (s1, N1) has been defined in Section 2. For the probability calculation, the

state space cannot be reduced directly. However, we can use the above lemma to speed up the iterative

calculation. We define a set ac for each product state (s,N) such that (s,N).ac = {(s′, N ′) | (s′, N ′) ∈

S ∧ (s,N) � (s′, N ′)} where S is the set of all the product states in D. Then we apply the iterative

calculation in D. During the calculation, if the probability of state (s,N) is updated to p, for any product

state in (s,N).ac, if the probability is less than p, then it can be set to p directly, which reduces the

calculation.

Example 5. Given the same example in Figure 3. We have ps3.ac = {ps2} and ps1.ac = {ps0}. As a

result, in iteration 1, if ps13 has been updated to 1, then ps12 can be set to 1 directly without calculation

(although the original calculation which is 1 ×Gt looks trivial); similarly, in iteration 2, if ps21 has been

calculated and updated to 1, then ps20 can also be set to 1 directly (the original calculation is not trivial).

In this example, there are only a few states, so the speedup is not obvious. For a system with a large

size, this method can speedup the calculations potentially.

5 Evaluation

In this section, the performance of the algorithms is evaluated using some real-life systems, which have

been embedded in PAT tool [15]. All the experiments are conducted using a PC (Intel (R) Core (TM)

3.40 GHz i7-2600 CPU with 8.0 GB of RAM) 3).

5.1 Evaluation for timed systems

In this part, we model and verify timed benchmark systems with our algorithms, and evaluate the

performance. The benchmark systems include Fischer’s mutual exclusion protocol (FIS) [23], Lynch-

Shavit’s mutual exclusion protocol (LYN) [24], railway control system (RW) [25], fiber distributed data

interface (FDDI) [26], and CSMA/CD protocol (CSMA) [27].

Table 1 shows the tests on refinement checking of timed automata and LTS with anti-chain (AC) and

without anti-chain (Without AC) with several cases. All the systems and the properties to be verified are

a set of processes, e.g., FIS × 6(2) indicates that there are 6 processes in the system and 2 processes in

the property. Different properties are built for the benchmarks using LTSs, e.g., the refinement checking

between the system and the property for FIS can be expressed as that whether a process or several

processes can enter the critical section after they initiate the request. From the ratios of the verification

time and visited states, we can see that the anti-chain based algorithm improves the performance in

most of the cases. For some cases (e.g., FIS × 8(1)), the ratio of visited states is 1 which means that

the state space cannot be reduced by anti-chain at all, because (1) the properties are deterministic;

(2) the comparisons between zones (see the ani-chain relation in Lemma 2) and the Lw/Up functions

cannot contribute to reduce the state space. From these tests, we can infer that the anti-chain can often

provide better performance in the cases with non-deterministic property models. However, the effect of

3) All the models can be found in: http://pat.scse.ntu.edu.sg/antichain/index.htm.
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Table 2 Tests on refinement checking between TA

