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Abstract Characterizing and understanding the structure and the evolution of networks is an important

problem for many different fields. While in the real-world networks, especially the spatial networks, the

influence from one node to another tends to vary over both space and time due to the different space

distances and propagation speeds between nodes. Thus the time lag plays an essential role in interpreting

the temporal causal dependency among nodes and also brings a big challenge in network structure learning.

However most of the previous researches aiming to learn the dynamic network structure only treat the time lag

as a predefined constant, which may miss important information or include noisy information if the time lag

is set too small or too large. In this paper, we propose a dynamic Bayesian model with adaptive lags (DBAL)

which simultaneously integrates two usually separate tasks, i.e., learning the dynamic dependency network

structure and estimating time lags, within one unified framework. Specifically, we propose a novel weight

kernel approach for time series segmenting and sampling via leveraging samples from adjacent segments to

avoid the sample scarcity. Besides, an effective Bayesian scheme cooperated with reversible jump Markov

chain Monte Carlo (RJMCMC) and expectation propagation (EP) algorithm is proposed for parameter

inference. Extensive empirical evaluations are conducted on both synthetic and two real-world datasets,

and the results demonstrate that our proposed model is superior to the traditional methods in learning the

network structure and the temporal dependency.
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1 Introduction

In real-life networks, the network structure and temporal dependency are not invariant but tend to

vary over both time and space. Recently, dynamic dependency network structure learning has attracted

increasing attentions in various domains, such as gene regulatory network discovery [1], social network

analysis [2], and climate data analysis [3]. Mining the temporal dependency is one of the fundamental

tasks in network structure learning. As the key feature to indicate the exact temporal dependency

relationship, time lag plays an essential role in characterizing and understanding dynamic dependency

network structure and evolution [4].

Taking the spatial network as an example [5], the time lag problem is much significant and inevitable

due to the different space distances and propagation speeds between nodes. For example, (1) in the
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highway traffic network, the traffic flow of one destination station in current time interval is constructed

by vehicles from related upstream origin stations several time intervals ago. Thus the time lags are

related with the vehicle speeds and the distances from origin stations to destination stations. (2) In

the air quality monitoring network, the concentration of pollutant in one monitoring station usually has

temporal dependency on the concentrations of pollutant in surrounding monitoring stations. The time

lag always varies over time and is influenced by various factors, like spatial distance, weather, traffic

accident, etc. Therefore, it is necessary to learn the time lag adaptively in the network structure learning

process instead of treating it as a predefined constant.

In recent years, there have been a plenty of methods for dynamic network structure learning. Some

researches focus on the dependency relationship of every time point in time series, such as [6–8]. While

some researches regard that the dependency network structures vary by time intervals, such as [1, 9–11].

As aforementioned, most of the existing studies do not take the dynamic time lag into account and only

simply treat the time lag as a predefined constant. There are some researches which focus on learning

the lags from temporal data. For example, ref. [4] proposes to estimate the maximum lag existing in

the temporal variables based on order statistics. A maximum likelihood (ML) estimator is developed for

determining time delay in [12]. However, these researches only focus on inferring the lag from temporal

data while the relationships are not considered at the same time.

Moreover, we identify two major challenges in learning dynamic network structures with simultaneous

estimation of dynamic time lags: (i) How fast the dynamic structures vary by time? If we learn a

structure for each single time point, the results would be redundant and the learning process would be

computationally expensive. However, if the time series are first segmented and then one relationship is

learned to each segment, it would suffer the scarcity of samples when the segment is short [8]. (ii) How to

learn the dynamic time lags which vary with the network structures simultaneously during the structure

estimation process? The uncertainty of time lags increases the difficulty of the whole learning process.

In this paper, we propose a dynamic Bayesian model with adaptive lags (DBAL) to learn the dynamic

dependency network structure and the optimal time lags simultaneously in one unified framework. We

extend the non-homogeneous dynamic Bayesian model where changepoints are used to segment the time

series. Instead of setting the minimum length of interval, we assume the network structures vary gradually

and propose a novel kernel reweighted probabilistic approach by leveraging the samples from adjacent

segments to avoid sample scarcity within narrow segments. When we estimate the dependency network

structures, we regard lags as variables instead of parameters set artificially. In addition, the dependency

network structures are reflected by the regression coefficients which we take as the spike and slab priors.

In parameter inference part, an effective Bayesian scheme incorporating the reversible jump Markov chain

Monte Carlo (RJMCMC) [13] and Expectation Propagation algorithm (EP) [14] is proposed in order to

infer the parameters of the model, where the dimension of the parameters is unknown and the posterior

probability is intractable to sample.

