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Appendix A Design of the anti-noise edge detection operator

Eight templates can be defined by a value function F = z(x, y), namely, the weight values are the sampling points of the

function. Hence, it is vital to construct the value function F , the function which satisfies that the center value is the biggest

and the value strictly decreases with the farther away from the center. The function F can be constructed by the analysis

of 25 sample values of 0◦ template. Due to symmetry, the other direction templates can be obtained by rotating the value

function F . For the convenience, the lower-left coordinate of the 0◦ template is assumed to be (0, 0), the upper-right

coordinate is (4, 4). The a, b, c and d of 0◦ template must statisfy the following conditions: (1) In the case of a smooth

signal, we expect each column to produce zero when difference in the direction of columns. Therefore, the values of middle

line are zero; (2) Distribution weight values according to the distance from the center, let the same distance have identical

weights; (3) In order to find local differences, we should subtract the signal ”in front” of the center pixel from the signal

”behind” it.

Due to the correlation between weight values, we set the weight value with maximum distance to 1. Finally, we obtain

the 0◦ template, as shown in the Figure A1 (a). The 90◦ template can be produced from the 0◦ template with a 90◦

rotation, as shown in Figure A1 (b). Following , the relationship between a, b, c and d are discussed. The idea is trying to

specify parameters of the filter in Figure A1, so that, the output of the operator is as faithful as possible to the true values

of α which correspond to the non-discretized image in Figure A2. Edges are characterized by their orientation, defined as:

α(i, j) = tan−1 ∆fy(i, j)

∆fx(i, j)

(a) (b)

Figure A1 The weight values of 0◦ and 90◦ template: (a)

0◦; (b)90◦ .
Figure A2 Zooming into a 5× 5 patch of an image around

pixel (i, j). (The orientation of the edge, is measured from the

horizontal axis anticlockwise.)

Consider a straight step edge in the scene, passing through the middle of a pixel [1]. Each pixel is assumed to be a tile of

size 1×1. Assume that the edge orientation θ is small enough so that the edge cuts lines AB and CD (see Figure A2). Also,
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Figure A3 Lagrangian interpolation curves.

assume that a dark region with grey value G1 on the left of the edge and a bright region with G2 on the right. Clearly, the

pixels in the central column have mixed values. If we assume SLMHP be the area of a polygon LMHP, then the gray-value

of the pixel that is formed by the polygon LIKP is f(i, j − 1):

f(i, j − 1) = G1(SLMPH ) +G2(SMIHK) = G1[
1

2
− (SMNHJ )] +G2[

1

2
+ (SMNHJ )] = G1(

1

2
− tan θ) +G2(

1

2
+ tan θ)

Similarly, we can also obtain: f(i, j + 1) = G2(
1
2
− tan θ) +G1(

1
2
+ tan θ); f(i, j − 2) = G1(

1
2
− 2 tan θ) +G2(

1
2
+ 2 tan θ);

f(i, j + 2) = G2(
1
2
− 2 tan θ) +G1(

1
2
+ 2 tan θ). On the base of the template, we introduce the notion of edge orientation.

The 90◦ template calculates ∆fx and the 0◦ template calculates ∆fy. The horizontal and vertical differences are obtained

by template convolution between two templates in Figure A1 and 5× 5 image patches in Figure A2.

tanα =
∆fy1

∆fx1
=

(4b + 2c)(G2 −G1) tan θ

(2 + 4a + 2d + b+ c)(G2 −G1)
=

4b+ 2c

2 + 4a + 2d + b+ c
tan θ (A1)

Similarly, we can calculate the orientation of the edge in a 3× 3 template:

tanα =
∆fy2

∆fx2
=

2c

2d+ c
tan θ (A2)

Note that the template parameters a, b, c and d in Figure A1 should be chosen appropriately, so that the calculated

orientation α of the edge is equal to the true orientation θ. For these reasons, we set coefficients of Eq. (A1) and Eq. (A2)

to 1. Therefore the weights shall meet the following relationships:
{

b = 4
3
a+ 2

3

c = 2d
(A3)