System
Time Visited states

Without AC (s) AC (s) Ratio Without AC AC Ratio

FIS×6(1) 1.4 0.7 2.00 7.1 K 4.4 K 1.61

FIS×7(1) 8.9 4.6 1.93 31.3 K 20.0 K 1.57

FIS×8(1) 57.9 29.7 1.95 138.7 K 91.6 K 1.51

RW×6(6) 8.9 7.0 1.27 27.9 K 23.3 K 1.20

RW×7(1) 18.5 12.9 1.43 126.9 K 99.5 K 1.28

LYN×5(2) 48.8 2.3 21.2 63.6 K 8.1 K 7.85

LYN×6(1) 69.5 4.0 17.4 120.9 K 16.8 K 7.20

FDDI×7(7) 36.1 8.0 4.51 8.1 K 1.2 K 6.75

CSMA×5(1) 3.4 0.2 17.0 2.5 K 0.9 K 2.78

Table 3 Tests on refinement checking of MDP and LTS

System States
Time States during iterations

Without AC (s) AC (s) Ratio Without AC AC Ratio

CSI(3) 46 K 2.7 2.2 1.23 4.2 M 3.0 M 1.40

CSI(4) 87 K 16.0 12.0 1.33 18.6 M 11.7 M 1.59

CSI(5) 117 K 123.9 80.8 1.53 130.7 M 76.3 M 1.71

CSI(6) 231 K 271.2 182.6 1.49 272.1 M 160.7 M 1.69

CSI(7) 343 K 511.1 340.3 1.50 515.2 M 298.8 M 1.72

MRS(3) 8 K 2.5 2.8 0.89 4.9 M 4.8 M 1.02

MRS(4) 59 K 47.1 49.3 0.96 43.4 M 43.3 M 1.00

the comparisons between zones and the Lw/Up functions depend on the system models since they can

be built arbitrarily.

Table 2 shows the tests on refinement checking between timed automata, which enables the verification

of timed properties expressed by timed automata. The systems and timed properties are also represented

by a set of processes. The timed properties contain different number of clocks. For example, FIS × 6(1)

indicates that there are 6 processes in the system and one clock (also one process) in the timed property.

The refinement checking between the system and the timed property for FIS can be expressed as that

whether a process or several processes can enter the critical section after they initiate the request within

the required time. The timed properties are modeled using a set of commonly used patterns [28], and

all the patterns are deterministic or can be determinized. Therefore, the algorithm can terminate for

all these test cases. From the ratios of the verification time and visited states, it is obvious that the

anti-chain based algorithm can often reduce the state space and improve the performance.

5.2 Evaluation for probabilistic systems

Now we evaluate the anti-chain based algorithm for refinement checking between MDP and LTS, which

is sometimes appropriate for verifying complex properties. The experiments are performed on two proba-

bilistic systems, i.e., a concurrent stack implementation (CSI) [29] and a multi-valued register simulation

system (MRS) [30]. For example, the MRS system is from distributed computing modeling that how

multiple readers and writers probabilistically initiate the registration of the resources. The property

is described by a composition of LTSs which specifies correct reading and writing behaviours, and the

refinement checking algorithm between the system and the property calculates the probability that the

MRS system can register the resources correctly. In Table 3, the number in the column “System” shows

the CSI and MRS and their sizes; the column “States” shows the total number of states in the product

of MDP and LTS. The column “States during iterations” shows that during the iterative calculation

process, how many states are involved in (the probability of a state may be calculated multiple times

during the iterations). In the case of CSI, the total number of states during iterations can be reduced by

the anti-chain based algorithm, and the verification time is shortened. We also show that in the case of



Wang T, et al. Sci China Inf Sci May 2018 Vol. 61 052105:14

MRS, the states involved in the iterations can only be reduced slightly, thus the overhead of anti-chain

operations decreases the benefit contributed by anti-chain. For this algorithm, if the property model is

deterministic and without any simulation relation (see the relations ≺, � in Section 2 and Lemma 4), the

anti-chain algorithm cannot work at all; if the degree of non-determinization is “low” and the simulation

relations are rare, the anti-chain algorithm cannot improve the performance a lot, e.g., the case MRS;

otherwise, the anti-chain algorithm can contribute to performance improvement.

6 Related work

In this part, we investigate the work related to anti-chain. We will give a brief description for them, as well

as the relevance to our work. Wulf et al. [12] first suggested the anti-chain algorithm for the universality

and language inclusion of non-deterministic finite automata (NFA) on finite words, and also showed how

anti-chain could be used to solve the emptiness problem for alternating finite automata. Their results

show that the anti-chain based approach largely increases the performance compared to the standard

methods. In their following work [31, 32], it also shows that the anti-chain based method can play an

important role for non-deterministic Büchi automata on infinite words in the universality and language

inclusion problems, as well as the emptiness problem for alternating Büchi automata. Later Abdulla et

al. [16] enhanced the anti-chain based method by using simulation relations on NFA with finite words. It

proves that the simulation relation can help to reduce a larger portion of the state space. Motivated by

the previous work, we incorporate the idea of anti-chain in the problems of refinement checking of timed

systems and probabilistic systems in this paper. We also remark the work based on anti-chain [16,33,34]

for solving other problems which are remotely related to our work. Anti-chain has played an important

role in raising the efficiency, according to their experimental results.