In summary, the contributions of our work are described as follows:

• In this paper, a novel dynamic Bayesian model is proposed which integrates both the dynamic

network structure learning and dynamic time lag estimation simultaneously in one unified framework.

• To avoid the sample scarcity, we propose a novel weight kernel approach for time series segmenting

and sampling based on the assumption that the network structure of adjacent segments are similar.

• In order to infer the parameters in our model, where the dimension of parameters is unknown

and some posterior probabilities are intractable to sample, we propose an effective Bayesian scheme

incorporating the RJMCMC and EP algorithm.

• We evaluate our method on a synthetic dataset and two real world datasets. Experimental results

show that we not only can estimate lags, but also obtain higher accuracies of learning network structures.

The rest of the paper is organized as follows: we first review the algorithms to learn dynamic network

structures in Section 2; The problem definition is given in Section 3. Then we describe the details of

our proposed model in Section 4 and the parameter estimation method in Section 5. The experimental

results on synthetic dataset and real-world datasets are present in Section 6. Finally, we summarize the

paper and conclude with future work in Section 7.
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2 Related work

Serious attempts to learn dynamic networks whose topologies vary by time started in 2005 [10]. The

research of dynamic relationships/networks discovery for time series can be categorized into two types:

structures varying by time point and relationships varying by segment.

The research in the first category is based on that the structure of the network change at each time

point. In order to make a further analysis on time series data, dynamic graph structure learning has been

provided [15, 16], which reveals the dependencies between variables at the same time stamp. However,

most of these algorithms only use the data from the same time stamp to learn the dependencies. Ref. [7]

develops a dynamic temporal graphical model based on hidden Markov model regression and lasso-type

algorithm, while the number of states has to be predefined. Ref. [8] presents a kernel reweighted l1-

regularized auto-regressive procedure to estimate the network structure for each time stamp.

In the second category, the network structure keeps stable in a period. Ref. [6] employs a dynamic

linear model with Markov switching for estimating time-dependent gene network structures. However

this approach assumes that there is a fixed (user-specified) number of distinct networks or phases, and

the switching between phases is modelled via a stochastic transition matrix that requires an estimation

of many parameters. Some researches relax the homogeneity assumption in dynamic Bayesian networks

using multiple changepoints, which segment the time series by changepoints firstly, and then fit an

invariant structure to each segment [9, 11]. However, these methods is not suitable for networks whose

time lag can not be ignored.

To extend conventional methods, which only aim to infer the dynamic network structure, our work

builds on recent research in combining dynamic Bayesian networks with adaptive lag estimation. Different

from the previous approaches [1,17] which only learn the network structure by feature selection, we also

consider the sample scarcity when we infer the network structure of each segment.

Our work is also related to some work which focus on learning the lags from temporal data. For

example, the work in [4] proposes to estimate the maximum lag existing among the temporal variables for

grouped graphical Granger models; a maximum likelihood estimator has been developed for determining

the time delay in correlation analysis [12]; a similar work that focuses on estimating the time lag of stream

correlation discovery is also proposed in [18]. However, the correlation based [12,18] considers a different

problem, since the correlation essentially differs from the dependency relations. That is, a variable A

correlates to another variable B is equal to B correlates A, but in dependency modeling, this relationship

is not invertible. Moreover, these studies only focus on inferring the lag from temporal data while they

do not aim to infer the dependency relationship at the same time.

3 Problem definition

Supposing the network contains d observed nodes X1, . . . , Xd, we aim to discovery how the network

structure varies by time. In this paper, we assume that the network structures remain unchanged in a

period of time and the lags of different variables probably are distinct [17].

For example, in Figure 1, it exists three types of network structures. Here we just take X2 as an

example, in the first segment, both X1 and X3 are influential factors, and the lag is 1 and 2 respectively.

However, in the second segment, only X1 is the influential factor, and the lag is 2.

Given a N -by-d data matrix D, where the columns correspond to the d variables and the rows cor-

respond to N temporal observations, let yi,t denote the target variable selected from X associated with

node i at the time point t ∈ 1, . . . , N , and let Xi,t denote the variable Xi at time t. In our model, the

time series is segmented by k changepoints ξ. Table 1 lists the notations to be used extensively in the

rest of this paper.

We introduce a lag tensor L, where L = L[·] = (L1, . . . ,Ld) is a sequence of (d− 1)× (k+1) matrices

and Li
j,s means the lag of Xj in the s-th segment when Xi is the target variable. Accordingly, we define

the coefficient tensor β in C(d−1)×(k+1)×d where each (d − 1)× (k + 1) slice βi is the coefficient matrix
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Figure 1 Illustration of the dynamic dependency network with varying lags.