From Eq. (A3), we get only two independent variables a and d which are needed for discussion, at this time, the weights

of 0◦ template are as follows:

We hope that select the unknown parameters a and d to make a double quartic Lagrangian interpolation value function

F , which can generate the rest templates. No matter what the value of a and d, the two quartic polynomial curves are

constructed by the weights of lines 3 and 4 in Figure A3 (a)-(b). The function F is nonconvex for not strictly decreasing on

both sides of the maximum, while the peak point lies at the central location. Therefore, the convex interpolation function

F cannot be constructed from the 25 weights directly. To satisfy the convexity, the logarithms of 25 weights were taken

as input to get the ideal curves by adjusting the unknown parameters a and d (see Figure A3 (c)-(d)). The Lagrangian

interpolation function of lines 3 and 4 in 0◦ template as shown in Eq. (A4) and Eq. (A5) respectively:

f1(x) = l2(x) ln a+ l3(x) ln(
4

3
a+

2

3
) + l4(x) lna (A4)

f2(x) = l1(x) ln a+ l2(x) lnd+ l3(x) ln(2d) + l4(x) ln d+ l5(x) lna (A5)

where ln(x) is basic function defined in 0, 1, 2, 3, 4 independently, satisfying ln(n) = 1.

Since the convex function satisfies the necessary condition is that the first derivative at the zero point should greater

than zero, so we get the derivatives at the zero points to meet the condition.










f1
′(0) = ln a

64

3

( 4

3
a+ 2

3
)
12

> 0

f2
′(0) = ln a

−

28

3 d
28

3

212
> 0

(A6)

Experiments proved f ′(0) equal to one gives better results and the weights in template are integers. Thus, we obtain the

0◦ template defined by the value function F after rounded and the 8-directional templates are shown in Figure A4.

Appendix B Experimental Results

Appendix B.1 Parameter of search-window S setting

Our method needs to set some parameters, including the size of similarity-window and search-window to balance the effect

of denoising. The first stage uses the weighted version of all patches in a search-window to obtain the central patch. In order

*Corresponding author (email: czhang@sdu.edu.cn)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A4 8-directional templates: (a) 0◦ direction; (b) 22.5◦ direction; (c) 45◦ direction; (d) 67.5◦ direction; (e) 90◦

direction; (f) 112.5◦ direction; (g) 135◦ direction; (h) 157.5◦ direction.

to improve the denoising performance, we should search for similar patches as much as possible, so the search-window size

is also affected. Most of the nonlocal denoising methods such as [2, 3] select a fixed-size search-window, while [9] proposes

an adaptive search-window method based on the estimation of the error and the variance analysis. In this subsection, we

discuss how the size of search-window will affect the denoising performance based on image patches.

Figure B1 shows the relationship between the PSNR of our method under σ = 30 and the search-window size. Figure

B2 gives a comparison of the results of the Barbara’s scarf section with different search-window sizes. From Figure B1

and Figure B2, the performance of our method is improved with the increasement of the search-window size and then is

stabilized at about size 13× 13.

Figure B1 The relationship between de-

noising performance and the size of search-

window.

(a) (b) (c) (d)

Figure B2 Performances for different patch sizes when the method is applied

to the noisy Barbara image(σ = 30): (a) 7 × 7 patch (PSNR=27.63); (b) 9 ×

9 patch (PSNR=27.82); (c) 13 × 13 patch (PSNR=28.12); (d) 17 × 17 patch

(PSNR=28.03).

In general, with the increasing noise level, the search-window Si should become large for finding more similar pixels. We

empirically find that the best search-window size is 11×11, 13×13, 21×21 for σ = 20, 30, 50, respectively. In the following

experiments, the similarity-window is fixed at size 3× 3 and the search-windows in other comparison algorithms are 17× 17

while our algorithm use an adaptive search-window.