There are some important articles for the language inclusion problem of timed automata where both

the implementation and specification are timed automata, and some of them are related to anti-chain. If

we use timed automata as a specification language, the language inclusion checking may not terminate,

since the timed automata are not decidable in general [35]. Naturally, in order to avoid this problem, some

articles identify determinizable subclasses of timed automata with reduced expressiveness. For example,

strongly non-Zeno timed automata [10], timed automata with integer resets [36], timed automata with

one clock [11] and event-clock timed automata [37] have been proved to be determinizable. In particular,

for the language inclusion problem of one-clock timed automata which are decidable [11], the anti-chain is

used to ensure the termination of the algorithm. Although our method is not decidable, it can be applied

to arbitrary timed automata, and for many commonly used timed patterns, the algorithm can terminate.

Meanwhile, in our method, the anti-chain can also contribute to the termination of the algorithm.

Most of the previous work is based on region abstraction which is inefficient in practice. Compared

to region graph, zone graph is a more succinct representation for the verification and it is often used

in existing tools like Uppaal [38] and Kronos [39]. The zone based approach has been applied to the

universality problem of one-clock timed automata [9], where anti-chain is used for proving the decidability.

Our previous work [14] proposed a zone based construction for the language inclusion checking. In this

work, we simplify the construction of the state space by getting rid of infinite timed trees in [14], and

further show that anti-chain contributes to the termination of the algorithm, as well as the state space

reduction.

7 Conclusion and future work

In summary, we study two kinds of refinement checking in this work, that is, timed refinement checking

and probabilistic refinement checking. For the timed refinement checking with an untimed specification,

two kinds of anti-chains are utilized to reduce the state space. For the timed refinement checking with a

timed specification, we show that anti-chain can terminate the algorithm in certain situations although

the problem is undecidable. More importantly, in the verification of many real-life systems as shown in



Wang T, et al. Sci China Inf Sci May 2018 Vol. 61 052105:15

the evaluation, anti-chain improves the performance significantly. For probabilistic refinement checking

with an untimed specification, although the state space cannot be reduced, anti-chain can speed up the

iterative probability calculation.

As for the future work, we would like to explore the refinement relation between probabilistic systems,

which may also be motivated by the anti-chain approach. In addition, we will investigate the timed trace

refinement checking problem with the assumption of non-Zenoness to enhance the refinement checking.
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Appendix A Proofs for all the sections

Theorem 1. Given a timed automaton A and an LTS L, tracesZG(A) ⊆ traces(L) iff there is no reachable state (s, δ, ∅)

in ZGAL.

Proof. (if) Let |π| be the length of a trace π. If tracesZG(A) ( traces(L), there is a trace πA in tracesZG(A) and a trace

πL in traces(L), such that πL is a maximal prefix of πA satisfying (1) |πL| = |πA| − 1; (2) πA is not in traces(L). Let

(s, δ,W ) be the abstract configuration, where (s, δ) is a state in ZG(A) with which a run of ZG(A) exhibiting πL ends,

and W is a state in det(L) with which a run of det(L) exhibiting πL ends. Notice that W is not empty. Next, (s, δ) can

perform an event and transit to (s′, δ′) (exhibiting πA), but none of y in W can perform the same event because πA is not

in traces(L). Thus, an abstract configuration (s′, δ′, ∅) is reachable. As a result, if there is no reachable state (s, δ, ∅) in

ZGAL, tracesZG(A) ⊆ traces(L) holds.

