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Functional encryption (FE) [1,2] is a modern type
of encryption scheme that extends several previ-
ous notions and allows tremendous flexibility in
controlling and computing on encrypted data. FE
enables an authority to derive constrained decryp-
tion keys that are used by a user to obtain specific
functions of encrypted messages. Informally, the
authority generates a secret key skf for a function
f from a master secret key. Then, the user can
only learn f(x) from a ciphertext Enc(x) with skf
and reveal nothing else about x.

Inner product encryption (IPE) is an impor-
tant example for functional encryption in which
secret keys and ciphertexts are all related to vec-
tors: given the ciphertext of a vector x, the secret
key for a vector y allows computing 〈x,y〉 [3–8].
An inner product encryption scheme is function-
hiding if, in the secret keys and ciphertexts, there
is no knowledge leakage about x and y other
than the value 〈x,y〉. The existing function-
hiding inner product encryption schemes satisfied
the indistinguishability-based security notion, or
could be proved secure only under the simulation-
based security notion, which is much stronger than
the indistinguishability-based security notion, in
the generic group model.

Our contribution. In this article we con-
struct a simulation-based inner product encryp-
tion (SIPE) scheme in the standard model for the

first time. The scheme uses asymmetric bilinear
pairing groups of prime order under the symmetric
external Diffie-Hellman (SXDH) assumption. Our
scheme is function-hiding in the private-key set-
ting that handles an unbounded number of cipher-
text queries and adaptive key queries. To obtain
correctness of our scheme, it requires that inner
products are in a polynomial-size range, which is
consistent with [3–5]. As mentioned in [3–5], this
is a reasonable requirement for statistical appli-
cations because the computation, for instance the
average over a polynomial-size database, will natu-
rally be contained within a polynomial range. Our
SIPE scheme with a polynomial-size range can tol-
erate an unbounded number of ciphertext queries.
This means that the adversary is restricted to learn
something implied by a polynomial-size range. We
compare our scheme with related work in Table 1.

Preliminaries. We now introduce the definitions
that are used in the SIPE scheme.

Definition 1 (Inner product encryption). An
(private-key) IPE scheme is composed of the four
PPT algorithms defined below.

Setup(1λ, n) → (MSK, PP). The setup algo-
rithm uses the security parameter λ and the vector
length n to output a master secret key MSK and
public parameters PP.

Encrypt(MSK, PP, x) → CT. The encryption
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Table 1 Comparison with related work. Definitions of security belong to the class xx-yy-zzz where xx ∈ {One, Many}
denotes one or multiple challenge ciphertexts; yy ∈ {SEL, AD} denotes ciphertext queries are selectively or adaptively
chosen; zzz ∈ {IND, SIM} denotes indistinguishability or simulation-based security

Setting Security Assumption Model

ABDP15 [3] Public-key Many-SEL-IND DDH Standard

ALS16 [6] Public-key Many-AD-IND DDH, LWE, Paillier Standard

BJK15 [4] Private-key Many-AD-IND SXDH Standard

DDM16 [5] Private-key Many-AD-IND SXDH Standard

TAO16 [7] Private-key Many-AD-IND DLIN Standard

SKAHAD16 [8] Private-key Many-AD-SIM Generic group

This work Private-key Many-AD-SIM SXDH Standard

algorithm uses the master secret key MSK, the
public parameters PP, and a vector x ∈ Zn

q \ {0}
to output a ciphertext CT.

KeyGen(MSK, PP, y) → SK. The key genera-
tion algorithm uses the master secret keyMSK, the
public parameters PP, and a vector y ∈ Zn

q \ {0}
to output a secret key SK.

Decrypt(PP, CT, SK) → m ∈ Zq or ⊥. The
decryption algorithm uses the public parameters
PP, the ciphertext CT encrypting some vector x,
and a secret key SK corresponding to some vector
y to output either a value m ∈ Zq or the dedicated
symbol ⊥.