Appendix B.2 Denoising results

In this subsection, we use 7 standard images (Boat, Lena, Monarch, Barbara, C. man, House, Peppers) as test images. By

setting the AWGN standard deviation σ ∈ {20, 30, 50}, we validate the performance of the proposed scheme and compare

it with state-of-the-art NLM-based methods, including the spatial domain methods (NLM [2], PND [3], NLM-BDPCA [6],

NLM-SVB [7]) and hybrid methods (K-SVD [5], BM3D [4], SAIST [8]).

We first compare the denoised results with spatial domain methods. As shown in Figure B3, the visual quality of the

results by the proposed methods outperform those spatial domain methods. Figure B3 (a) illustrates the results for Boat

image, which is corrupted by the noise with σ = 50. It can be observed that NLM-BDPCA and our method are better in
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denoising and preserving details than other methods. However, our method gives the better denoising result than NLM-

BDPCA in keeping details, especially for the text portion of the hull. It maintains more details than the other methods,

without over-smoothing at the edge of the wings of Monarch in Figure B3 (b), which gains the denoised results much closer

to the ground truth image. To further validate the efficiency of our method in keeping the details, we apply the above six

algorithms to filter the Barbara image with delicate texture, and the results are shown in Figure B3 (c). The denoised

image by our method does not have obvious fuzzy phenomenon and distinctly maintains more image details, such as the

texture details on the pants and scarf. In contrast, the denoised images by the other four algorithms all have the ambiguous

phenomena. We also compare our denoising results with hybrid denoising methods, including K-SVD [5], BM3D [4] and

SAIST [8]. Figure B4 shows the examples for House and C. man image with noise level σ = 35. The visual quality by our

method outforms K-SVD and is similar to BM3D. In Figure B5, we further provide a comparison of some enlarged parts

of the denoising results for Boat, House and Peppers images based on different methods for σ = 25. It is obvious that our

method is more accurate in detail preservation, and closely to BM3D.

(a)

(b)

(c)

Figure B3 Enlarged parts of image denoising results by spatial domain methods: (a) denoising with noise level σ = 50;

(b) denoising with noise level σ = 30; (c) denoising with noise level σ = 50.

(a) (b) (c) (d) (e) (f)

Figure B4 C. man and House denoised by hybrid methods (K-SVD, BM3D) and our method: (a) K-SVD; (b) BM3D;

(c) ours; (d) K-SVD; (e) BM3D; (f) ours.

For quantitative comparisons, the PSNR and SSIM metrics are used as the evaluation criterion. Table B1 lists the

quantitative results of competing algorithms. The best denoising results on every piece of test images under the same noise

levels are bold to obvious comparison. From Table B1, we know the PSNR and SSIM of our proposed method are mainly
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(c) (d)

(e) (f)

Figure B5 Enlarged parts of image denoising results (from left to right: Boat, House and Peppers): (a) original image;

(b)noisy image; (c)denoised by K-SVD; (d) denoised by BM3D; (e)denoised by SAIST; and (f)denoised by our method.

Table B1 Denoising PSNR and SSIM results by different denoising methods

Image

Spatial Domain Spatial + Transform Domain

σ NLM PND NLM-BDPCA NLM-SVB K-SVD BM3D SAIST ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Boat

20 29.10 0.751 29.68 0.772 29.81 0.802 29.72 0.790 30.37 0.863 30.54 0.878 30.81 0.904 29.98 0.813

30 27.16 0.703 27.66 0.731 28.02 0.763 27.94 0.757 27.93 0.801 28.55 0.829 28.93 0.856 28.10 0.787

50 24.40 0.624 25.63 0.674 25.87 0.711 25.31 0.697 25.38 0.710 26.19 0.758 26.66 0.772 25.93 0.722