(only-if) It is proved straightforwardly. If tracesZG(A) ⊆ traces(L), then any trace π performed by ZG(A) can also be

performed by L. Thus (s, δ, ∅) is not reachable.

Lemma 2. Let (s, δ,W ) and (s, δ′,W ′) be two abstract configurations in ZGAL. If (s, δ,W ) . (s, δ′,W ′), then a TATR-

witness state is reachable from (s, δ,W ) implies a TATR-witness state is reachable from (s, δ′,W ′).

Proof. By induction. (1) First, the base case is that (s, δ,W ) is a TATR-witness state (that is, W = ∅), because W ′ ⊆ W ,

W = ∅ and therefore (s, δ′,W ′) is also a TATR-witness state. (2) For the induction step, suppose that (s, δ,W ) . (s, δ′,W ′),

and a TATR-witness state is reachable from (s, δ,W ) implies a TATR-witness state is reachable from (s, δ′,W ′). Given

that ((s0, δ0,W0), e, (s, δ,W )) is a transition in ZGAL, and (s0, δ′0,W
′
0) satisfies δ0 ⊆ δ′0 and W ′

0 ⊆ W0 (i.e., (s0, δ0,W0) .

(s0, δ′0,W
′
0)). Then there is also a transition labelled with e from (s0, δ′0,W

′
0), since the first parts of (s0, δ0,W0) and

(s0, δ′0,W
′
0) are the same. Thus we can get ((s0, δ′0,W

′
0), e, (s, δ

′,W ′)) is a transition in ZGAL, where δ ⊆ δ′ and W ′ ⊆ W ,

because by the same transition and event from s0, W ′
0 ⊆ W0 implies W ′ ⊆ W , and δ0 ⊆ δ′0 implies δ ⊆ δ′. Therefore, the

induction step holds.

When exploring ZGAL, (s, δ,W ) is found and there exists a configuration (s, δ′,W ′) (which has been visited before)

satisfying (s, δ,W ) . (s, δ′,W ′), then we do not need to search from (s, δ,W ). The above induction will end until (s, δ,W )

and (s, δ′,W ′) have been reached. As a summary, the lemma holds.

Theorem 2. Algorithm 1 returns true iff tracesZG(A) ⊆ traces(L).

Proof. Because the zones are finite (with normalization), the number of product states is finite and the algorithm eventually

terminates. Let ps be an abstract configuration in ZGAL. Define Dist(ps) ∈ N ∪ {∞} as the length of the shortest TATR-

witness trace from ps (if a TATR-witness state is not reachable from ps, Dist(ps) = ∞). For a set of states S, if S = ∅,

Dist(S) = ∞, otherwise, Dist(S) = mins∈S Dist(s). We prove the correctness of the algorithm using the following invariants

which are quite similar to [16].

• If there exists a TATR-witness state ps in working ∪ anti, then ps is reachable from a state in Init.

• If there is a reachable TATR-witness state, then Dist(anti) > Dist(working).

Algorithm 1 returns false only if the set W is empty on line 8. In this case, (s, δ,W ) is a TATR-witness state, and

hence there exists a TATR-witness state in working ∪ anti. By the first invariant, A cannot refine L in trace semantics.

Algorithm 1 returns true only when working is empty, which implies that Dist(anti)>Dist(working) is not true. By the

second invariant, there is no reachable TATR-witness state and A refines L in trace semantics.
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Theorem 4. tmtraces(P) ⊆ tmtraces(Q) iff there is no reachable state (sp, ∅, δ) in Z(P ⊗Q) where δ is not false.