Correctness. An IPE scheme defined over a
message space Zn

q is correct if for all non-zero vec-
tors x,y ∈ Z

n
q \ {0}, we have

Pr




(MSK,PP)
$
←− Setup(1λ, n);

CT
$
←− Encrypt(MSK,PP,x);

SK
$
←− KeyGen(MSK,PP,y);

Decrypt(PP,CT, SK) = 〈x,y〉



=1−negl(λ).

Definition 2 (Asymmetric bilinear pairing
groups). (G1,G2, GT ) is a pairing group with a
bilinear pairing e : G1×G2 → GT of order q, where
q is a prime. g1 is the generator of G1, and g2 is
the generator of G2. The tuple (q,G1,G2, GT , e) is
used to define an asymmetric bilinear group with
the following properties.

(1) (Bilinearity) e(gs1, g
t
2) = e(g1, g2)

st for all
s, t ∈ Zq.

(2) (Non-degeneracy) e(g1, g2) has order q in
GT .

We use a description (q,G1,G2,GT , e) to denote
the output of the algorithm Gabpg(1

λ).

Definition 3 (SXDH). (q,G1,G2,GT , e) is a tu-
ple produced by Gabpg(1

λ). Consider the follow-
ing problem: given the distributions GSXDH

σ (1λ) =
((q,G1,G2,GT , e), g

µ
1 , g

ν
1 , Yσ) for σ ∈ {0, 1} such

that µ, ν
$
←− Zq, Y0 = g

µν
1 , and Y1 = g

µν+r
1 , where

r
$
←− Zq \ 0, output G

SXDH
0 if σ is 0 and output

GSXDH
1 otherwise. We refer to the problem as the

SXDH problem. For a PPT algorithm A, the ad-
vantage of A is defined as:

AdvSXDH
A (λ) = |Pr[A(1λ, φ) → 1|φ

$
←−

GSXDH
0 (1λ)]− Pr[A(1λ, φ)→ 1|φ

$
←− GSXDH

1 (1λ)]|.

If for all PPT algorithms A, AdvSXDH
A (λ) is

negligible in λ, we say GSXDH
σ (1λ) satisfies the

SXDH assumption. If G1,G2 reverse the roles,
that applies also to the analogous distributions

GSXDH
σ (1λ) = ((q,G1,G2,GT , e), g

µ′

2 , gν
′

2 , Y ′
σ) for

σ ∈ {0, 1} such that µ′, ν′
$
←− Zq, Y

′
0 = g

µ′ν′

2 , and

Y ′
1 = g

µ′ν′+r′

2 , where r′
$
←− Zq \ 0.

Definition 4 (Dual pairing vector spaces
(DPVS)). (q,G1,G2,GT , e) is a tuple produced
by Gabpg(1

λ). V = Gn
1 and V∗ = Gn

2 over Zn
q are n-

dimensional vector spaces. A = {gei

1 }i=1,...,n of V

and A∗ = {g
e∗

i

2 }i=1,...,n of V∗ are canonical bases,

where ei = (0i−1, 1, 0n−i) and e∗i = (0i−1, 1, 0n−i).
(q,V,V∗,GT ,A,A

∗, E) is used to define dual pair-
ing vector space, where a pairing E : G1 ×
G2 → GT , i.e., E(gx1 , g

y
2 ) =

∏n
i=1 e(g

xi

1 , g
yi

2 ) =
e(g1, g2)

〈x,y〉 ∈ GT , and x,y ∈ Zn
q with the fol-

lowing properties.

(1) (Bilinearity) E(sgx1 , tg
y
2 ) = E(gsx1 , g

ty
2 ) =

E(gx1 , g
y
2 )

st for s, t ∈ Zq and x,y ∈ Zn
q .

(2) (Non-degeneracy) E(gx1 , g
y
2 ) has order q in

GT for all y ∈ Zn
q , then x = 0.

We use a description (q,V,V∗,GT ,A,A
∗, E)

to denote the output of the algorithm
Gdpvs(1

λ, n, (q,G1,G2,GT , e)), where n ∈ N.

