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Appendix A Method

Appendix A.1 Optimal Feedback Control System

The linear-quadratic-Gaussian OFC system with state xt ∈ Rm, control ut ∈ Rn, and feedback yt ∈ Rk in discrete time
t ∈ [1, N ]:

Dynamics xt+1 = Axt +But + ξt + εtCut,

F eedback yt+1 = Hxt + ωt,

Cost

n∑
t=1

xTt Qtxt + uTt Rut.

At each time step t, an optimal control ut (simulating the user’s control command) must be found that minimize the
expected total cost in Eq.1 over the movement based on the currently obtained feedback yt. This process simulates the
phenomenon in which a user continually adjusts their action while considering consumption, speed, and accuracy. After
finding and sending a control command, the controlled force (simulating the force of the user’s hand) changes to follow
the command and pushes the mass point (simulating the pointing device) to move to the desired target. The terms
ξt ∈ Rm and ωt ∈ Rk are independent multidimensional normal random variables with the mean 0 and covariances Ωξ

and Ωω , which respectively simulate white noise in the control and observation processes. The other random variable εt
is an independent 0-mean Gaussian with standard deviation, which is multiplied by the control vector to simulate control-
dependent noise. R and Qt are coefficient matrixes that define the system cost related to the state and control, respectively,
which reflect tradeoffs between consumption, speed, and accuracy. The solution to this optimal control problem is based
on the assumption that the estimate state is a summary of the entire history of the control and feedback signals [4]. We
adopted this solution in this paper.
For a target-selection motion, we represent the cursor’s state by the following ten-dimensional vector:

xt =[px(t); py(t); ṗx(t); ṗy(t); fx(t); fy(t); gx(t); gy(t); p∗x(t); p∗y(t)],

where px(t), py(t) represent the cursor’s position, and ṗx(t), ṗy(t) represent its velocity on x-axis and y-axis, respectively.
fx(t), fy(t) represent the force of the hand, and gx(t), gy(t) are auxiliary state needed to implement the second-order muscle
filter [4], respectively. p∗x(t) and p∗y(t) represent the target’s position, and we note that the state is defined in time step t,
so we can change the position in each time step to formulate the moving target. The initial state x1 has a multivariate
normal distribution with the mean 0 and covariance

∑
1.

The control signal that drives the cursor to the target is defined as follows:

ut = [ux(t);uy(t)].

The cursor’s movement is simulated by the particle motion in a Newtonian mechanics system with the following discrete-time
form (d = x/y):

pd(t+ 1) = pd(t) + ṗd(t)∆,

ṗd(t+ 1) = ṗd(t) + fd(t)∆/m,

fd(t+ 1) = fd(t)(1−∆/τ2) + gd(t)∆/τ2,

gd(t+ 1) = gd(t)(1−∆/τ1) + ud(t)(1 + σcεt)∆/τ1.

This system can be transformed into Eq.1 using the following matrixes:

A =



1 . ∆ . . . . . 08×2

. 1 . ∆ . . . .

. . 1 . ∆/m . . .

. . . 1 . ∆/m . .

. . . . 1−∆/τ2 . ∆/τ2 .

. . . . . 1−∆/τ2 . ∆/τ2

. . . . . . 1−∆/τ1 .

. . . . . . . 1−∆/τ1

02×8 I2×2


,

B =


06×2[

∆/τ1 .

. ∆/τ1

]
02×2

 ,
C = Bσc,

H =
[
I6×6 06×4

]
.

As we can see, the control signal in the system is affected by the control-dependent noise εt weighted with parameter σc.
We have assumed that user sensory feedback (including visual and kinesthetic) includes information about position, velocity,
and force as follows:

yt = [px(t); py(t); ṗx(t); ṗy(t); fx(t); fy(t)].

We set the covariances of white noise ξt and ωt in Eq.1 as follows:

Ωξ = 0; Ωω = (diag[σp;σp;σv ;σv ;σf ;σf ])2 ,

which assumes that the white noise in the control process is ignorable and that in the observation process has the standard
deviations σp, σv and σf with respect to position, velocity, and force.
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The state cost in each time step is defined as follows:

(px(t)− p∗x(t))2 + (py(t)− p∗y(t))2 + (ṗx(t)wv)2 + (ṗy(t)wv)2 + (fx(t)wf )2 + (fy(t)wf )2,

and the control cost is:

r(ux
2 + uy

2).