Proof. (if) For a timed trace tt = 〈(d1, e1), (d2, e2), . . . , (dn, en)〉, let |tt| = n be the length of tt. If tmtraces(P) (
tmtraces(Q), there is a timed trace ttP in tmtraces(P) and a timed trace ttQ in tmtraces(Q), such that ttQ is a maximal

prefix of ttP satisfying (1) |ttQ| = |ttP | − 1; (2) ttP is not in tmtraces(Q). Let ttP = 〈(d1, e1), (d2, e2), . . . , (dn−1, en−1),

(dn, en)〉, and ttQ = 〈(d1, e1), (d2, e2), . . . , (dn−1, en−1)〉. Let ((sp, vp),X) be the state in P ⊗ Q with which a concrete

run of P ⊗ Q exhibiting ttQ ends. Notice that X must not be empty. Next, (sp, vp) can perform a timed event (dn, en),

but no x in X can perform the same timed event. Because zone abstraction preserves reachability, the concrete run is

abstracted by an abstract run in Z(P⊗Q), and there exists an abstract state (sp,X′, δ) in Z(P⊗Q) such that (sp,X′, v) is

a concrete configuration of (sp, X′, δ) and it is the same as ((sp, vp),X). With (sp,X′, v), since (dn, en) can be performed

by P, v + dn satisfies the guard g of a transition labeled with en from sp. Since Q cannot perform (d, en), v + dn must

satisfy negCons. Therefore δ ∧ g∧ negCons cannot be false, and hence there is a successor (s′p, X
′′, δ′) such that δ′ is not

false. Because negCons is the conjunction of negations of all en-transitions from any state in X′, X′′ is ∅. Thus, (s′p, ∅, δ
′)

where δ′ is not false is reachable. As a result, if there is no reachable state (sp, ∅, δ) in Z(P ⊗ Q) where δ is not false,

tmtraces(P) ⊆ tmtraces(Q) holds.

(only-if) It is proved straightforwardly. If tmtraces(P) ⊆ tmtraces(Q), then any timed trace performed by P can also

be performed by Q. Thus (sp, ∅, δ) is not reachable.

Lemma 3. Let (sp, Xq, δ) and (sp, X′
q, δ

′) be two abstract configurations in Z(P ⊗Q). If (sp,X′
q, δ

′) 4 (sp,Xq , δ), then

a TTR-witness state is reachable from (sp, X′
q, δ

′) implies a TTR-witness state is reachable from (sp,Xq, δ).

Proof. By induction. (1) First, the base case is that if (sp,X′
q , δ

′) is a TTR-witness state (that is, X′
q = ∅), because

(sp, X′
q, δ

′) 4 (sp,Xq , δ) (and Xq ⊆m X′
q), Xq = ∅ and (sp, Xq, δ) is also a TTR-witness state. (2) For the induction step,

we show that if (s,X0, δ0) 4 (s,X1, δ1), then for all e, such that ((s,X0, δ0), e, (s′,X′
0, δ

′
0)) is a transition in Z(P ⊗ Q),

there exists (s′,X′
1, δ

′
1) such that ((s,X1, δ1), e, (s′, X′

1, δ
′
1)) is a transition in Z(P ⊗Q) and (s′,X′

0, δ
′
0) 4 (s′,X′

1, δ
′
1). For

simplicity of the proof, a state (s, Cq⊕) in Xq is written as (s, A).

Let (s,X0, v0) ∈ (s,X0, δ0) be a concrete configuration. Since (s,X0, δ0) 4 (s,X1, δ1) by definition, there is a concrete

configuration (s,X1, v1) ∈ (s,X1, δ1) such that v0[maps(m)] = m(v1) for some m. Let ((s, v0[Cp]), (d, e), (s′, v′0)) be

a concrete transition in P. For each state (s1, A1) in X1 such that (((s1, A1), v1[A1]), (d, e), ((s′1, A
′
1), v

′
1)) is a concrete

transition of Q, there is a corresponding state (s′0, A
′
0) ∈ X0 such that (((s0, A0), v0[A0]), (d, e), ((s′0, A