We then present random dual orthonormal basis
generator Gob(1

λ,Zn
q ).

Gob(1
λ,Zn

q ) : (q,V,V∗,GT ,A,A
∗, E)

$
←−

Gdpvs(1
λ, n, (q,G1,G2,GT , e)),

V = (υi,j)
$
←− GL(n,Zq), (ωi,j) = (V T)−1,

bi =
∑n

j=1 υi,jg
ej

1 , B = {b1, . . . , bn},

b∗i =
∑n

j=1 ωi,jg
e∗

j

2 , B∗ = {b∗1, . . . , b
∗
n},

return (B,B∗).
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SIPE scheme.

Setup(1λ, n) → (MSK, PP). The setup algo-
rithm takes as input λ and a integer n, which
is the length of vectors. Firstly the algorithm
runs Gabpg(1

λ) to generate an asymmetric bilin-
ear group (q,G1,G2,GT , e). It then samples dual

pairing vector spaces (q,V1,V
∗
1,GT ,A1,A

∗
1, E1)

$
←−

Gdpvs(1
λ, 2n+ 2, (q,G1,G2,GT , e)) and (q,V2,V

∗
2,

GT ,A2,A
∗
2, E2)

$
←− Gdpvs(1

λ, 4, (q,G1,G2,GT , e)).
Next, it samples dual orthonormal bases (B =

{b1, . . . , b2n+2}, B∗ = {b1, . . . , b
∗
2n+2})

$
←−

Gob(1
λ,Z2n+2

q ) and (D = {d1, . . . ,d4}, D
∗ =

{d∗
1, . . . ,d

∗
4})

$
←− Gob(1

λ,Z4
q). It defines B̂ =

{b1, . . . , b2n, b2n+2}, B̂∗ = {b∗1, . . . , b
∗
n, b

∗
2n+1},

D̂ = {d1,d2,d4}, D̂∗ = {d∗
1,d

∗
3}. The master

secret key is MSK= (B̂, B̂∗, D̂, D̂∗), and the pub-
lic parameters are PP= (q,V1,V

∗
1,V2,V

∗
2,GT ,A1,

A∗
1,A2,A

∗
2, E1, E2).

Encrypt(MSK, PP, x) → CT. The encryption
algorithm takes as input MSK, PP, and a vec-
tor x ∈ Zn

q \ {0}. It chooses four uniformly

random elements α, α′, ϕ, ϕ′ $
←− Zq and outputs

CT = (c1 = g
α
∑n

i=1
xibi+α′

∑n
i=1

xibn+i+ϕb2n+2

1 ,

c2 = g
αd1+α′d2+ϕ′d4

1 ).

KeyGen(MSK, PP, y) → SK. The secret key
generation algorithm takes as input MSK, PP, and
a vector y ∈ Zn

q \ {0}. It chooses three uni-

formly random elements β, η, η′
$
←− Zq and outputs

SK = (k∗1 = g
β
∑

n
i=1

yib
∗

i +ηb∗

2n+1

2 , k∗2 = g
βd∗

1+η′d∗

3

2 ).

Decrypt(PP, CT, SK) → m ∈ Zq or ⊥. The
decryption algorithm takes in PP, the ciphertext
(c1, c2), and the secret key (k∗1 , k

∗
2). It outputs

D1 = E(c1, k
∗
1), D2 = E(c2, k

∗
2).

It remains to be seen whether there exitsm ∈ Zq

such that (D2)
m = D1 as elements of GT . If the

equation holds, the algorithm outputs m. Other-
wise, it outputs ⊥. In order to ensure that the
decryption algorithm takes polynomial time, the
size of the plaintext space is subject to a static
polynomial-size range.

Theorem 1. Under the SXDH assumption our
SIPE scheme is one-AD-SIM-secure.

The proof of Theorem 1 is given in Appendix C.

Remark 1. We also can prove the SIPE sheme

is many-AD-SIM-secure if the adversary gets hold
of an unbounded number of ciphertexts and secret
keys. The solution is to sample different dual or-
thonormal bases for each message.
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