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Dear editor,
Recently, due to the proliferation of location-aware
mobile devices, k nearest neighbor query (kNN)
has become increasing popular in location-based
services, especially in outsourced environments
where data owners (DO) outsource their private
points-of-interests (POIs) to the location service
provider (LSP) and allow authorized clients to
query k POIs nearest to his location. However, the
location privacy of both POIs and mobile clients
has been two crucial security concerns as LSP is
usually semi-honest in the outsourced paradigm.

Existing solutions for this issue mostly focused
on encryption schemes and various kNN query
technologies over encrypted data. In [1], asymmet-
ric scalar-product-preserving encryption (ASPE)
was proposed to compute the kNN on encrypted
data. However, this scheme is vulnerable to the
chosen-plaintext attack (CPA) which also exists
in [2, 3]. Although Elmehdwi et al. [4] solved
this problem with a Paillier crypotosystem-based
SkNN protocol, large computation cost is in-
curred by homomorphic encryption. Recently,
some researchers proposed partition-based solu-
tions, such as those based on secure Vornoi dia-
gram (SVD) [5], Delaunay triangulations (TkNN)
[6] and Hilbert curve transformation (HCT) [7].
Unfortunately, these solutions only return a rel-
evant encrypted partition with far more than k

POIs, which induces expensive computation over-
head for further filtering at the client.

To address the security and efficiency issues, in
this letter, we propose a secure and Hilbert curve-
based kNN query framework (HkNN) in combina-
tion with the secure distance comparison protocol
(SDCP). Specifically, we introduce two entities for
LSP, termed storage and proxy servers, to collabo-
rate and provide stronger security. Moreover, two
indices based on HCT are designed to facilitate
the query on encrypted data. Extensive theoret-
ical and experimental analysis show that HkNN
achieves superior query performances to two state-
of-the-art approaches: TkNN [6] and HCT [7], in
terms of security, preprocessing cost, kNN query
processing time, communication and computation
cost at the client.

System overview. To perform secure and ef-
ficient kNN query, DO first transforms n 2-
dimensional (2-D) POIs into 1-D Hilbert value us-
ing Hilbert transformation function h(·) [8]. Next,
we group POIs according to their transformed val-
ues and design two indices to manage them effi-
ciently, which are then encrypted with AES and
mutable order preserving encoding (mOPE)1), re-
spectively. When an authorized client issues a
kNN query to the LSP with his transformed loca-
tion, the proxy server can quickly find the group
(record) containing the query point, and obtain
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1) mOPE can achieve the ideal security called indistinguishability under ordered chosen-plaintext attack (IND-OCPA).
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the encrypted candidate POIs from the storage
server. Finally, SDCP [6] is followed securely be-
tween the proxy server and the client, which de-
termines which POI is closer to the query client
on the encrypted data. Specifically, given two en-
crypted data points Di(xi, yi), Dj(xj , yj) and a
query point Q(xq, yq), Di is closer to Q if and only
if the following inequality is satisfied:

yq − Si,j · xq > −1 · Si,j ·
xi + xj

2
+

yi + yj

2
, (1)

where Si,j denotes the slope of the midperpendic-
ular of the segment that connects Di and Dj .

Indices design. For efficient retrieval, we divide
original POIs into groups based on their Hilbert
values and then create data information index
(DII) and Hilbert aggregation index (HAI) to store
corresponding partition information. Specifically,
a unified threshold τ is preset to confine the num-
ber of POIs stored in each DII record, such that
the LSP cannot deduce the density of POIs by an-
alyzing the same Hilbert value.

DII contains four parts 〈ID, data info, R, S〉,
where ID is the record identifier and data info
stores τ POIs’ locations with same or similar
Hilbert value in the ascending order. R and S

are the set of right-hand side of inequality (1) and
the midperpendicular slope between two arbitrary
data points in each record.

HAI contains three parts 〈ID, SGI, EGI〉, where
ID is the identifier of HAI, and SGI, EGI denote
the start and end grid cell index (i.e., Hilbert val-
ues) corresponding to the DII record respectively.

Our HkNN query protocol. Without loss of gen-
erality, we assume that both DII and HAI include
m records, and each DII record contains τ POIs in-
formation except the last one (may be less than τ).
For each record z ∈ [1,m], its corresponding DII is
represented by 〈Pz , Rz, Sz〉, where Pz, Rz and Sz

denote the set of POIs, the right-hand sides and
bisector slopes of all pairs of POIs in record z, re-
spectively. With the well-designed indices, given
a query Q = (xq , yq), our HkNN query framework
between four entities is shown in Figure 1. The
detailed operations at each entity and interactions
between them are illustrated as follows.