Table 1 Notation explanation

Notation Description

X The observed variables

y The target variable selected from X

d The dimension of all the observed variables

N The length of observations

k The number of changepoints

ξ The vector of changepoints

β The tensor of regression coefficients

L The tensor of lags

s The index of segment

of i-th target variable and βi
j,s means the coefficient of Xj in the s-th segment when Xi is the target

variable.

we follow [1] and apply a linear Gaussian regression model to each target variable:

yi,t =

d−1
∑

j=1

Xj,t−Li
j,s(t)

βi
j,s(t) + εi,t, (1)

where s(t) is the segment index which time t belongs to, and εi,t is the noise, which is Gaussian distributed

with zero mean and variance σ2.

The optimal lags and structures are obtained as follows:

argmin
L,β,k

N
∑

t=1

k+1
∑

s=1

d
∑

i=1

∥

∥

∥

∥

∥

∥

yi,t −

d−1
∑

j=1

Xj,t−Li
j,s(t)

βi
j,s(t)

∥

∥

∥

∥

∥

∥

2

2

+ λ
∥

∥βi
:,s

∥

∥

1
, (2)

where
∥

∥βi
:,s

∥

∥

1
is the L1-penalty term [19].

4 Proposed model

In this paper, we propose a method which learns the dynamic network structures with lag estimation. In

the proposed approach, we decompose the problem of estimating the time-varying network structures into

two procedures along different axes. The first procedure is to search the optimal changepoints along the

time axis; and the second one is to estimate the network structures and the adaptive lags simultaneously

along the axis of variable set. The benefit of the decomposition is to reduce the estimation problem into

a set of atomic optimizations.

Given the changepoints, if the number of samples in a segment is very small such as one or two,

and we follow the naive assumption that each segment is a completely different network, the task of

jointly estimating regression coefficients in the small segment by maximizing the log-likelihood may be

statistically impossible because the estimator would suffer from high variance due to sample scarcity.

Therefore, we make a statistically tractable yet realistic assumption that the network structures are vary
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Figure 2 Plate notation for the DBAL model. Blank circles are observations, shaded circles are latent variables, and the

variables in squares are model parameters.

smoothly across time; and hence temporally adjacent networks are likely to share common edges than

temporally distal networks [8].

To avoid the sample scarcity, we give every segment s a weight and use all the weighted segments as

the sample set to learn the network structure as well as adaptive lags for one segment. To uncover the

network structures, we add a sparse prior for β, instead of sampling network topology structure like [1],

which can reduce the sampling times. Figure 2 shows the plate notation for our model.

4.1 Weighted segment

Firstly, in order to reinforce sparsity of the network and following multiple changepoint approaches, we

assume that the number of changepoints k is sampled from a truncated poisson distribution with mean

µ and maximum kmax = N − 1:

Pr(k |µ ) =
e−µµk

k!
1{k<kmax}. (3)

Here µ can be interpreted as the expected number of changepoints. Following [9], µ is drawn according

to a Gamma distribution µ ∼ Ga(a, b) where the shape parameter a and the scale parameter b should be

chosen appropriately so that the prior probability decreases when the numbers of changepoints increase.

Given k changepoints, we assume that the changepoint positions vector ξ = {ξ1, . . . , ξk} takes only

uniformly distributed integer values:

Pr(ξ |k ) = 1

/

(

N − 1

k

)

. (4)

It is a reasonable assumption that the data in the same segment share the same network structure.

Hence, we need to learn the network struture of each segment instead of each data. However, only using

the data from one segment may lead to the scarcity of the training samples [8]. In this paper, we assume

that the network structures of temporally adjacent segments are more similar than those of segments

temporally far away [20]. According to this, we use the data from all the segments with different weights

as the training set to learn the network structure and adaptive lags for one segment.