′
0), v

′
0)) is a transition

of Q where s0 = s1, s′0 = s′1, and v′0 and v′1 (A′
0 and A′

1, respectively) are equivalent up to clock renaming. Since (s,X0, v0)

is arbitrary, X′
1 ⊆m X′

0 holds for some mapping m. Since δ0 ⊆m δ1 for some m, δ′0 ⊆m δ′1 holds for some m and thus

δ′1 is not empty if δ′0 is not. Therefore, we conclude that if ((s,X0, δ0), e, (s′,X′
0, δ

′
0)) is a transition in Z(P ⊗ Q), then

((s1,X1, δ1), e, (s′1,X
′
1, δ

′
1)) is a transition in Z(P ⊗Q) and (s′0,X

′
0, δ

′
0) 4 (s′1,X

′
1, δ

′
1). Thus, the induction step holds.

When exploring Z(P⊗Q), (sp, X′
q, δ

′) is found and there exists a configuration (sp,Xq , δ) (which has been visited before)

satisfying (sp,X′
q , δ

′) 4 (sp,Xq, δ), then we don not need to search from (sp, X′
q, δ

′). The above induction will end until

(sp, X′
q, δ

′) and (sp,Xq , δ) have been reached. As a summary, the lemma holds.

Theorem 5. Algorithm 2 returns true iff tmtraces(P) ⊆ tmtraces(Q).

Proof. Let ps be an abstract configuration in Z(P ⊗ Q). We prove the correctness of the algorithm using the following

invariants which are quite similar to Theorem 2.

• If there exists a TTR-witness state ps in working ∪ anti, then ps is reachable from a state in Init.

• If there is a reachable TTR-witness state, then Dist(anti) > Dist(working).

Lemma 4. Given an MDP M, an LTS L. Let D = M×det(L), and the set Gt containing all the PR-witness states of D.

For any product states (s1, N1) and (s2, N2) of D s.t. (s2, N2) � (s1, N1), Prmax(D, (s1, N1), Gt) > Prmax(D, (s2, N2), Gt)

and Prmin(D, (s1, N1), Gt) > Prmin(D, (s2, N2), Gt).

Proof. By induction. (1) First, the base case is that (s2, N2) is in Gt. Since for any n1 ∈ N1, there is n2 ∈ N2 where

n1 ≺ n2, then (s1, N1) should be in Gt. So the lemma holds since the maximal/minimal reachability probability of a state

in Gt is always 1.

(2) For the induction step, suppose that (s′1, N
′
1) and (s′2, N

′
2) can satisfy the lemma above, i.e., for any (s′1, N

′
1) such

that (s′2, N
′
2) � (s′1, N

′
1), the lemma holds. Given a state (s2, N2) and any state (s1, N1) such that (s2, N2) � (s1, N1), if

there is a distribution µ2 from (s2, N2), there must exist a distribution µ1 from (s1, N1) by Definition 10 such that: for

any µ2((s′2, N
′
2)) > 0, there exists (s′1, N

′
1) such that µ2((s′2, N

′
2)) = µ1((s′1, N

′
1)), and (s′2, N

′
2) � (s′1, N

′
1). By induction

hypothesis, we have Prmax(D, (s′1, N
′
1), Gt) > Prmax(D, (s′2, N

′
2), Gt) and Prmin(D, (s′1, N

′
1), Gt) > Prmin(D, (s′2, N

′
2), Gt).

Thus Prmax(D, (s1, N1), Gt) > Prmax(D, (s2, N2), Gt) and Prmin(D, (s1, N1), Gt) > Prmin(D, (s2, N2), Gt) hold. Therefore

the lemma holds.

When exploring D, (s2, N2) is found and there exists a configuration (s1, N1) (which has been visited before) satisfying

(s2, N2) � (s1, N1), then (s2, N2) is added into (s1, N1).ac. The above induction will end until (s1, N1) and (s2, N2) have

been reached. As a summary, the lemma holds.
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