Lena

20 29.53 0.811 29.94 0.837 30.32 0.854 30.16 0.848 31.42 0.882 32.13 0.890 33.08 0.906 30.46 0.851

30 28.45 0.720 29.21 0.740 29.42 0.783 29.13 0.760 29.86 0.832 30.13 0.847 31.27 0.864 28.61 0.795

50 25.81 0.635 26.48 0.655 26.96 0.691 26.84 0.673 27.79 0.745 28.86 0.760 29.01 0.794 27.02 0.690

Barbara

20 28.82 0.817 29.22 0.842 29.39 0.870 29.34 0.864 30.71 0.878 31.74 0.923 32.10 0.941 29.51 0.872

30 27.26 0.762 27.75 0.790 28.03 0.822 27.94 0.818 28.36 0.815 29.77 0.872 30.09 0.902 28.12 0.833

50 24.54 0.630 25.14 0.663 25.34 0.687 25.21 0.664 25.47 0.698 27.17 0.828 27.54 0.845 25.50 0.688

C. man

20 27.94 0.830 28.47 0.816 28.69 0.823 28.72 0.830 29.97 0.863 30.43 0.873 30.50 0.896 28.88 0.839

30 25.36 0.725 27.79 0.755 28.05 0.771 27.91 0.758 27.95 0.813 28.64 0.836 28.96 0.861 28.26 0.771

50 23.35 0.687 24.36 0.716 25.08 0.723 25.31 0.726 25.35 0.739 26.09 0.781 26.19 0.799 25.72 0.734

House

20 30.46 0.783 32.03 0.791 32.32 0.832 32.45 0.845 33.02 0.859 33.85 0.871 33.90 0.896 32.76 0.855

30 29.62 0.76 30.30 0.782 30.65 0.805 30.38 0.776 30.82 0.829 32.23 0.847 32.39 0.872 30.53 0.792

50 26.40 0.675 28.10 0.703 28.56 0.722 28.52 0.731 27.95 0.763 29.37 0.803 30.20 0.829 28.70 0.766

Peppers

20 28.64 0.791 29.34 0.827 30.11 0.856 30.06 0.843 30.68 0.875 31.39 0.903 31.69 0.926 30.28 0.872

30 27.90 0.756 28.26 0.774 28.73 0.803 28.43 0.788 28.70 0.836 29.33 0.868 29.60 0.891 28.67 0.801

50 24.49 0.544 26.10 0.631 27.03 0.702 26.89 0.689 26.90 0.769 27.27 0.810 27.76 0.834 27.02 0.781

Monarch

20 27.97 0.867 28.64 0.889 28.85 0.895 28.75 0.891 29.82 0.902 30.39 0.921 30.81 0.945 29.00 0.902

30 26.64 0.741 28.01 0.783 28.42 0.837 28.38 0.826 28.80 0.867 29.38 0.887 29.68 0.903 28.51 0.845

50 22.89 0.696 23.66 0.751 24.05 0.779 24.15 0.782 25.18 0.795 25.64 0.824 25.89 0.846 25.39 0.799

higher than the other spatial domain methods. With the increasement of noise standard deviation, the denoising effect of

our method is much better. However, because the NLM-BDPCA can make full use of the spatial structure of the image, the

PSNR is higher than our algorithm when the image with high spatial structure similarity, e.g. House image and Peppers
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image. Besides, our method is also implemented for fair comparison with the methods K-SVD [5], BM3D [4], SAIST [8].

These methods, denoted as hybrid methods. From Table B1, we can also see that the superiority of our method exists in

some cases with respect to K-SVD. For example, for House image, the PSNR gains of our method over K-SVD is 0.75,

when σ = 50. Though the results of BM3D and SAIST are always the best, our method is close to BM3D when σ = 50 for

images Monarch and Peppers. Since the main goal of this paper is to offer an improvement to the spatial filters, we do not

claim to offer a better PSNR than hybrid method.
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