Given the target variable yi, when we estimate the network structure of the s1-th segment, the weighting

of all the observations in the s2-th segment is defined as follows:

wi
s1,s2 =

Kh(tcs2 − tcs1)
∑k+1

s2=1 Kh(tcs2 − tcs1)
, (5)

where Kh(·) is a symmetric nonnegative kernel function and h is the kernel bandwidth. tcs2 and tcs1 are

the temporal center points of the s2-th segment and the s1-th segment, respectively. Here we use the

distance between the temporal center points of two segments to represent the distance between these two
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segments. The smaller the distance between the segment s1 and the target segment s2, the larger the

weight of segment s2. In this paper, we use a Gaussian RBF kernel:

Kh(t) = exp

(

−
t2

h

)

. (6)

Different time points at the same segment are equally treated by assigning them the same weight in the

proposed method. Note that multiple time points at the same period are considered as i.i.d. observations

and can be trivially handled by assigning them the same weight. Then when we estimate the network

structure of i-th target variable yi in the s-th segment, the likelihood becomes as follows:

Pr(yi
∣

∣βi
:,s ,X, Li

:,s, σ0) =

N
∏

t=1

N



yi,t

∣

∣

∣

∣

d−1
∑

j=1

Xj,t−Li
j,s
βi
j,s, σ

2
0





wi
s,s(t)

, (7)

where the variance of additive Gaussian noise is σ2
0 . Additionally, we define ξ0 = 0 and ξk+1 = N .

4.2 Learning network structure with lags

The proposed method not only uncovers the dynamic network structures, but also learns the correspond-

ing lags for each segment. We assume that the maximum time delay of the effect period for all segments

is T , then the value of the Li
j,s is within the interval [1, T ]. Here we assume that the hyper-parameters

Li
j,s are sampled from uniform distributions:

Li
j,s ∼ uniform(1, T ). (8)

In order to control the sparsity of regression coefficients β, we use the spike and slab prior [21, 22]

which is the prior that puts a positive probability mass on values equal to zero for the model coefficients

of each variable. Because spike-and-slab priors can be expressed in terms of a set of latent binary

variables that specify whether each coefficient is assigned to the spike or to the slab. The expected

value of these latent variables under the posterior distribution yields an estimate of the probabilities

that the corresponding model coefficients are actually different from zero. These estimates can be very

useful for identifying relevant features. Besides, spike-and-slab priors have a closed-form convolution with

the Gaussian distribution. This is an advantage when we use approximate inference methods based on

Gaussian approximations [23].

We introduce a tensor Z where Z is a sequence of binary latent matrix Z1, . . . ,Z(d−1). Each Zi
j,s

indicates whether βi
j,s is zero (Zi

j,s=0) or different from zero (Zi
j,s=1). When Z is known, the prior for

β is defined as

Pr(β |Z ) =

d
∏

i=1

d−1
∏

j=1

k+1
∏

s=1

[

Zi
j,sN(βi

j,s |0, ν0 ) + (1− Zi
j,s)δ(β

i
j,s)
]

, (9)

where δ(·) is a Dirac delta function, also known as a point probability mass centered at 0, N(·|0, v0) is a

Gaussian density with zero mean and a specific variance ν0 (the slab).

Here the value of ν0 controls the shrinkage of the coefficients which are different from zero. If ν0 is

large, the coefficients of the groups which are different from zero are barely regularized. Conversely, if

ν0 is small, these coefficients are strongly shrunk towards zero. The parameter Z is sampled from a

multivariate Bernoulli distribution:

Pr(Z) = Bern(Z |p ), (10)

where p is a sequence of d probability matrixs, and each pij,s is the prior probability that βi
j,s is different

from zero.

From the hierarchical structure of the overall parameter space, we obtain the joint probability distri-

bution over all parameters Θ = (k, ξ,L,β,Z) as follows:

Pr(Θ|X,y, µ) ∝ p(k|µ)p(ξ|k)p(β|Z)p(Z)p(L)p(y|X,β, σ,L). (11)
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5 Parameter estimation

Since the overall parameter space of the proposed time-varying network structure model is the union

of the parameter spaces of all segments delimited by k changepoints, the dimension of parameters for

the model is unknown and can vary substantially. Moreover, the posterior probability is intractable to

sample. Hence, in order to simultaneously consider all possible combinations of changepoints and network

structures within the different segments, we propose a novel algorithm which incorporates the RJMCMC

procedure [13] and the EP method [14]. RJMCMC solves the difficulty of comparing models with differing

dimensionality. We can choose the “plausible” dimensionality and then get a optimal model by applying

it in MCMC computation [24] and the intractable posterior probabilities can be approximated by easy

ones through EP [14].

We want to infer time-varying network model, which belongs to the overall parameter space that is the

union of the parameter spaces of all phases delimited by k changepoints. Adding or removing a change-

point results in a change in the dimension of the system’s state-space: for each additional changepoint

a new network structure has to be estimated, and for each deleted changepoint the results previously

obtained for the two distinct phases have to be reconciled. Thus, the dimension of the model is unknown

and can vary substantially. In order to infer the posterior distribution Pr(k, ξ,L,β,Z|X,y) given the

observed data X,y over all of the system’s parameters, we used a Reversible Jump Markov Chain Monte

Carlo (RJMCMC) procedure. The principle of RJMCMC lies in constructing a reversible Markov chain

sampler that can jump between parameter subspaces of different dimensions; thus allowing the generation

of an ergodic Markov chain whose equilibrium distribution is the desired posterior distribution [13, 25].