First, after indices construction, DO sends the
following messages to the storage and proxy server,
respectively:

Msg1 = {Ek1
(Pz), εk2

(Rz), Ek1
(Sz)},

Msg2 = {εk2
(SGIz), εk2

(EGIz)}.

To preserve the data confidentiality, each POI
p ∈ Pz and all bisector slopes in Sz are encrypted
with AES (denoted as Ek1

(·)), while the right-
hand side Rz, start grid index SGIz and end grid

index EGIz are encoded with mOPE (denoted as
εk2

(·)) to support secure and efficient comparison.
Next, DO sends the relevant key message

Msg3 = {k1, k2,HTP} to the authorized client se-
curely, where HTP denote the Hilbert transforma-
tion parameter used in function h(·). Note that
no additional information about keys is revealed
to adversaries in this process. For the authorized
client, after transforming his location, he submits
the encoded Hilbert value Msg4 = εk2

(h(xq , yq))
to the proxy server.

Subsequently, the proxy server can retrieve the
candidate HAI record(s) in accord with the query
point quickly by comparing εk2

(h(xq , yq)) with
both εk2

(SGIz) and εk2
(EGIz). Note that, if τ

is less than k (i.e., one record is not sufficient to
answer kNN query), then the proxy server needs
to expand the HAI record to the neighbor ID until
the total number of POIs is greater than k. Here
the expansion is bidirectional, which means the
neighbor IDs above and below the current record
are both considered. Finally, the candidate ID set
C is sent to the storage server (Msg5 = C).

Upon receiving Msg5, the storage server
returns the corresponding DII record to
the proxy server, denoted by Msg6 =
{Ek1

(Pz), εk2
(Rz), Ek1

(Sz)}, z ∈ C. Then, SDCP
will be performed with client on the candidate
POIs to find kNN securely. The interactions be-
tween them are as follows.

• The proxy server sends encrypted slopes in set
C to the client, which is Msg7 = Ek1

(Sz), z ∈ C;
• The client decrypts the message with k1 to get

Sz and then computes the left-hand set Lz using
inequality (1) for each pair of POIs in record z.
Then Lz is encoded with k2 (i.e., εk2

(Lz));
• The client submits Msg8 = εk2

(Lz), z ∈ C to
the proxy server, followed by the comparison be-
tween εk2

(Lz) and εk2
(Rz) at the proxy server. It

is sufficient to find k POIs nearest to the query
point in this step;

• The encrypted query result Msg9 = Ek1
(R) is

returned to the client who will decrypt it with k1
to get the result R.

For better understanding, we illustrate our
HkNN with a simple example in Appendix A. In
particular, with respect to data updates, it is not
necessary to recreate the entire HAI and DII. In-
stead, O((τ−1)·4) update time is incurred at most
for small-range motions of POIs. While for adding
or deleting POIs, our scheme can flexibly adapt τ
so that indices can be updated incrementally.

Security analysis. Our proposed HkNN scheme
is robust to resist against the ciphertext-only at-
tack and the estimation attack. For the former,
the attacker learns nothing about the POIs dis-
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Figure 1 The framework of HkNN query protocol.

tribution except for the existence of densely dis-
tributed area. While for the latter, it is compu-
tationally intractable to estimate the locations of
other original POIs and query points. Therefore,
HkNN achieves our security goal that both data
confidentiality of POIs and query privacy of au-
thorized clients should be protected. Due to space
limitations, we provide the detailed analysis and
proofs in Appendix B.

Experiments. We perform our HkNN scheme
on three kinds of datasets: a real-world dataset
from North East USA2) which contains 123593
POIs and two synthetic datasets with uniform
and Gaussian distribution (µ = 0.5 and σ = 0.1),
respectively. We mainly compare our method
with two existing partition-based solutions TkNN
[6] and HCT [7]. The results show that HkNN
achieves better query performance than TkNN
with lower preprocessing cost, less kNN query time
and client’s communication cost on three different
datasets. In particular, 44.5% preprocessing cost
and 45% query time are reduced mostly on the uni-
form dataset. In addition, our scheme further de-
presses the client’s computation cost dramatically
(about 50% time is saved compared with HCT).
Detailed results can be found in Appendix C.

Conclusion. In this letter, to realize location
privacy preservation and query efficiency simul-
taneously, we propose a secure and efficient kNN
query framework HkNN that supports incremental
data updates. Particularly, HkNN provides strong
security leveraging two-entity model and two se-
cure encryption methods, the query is facilitated
significantly by retrieving our well-designed in-
dices. Additionally, we further reduce the client’s
cost with SDCP. Theoretical analysis and experi-
ments demonstrated our superiority to others.
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