By obtaining the sum of the state and control costs, we obtain the total system cost, which can be transformed into Eq.1
by the matrixes R = r and Qt, as follows:

Qt = 1
N
qT q; q =



−1 . . . . . . . 1 .

. −1 . . . . . . . 1

. . wv . . . . . . .

. . . wv . . . . . .

. . . . wf . . . . .

. . . . . wf . . . .


.

The parameters r, wv and wf weight the penalties of consumption, velocity, and force, and balance the speed, accuracy,
and effort expended in the target acquisition process.

Appendix A.2 Parameter Estimations

We define the cost function J(θ) for estimating the key parameters as follows:
For a trajectory set containing M trajectories traj = {trajj |j = 1, 2...M}, the ith point in the jth trajectory is denoted by
pij = (xij , yij), and we can compute the mean point position of all ith points in the trajectory set as follows:

pi = (xi, yi) = (
1

M

M∑
j=1

xij ,
1

M

M∑
j=1

yij).

We can also compute the variability of all the ith points in the trajectory set as follows:

vari = (

√√√√ 1

M

M∑
j=1

(xij − xi)2,

√√√√ 1

M

M∑
j=1

(yij − yi)2).

We resampled all the simulated and experimental trajectories to have them contain the same number of points. Let s and
e denote the simulated and experimental trajectory sets, respectively. Then, we can define the cost function as follows:

J(θ) = trE × vaE,

trE =
1

n

n∑
i=1

||psi − pei ||,

vaE =
1

n

n∑
i=1

||varsi − varei ||.

As presented above, trE and vaE are the average Euler distances between the mean point position and variability along
the trajectory, and we must find a θ∗ value that minimizes product of trE and vaE.
We developed a random search algorithm to obtain θ∗ by the following major steps:
(a) Given a searching region µi −∆i < θi < µi + ∆i(i = 1, 2, ...n),
(b) find T θ in this region that satisfies J(θ(1)) > J(θ(2)) > ...J(θ(T )).
(c) Determine the new µi and ∆i as follows:

µi =

T∑
t=1

W (t)θ
(t)
i

T∑
t=1

W (t)

, ∆i = C

√√√√√√
T∑

t=1
W (t)(θ

(t)
i −µi)

2

T∑
t=1

W (t)

, W (t) =
J(θ(T ))

J(θ(t))
, then

(d) search in the new region until satisfying the following convergence condition or reaching the maximum number of
iterations. ∣∣∣∣∣J(θ(1))− J(θ(T ))

J(θ(T ))

∣∣∣∣∣ < ϕ,

where, in our case, n is 7 and we empirically set T and C to 5 and 2.
For the other parameters in the OFC system, m, we set ∆, τ1 and τ2 to m = 1kg, ∆ = 0.01 sec and τ1 = τ2 = 0.04 sec
as the authors did in [4]. We empirically set

∑
1 to (diag[10pixel, 10pixel, 10pixel/sec, 10pixel/sec, 1N, 1N, 0, 0, 0, 0])2. Note

that the unit pixel here is a logical pixel distance unit since the movement we are simulating is in a logical space in the
device display. We set the number of time steps N to 1000.

Appendix B Results
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Figure B1 Static-target selection simulation results and empirical data. The red line represents the mean trajectory
of the movements, the blue lines represent the trajectories of each trial, and the orange points represent the movement
end-points.

Figure B2 Moving-target selection simulation results and empirical data in eight directions. The red line represents the
mean trajectory of the movements, the blue lines represent the trajectories for each trial, and the orange points represent
the movement end-points.

Table B1 Estimated parameters for static- and moving-target selection

parameters σc σp σv σf r wv wf

θs 5.4132 68.05 474.68 381.10 690.90 820.35 592.20

θm 10.3310 147.29 241.49 147.82 1149.71 646.96 176.89

Table B2 The errors of mean trajectory and trajectory variability for all tasks

measures static
moving

(→)
moving

(↘)
moving

(↓)
moving

(↙)
moving

(←)
moving

(↖)
moving

(↑)
moving

(↗)

trE 9.86 30.51 45.02 52.07 22.14 23.13 37.04 38.86 44.93

vaE 17.89 46.02 40.32 30.98 27.03 27.14 28.80 49.75 29.82
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