In order to traverse the parameter space of unknown dimension, we propose here four different update

moves: birth of a new changepoint, death of an existing changepoint, shift of a changepoint to a different

time-point, and update of the relationships within the segments. These moves occur with probabilities

bk, dk, qk, tk respectively, depending only on the current number of changepoints k and satisfying bk +

dk + qk + tk = 1.

A changepoint birth or death acceptance is performed without generating the regression model pa-

rameters for the modified segment. When we estimate the structure of i-th target variable in the s-th

segment, the integration over βi
:,s yields,

Pr(k, ξ, Zi
j,s,X, yi, L

i
j,s) ∝

µk(N − 1− k)!

(N − 1)!

d
∏

j=1

Bern(Zi
j,s|p

i
j,s)

×
[

Zi
j,sN(0

∣

∣mi
s,j , v0 + vis,j ) + (1− Zi

j,s)N(0|mi
s,j, v

i
s,j)
]

,

(12)

where

v−1 = 1
σ2
0
(X ′)TX ′, v−1mi

s =
1
σ2
0
(X ′)Ty′, vis,: = diag(v),

(yit)
′ =

√

wi
s,s(t)y

i
t, X ′

:,t =
[

X1,t−Li
1,s(t)

, . . . , Xp−1,t−Li
p−1,s(t)

]
√

wi
s,s(t).

(13)

The RJMCMC acceptance probability for a changepoint change (‘birth’, ‘death’, ‘shift’) can be written

as

A = min(1, r),

where r = (posterior distribution ratio)× (proposal ratio)× (Jacobian). The move is accepted with prob-

ability min(1, r).

We use Prjoint to represent the joint distribution of parameters shown in (12) and Pr∗joint denotes the

updated joint distribution. For different moves, the probability r is given as follows respectively:

rbirth =
Pr∗joint(N − k − 1)(d− 1)!

Prjointλc!(d− c)!
, (14)

rdeath =
Pr∗jointλ(d− 1)!

Prjoint(N − k)c!(d− c)!
, (15)



Du S Z, et al. Sci China Inf Sci May 2018 Vol. 61 052101:8

rshift =
Pr∗joint
Prjoint

, (16)

where c is the number of dependent variables in the new segment. We omit the tedious derivations and

only present the process of the entire algorithm, as shown in Algorithm 1. The Algorithm 2 is the update

function used in Algorithm 1.

Algorithm 1 Procedure for estimating dynamic dependency network structures with estimation of lags

Input: data X and y, the maximum number of changepoints kmax

Output: k, ξ,βs,L,Z

1: Initialization: k, ξ

2: Iteration i: i = 1

3: sample µ0 ∼ µ[0, 1]

4: if u0 6 bk then

5: consider changepoint birth

Propose a new changepoint ξ∗|ξ ∼ u{1,...,N}\{ξ}

Update state (current state, Eq. (14))

6: else if u0 6 bk + dk then

7: consider changepoint death

Choose a changepoint ξ∗ ∈ ξ to be deleted

Update state (current state, Eq. (15))

8: else if u0 6 bk + dk + qk then

9: consider changepoint shift

Randomly choose a changepoint ξ ∈ ξ shift to a new changepoint ξ∗|ξ ∼ u{1,...,N}\{ξ}

Update state (current state, Eq. (16))

10: else

11: Update the network structure of every segment

12: end if

13: i← i+ 1 and go to 4

Algorithm 2 Function update state (current state, Eq. (e))

Input: Current state, Eq. (e)

Output: New state

1: Evaluate acceptance probability A according to Eq. (e)

2: Sample u ∼ U[0,1]

3: if u 6 A then

4: Return the updated state

5: else

6: Return the current state

7: end if

Update the network structure of every segment. Computing the βi
:,s and Zi

:,s requires sampling

them from posterior probability. Due to the intractability of posterior probability of βi
:,s and Zi

:,s as

shown in (17) and (18):

Pr(βi
:,s|Z,L, ξ, k) ∝

N
∏

t=1

N



yi,t

∣

∣

∣

∣

d−1
∑

j=1

Xj,t−Li
j,s
βi
j,s, σ

2
0





wi
s,s(t)

×

d−1
∏

j=1

[

Zi
j,sN(βi

j,s |0, ν0 ) + (1 − Zi
j,s)δ(β

i
j,s)
]

,

(17)

Pr(Zi
:,s|β,L, ξ, k) ∝

d−1
∏

j=1

Bern(Zi
j,s|p

i
j,s)
[

Zi
j,sN(βi

j,s |0, ν0 ) + (1− Zi
j,s)δ(β

i
j,s)
]

, (18)

we apply the expectation propagation (EP) [14, 23] to perform the inference approximately.

The essence of the EP approach is to choose a variational distribution Q to approximate the actual joint

distribution, so that the Kullback-Leibler divergence (KL-divergence) between the probability Pr(β,Z)
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Table 2 Comparative methods

Method Network state Varying form Lag

SGL Static – T

TVDBN Dynamic Time point 1

DBN Static – 1

NHDBNs Dynamic Period 1

DBNL Dynamic Period 1

TLHL Static – Learned

and its approximation Q is minimized. Here we approximate the joint distribution of βi
:,s and Zi

:,s using

Q as follows:

Q(βi
:,s, Z

i
:,s) = N(βi

:,s|M,V )

d−1
∏

j=1

Bern(Zi
j,s|σ(Z

i
j,s)). (19)

The posterior probability of βi
:,s and Zi

:,s can be obtained approximately during the process of EP algo-

rithm. See [23] for details and an explicit expression.

As a convergence diagnostic we monitor the potential scale reduction factor (PSRF) [26], computed

from the within-chain and between-chain variances of marginal network structure posterior probabilities.

Values of PSRF6 1.1 are usually taken as indication of sufficient convergence.

6 Experiment

Experiment setup. To evaluate the effectiveness of our model, we conduct thorough experiments on

a synthetic dataset and real world datasets. Baselines used for comparison include static Granger lasso

(SGL) model [27], time-varying dynamic Bayesian networks (TVDBN) [8], traditional dynamic Bayesian

networks (DBN) [28,29], Non-homogeneous DBNs (NHDBN) [20], and the TLHL model [30]. To illustrate

the importance of time lags in learning dependency network structure, we also compare with our simplified

model which removes the time lag learning part (DBNL). Table 2 illustrates the model characteristic of

comparative methods.

In our model, the range T of time lags is 10, the shape parameter a = 1 and the scale parameter

b = 0.5. For TVDBN, we set the bandwidth parameter h of the Gaussian kernel according to the spacing

between two adjacent segments such that exp(− N2

49h ) = exp(−1). For the static granger lasso, we select

the penalty parameter λ using the cross validation. For the static models SGL and TLHL, we set the

maximum lag as 10. While for TVDBN and NHDBN, the time lags are set to 1 as applied in original

studies [8, 20].

6.1 Synthetic data

Data generation. We generate 10 networks with 7 nodes each (d = 7), and the length of observation

series of each node is 500 (N = 500). The simulation procedure involves three main steps. Firstly, to

simulate changes in the network structures, we set 3 changepoints (except the beginning and end) and

the localization vector is ξ = [200, 300, 400] in the first data set.

Then, for each segment s, we set the network structure and then generate the corresponding regression

coefficient matrix βs (d×d). We choose the regression weights such that βi
j,s = 0 if there is no edge from

j to i in the network structure for segment s, and βs
j,s ∼ N(0, 1) otherwise. Meanwhile, we randomly

generate the lag matrix L, where Ls
j,s ∼ U [1, 10].

Last, we generated time series of length l which is the length of segment s using a linear regression

model as shown in (1).

We added Gaussian observation noise εi ∼ N(0, 1) independently for each observation of node i.

Experimental results. We first compare the learned β∗ of network structure with the ground truth

network structure parameter β. As Figure 3 shows, Figure 3(a) contains four ground truth coefficient
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Figure 3 Comparison between the true β and learned β∗. (a) The ground truth β; (b) the learned β∗.
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Figure 4 The true lags L and the residual matrix ∆L between learned lags and the truth. (a) The ground truth L; (b)

the residual matrix ∆L between learned lags and the truth.

matrixes for the four segments and Figure 3(b) contains four learned coefficient matrixes. Each column

corresponds to one segment of the time series data. The true coefficient β varies over the segment. From

the comparison on each column, the learned coefficient matrixes are similar with the ground truth which

indicates that our model is able to learn the dynamic network structure.

Figure 4 compares the ground truth time lags with the time lags learned by our model. Figure 4(a)

contains four true time lag matrixes corresponding to each segment, while Figure 4(b) contains the

residual matrixes between the time lag matrixes we learned and the ground truth time lag matrixes. The

time lag varies by different variable dimensions and segments. Most elements in the residual matrixes

tend to be zero which means the time lags we learned are close to the ground truth.

We use the F1 score to evaluate the performance in terms of network structure learning, where the F1
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Figure 5 The F1 score of network structures learned by different methods and the log-likelihood of model. (a) The F1

score of network structures learned by different methods; (b) log-likelihood of Model.

score is computed as follows:
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F1 =
2 · Pre ·Rec

Pre + Rec
,

where β∗ denotes the regression coefficient matrix we learned, and β is the true coefficient matrix we set.

From Figure 5(a), we can see that the proposed DBAL model achieves the best performance among

the competing methods. Since the TLHL model learns the optimal time lag to get a smaller error, the

F1 score of it is higher than that of the other methods. As for the static model, such as SGL and TLHL,

they cannot capture the dynamic of networks although the F1 scores are not bad. Overall, the dynamic

models outperform the static models except the TVDBN. The TVDBN method which learns network

structures varying by time point with time lag set to 1 has the worst result, which is probably caused

by missing important information and over-fitting. The NHDBN model learning the dynamic network

structures varying by segments, which is consistent with our assumption, gains a competing result. The

DBNL model without time lag learning part from the proposed model has a significant decrease in F1

score, which indicates the importance of adaptive time lag estimation in network structure learning.

Besides, Figure 5(b) shows the log-likelihood varies over the iteration in network structure learning

process of our model. The log-likelihood tends to converge at about the 6000th iteration.

6.2 Air quality data

As described in Section 1, time lag is a key feature to interpret the dynamic network structure and

temporal dependency, especially for spatial networks. In this section, we evaluate our DBAL model on a

real-world air quality dataset collected from Beijing, China.

The air quality data is collected by 35 air quality monitoring stations, deployed in different sites in

Beijing. Each air quality monitoring station measured 7 factors (CO,NO2, SO2,O3, PM2.5, temperature

and humidity) hourly during the period 2013.12.03–2014.3.31. In total, there are 2856 samples in this

dataset. In this experiment, we only focus on the causal relationships of PM2.5 which attracts the most

attention in recent years, and take an pollution accident as an example to illustrate the causal relationship

of PM2.5.

The causal relationships of PM2.5. For the experimental setting, we select an atmospheric pollu-

tion incident in a row during February 2014 which was lasting about 15 days in Beijing. Figure 6(b) shows

the estimated causal relationship graphs of PM2.5 at a station which is a place in the center of Beijing,
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Figure 6 (Color online) The changepoints and the dynamic causal relationships of PM2.5. (a) The changepoints when

we estimate the dynamic causal relationships of PM2.5; (b) the dynamic causal relationships of PM2.5.

which also reveals that the graph structures are quite similar between every two adjacent segments. It

indicates that the causal relationships of air quality feature are relatively stable.

From the Figure 6(a), we can observe that concentration of PM2.5 is related to the locations of

changepoints, to some extent. Based on the causal relationships graphes in Figure 6(b), it is obvious

that the temperature and humidity are independent with PM2.5 all the time. However, the PM2.5 is

dependent with the other factors. In other words, these factors are highly correlated and should be

studied together by meteorologists. The organic carbon and elemental carbon were well correlated with

PM10, CO and SO2, which implies they have similar sources, repoted by the research [31]. In fact, there

is high possibility that, due to the chemistry gas from the chemistry factories which are located in the

south of Beijing. All of these facts demonstrates that our causal relationships is consistent with the truth.

The causal relationships of stations. In addition, we present some examples to illustrate the spatial

casual relationships, which can help us judge the spread direction of pollution. Figure 7(a) presents the

PM2.5 level of No.3 station in a curve and the changepoint using a dashed line. The changepoint learned

by DBAL model partitions the PM2.5 time series data into two segments. In the left segment, the air

condition is seriously polluted by PM2.5. While the right segment shows the normal air quality condition.

Figure 7(b) shows the corresponding wind speed level in a curve and the changepoint using a dashed

line. In both the left segment, the average wind speed level is low and the corresponding PM2.5 level is

high. While in the right segment, the corresponding relationship reverse. The average wind speed level

is high and the PM2.5 level is low. These segment results are quite interpretable according to domain

knowledge. The wind speed level is one of the main factors for air quality pollution.



Du S Z, et al. Sci China Inf Sci May 2018 Vol. 61 052101:13

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

Time (h) Time (h)

P
M

2
.5

0 50 100 150 200 250 300
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

W
in

d
 s

p
ee

d
 l

ev
el

(a) (b)

Figure 7 (Color online) The PM2.5 and and wind speed. (a) The PM2.5 and learned changepoint; (b) the wind speed

level of No.3 station.
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Figure 8 (Color online) The dependent stations and time lags of No.3 station. The learned dependency of No.3 station

in (a) the first segment and (b) the second segment.

Figure 8(a) and (b) present the dependent stations of No.3 station with time lags for the two identified

segments respectively. The triangle in the center denotes the target air quality monitoring station, i.e.,

the No.3 station. Each arrow origins from the dependent stations and points to the target station with a

time lag number. From Figure 8(a), we can see the dependent stations are in the near neighborhood with

a small learned time lag in the seriously polluted segment. While in Figure 8(b), the dependent stations

are distributed in the far distance and the corresponding time lags tend to be large. These results are

consistent with the fact that seriously polluted air condition tend to emerge in a windless day and good

air condition is usually along with a windy day. At the same time, the influence propagation speeds

from the dependent stations to the target station are small/large in a windless/windy day. Thus the

time lags in the first windless segment are small. While in the second windy segment, the time lags tend

to be large. These identified results are believed reasonable by domain experts, which demonstrate the

proposed DBAL model is effective in learning both the dynamic network structure and the time lags.

6.3 Highway traffic data

We evaluate our method on real-life highway traffic data. The variables in this traffic dataset are ob-

servations collected from sensors located on ramps in a highway traffic network. Each observation is

the vehicle count during 15 min interval. There are totally 236 traffic stations, which correspond to 236

ramps. In order to study the dynamic dependency relationships of traffic stations in the day, we use data

in one day with 96 samples as an example.

The dependency structures obtained by dependency learning methods are essentially important for

the analysis of the traffic systems, such as vehicle flow prediction, anomaly detection. Domain experts
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Figure 9 (Color online) The traffic flow and learned changepoint.

can obtain the accurate dependencies from the information of upstream stations, and predict the state

of downstream stations. The time lags we learned companying with the network structure learning offer

the time delay information between two stations.

Figure 9 presents the traffic flow in a curve and the changepoint using a dashed line. The changepoint

learned by DBAL model partitions the traffic time series data into two segments. It is obvious that

the traffic flow in the first segment is much smaller than that in the second segment. The location of

changepoint is 28, which corresponds to the 7:00 am. From Figure 9, we can conclude that there are

two types of dependency relationships of stations in one day, where one occurs from 0:00 to 7:00 and the

other one is in the rest time.

Figure 10(a) and (b) present the learned dependency between traffic stations in the two segments

respectively. As for the first segment, the target station which is pointed by arrows mainly depends on

the stations from the east with large time lags. In the second segment, the target station depends on

the stations in different directions. Comparing the time lags we learned in the two segments, the lags

in the first segment are larger than those in the second segment. These results can be explained by

the domain knowledge that the target station’s traffic flow from the midnight to early morning mainly

consists of long-distance trucks with low speeds, so the time lags tend to be much larger. While in other

time the traffic flow is composed by both short-distance vehicles and long-distance vehicles from various

directions. The learned results can be further applied for traffic flow prediction and traffic control. The

experiment on highway traffic network indicates that the time lag problem actually exists in real-world

traffic network and the proposed model is effective to learn both the dynamic network structure and time

lags simultaneously.

7 Conclusion

The time lag is a crucial and inevitable parameter in dynamic network structure learning and understand-

ing. In this paper, we propose a dynamic Bayesian model which simultaneously integrates two usually

sperate tasks, i.e., learning the dynamic network structure and estimating the time lags, within one uni-

fied framework. Then a novel weight kernel approach is proposed for time series segmenting and sampling

to avoid the sample scarcity based on the assumption that the network structure of adjacent segments

are similar. For parameter inference, we propose an effective Bayesian scheme cooperated with RJM-

CMC and EP algorithms. We evaluate our model on one synthetic dataset and two real-world datasets.

Experiment results demonstrate the effectiveness of the proposed model in learning the dynamic network

structure with the adaptive time lag estimation. Moreover, the results on air quality network and the
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Figure 10 (Color online) The learned dependency in highway traffic network. The learned dependency between traffic

ramps in (a) the first segment and (b) the second segment.

highway traffic network are believed reasonable and interpretable by domain experts. Our model is also

applicable to other networks with time lag characteristic. For future work, it is interesting to apply this

model in other networks.
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