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Abstract The orthogonalized integer representation was independently proposed by Ding et al. using ge-

netic algorithm and Fukase et al. using sampling technique to solve shortest vector problem (SVP). Their

results are promising. In this paper, we consider sparse orthogonalized integer representations for short-

est vectors and propose a new enumeration method, called orthognalized enumeration, by integrating such

a representation. Furthermore, we present a mixed BKZ method, called MBKZ, by alternately applying

orthognalized enumeration and other existing enumeration methods. Compared to the existing ones, our

methods have greater efficiency and achieve exponential speedups both in theory and in practice for solv-

ing SVP. Implementations of our algorithms have been tested to be effective in solving challenging lattice

problems.
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1 Introduction

A lattice L is a discrete additive subgroup of Rm. It is generated by n linearly independent vectors

b1, . . . , bn in R
m, and the integer n is the dimension of L. The discreteness of lattices implies that

there exists a nonzero vector with the shortest Euclidean norm in each lattice. There are two famous

computational lattice problems.

(1) Shortest vector problem (SVP). Given a basis of lattice L, find a shortest nonzero vector in the

lattice.

(2) Closest vector problem (CVP). Given a basis of lattice L and a target vector, find a lattice vector

that is closest to the target.

Over the past two decades, these two hard problems SVP and CVP have been of prime importance

to lattice cryptography. There are two main types of algorithms for solving SVP and CVP. One is the

exponential space algorithms, and the other is algorithms with polynomial space. One of the earliest and

most well-known algorithm with exponential complexity is the randomized sieve algorithm proposed in

2001 by Ajtai et al. [1]. The sieve method reduces the upper bound of the time to 2O(n) at the cost of
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2O(n) space compared with Kannan’s enumeration method [2]. It has been developed into some improved

sieves including heuristic methods in recent years [3–5]. Another important study is the deterministic

algorithm with 23.4n+O(n) time and 21.97n+O(n) space given by Micciancio and Voulgaris [6]. The latest

progress is the randomized algorithm with 2n+o(n) time using the discrete Gaussian sampling method [7],

which is the first randomized algorithm (without heuristic assumption) faster than the deterministic

algorithm of [6].

For the class of polynomial-space algorithms, two popular techniques are used, one is lattice reduc-

tion, including the famous LLL alogrithm [8], HKZ reduction [2] and BKZ (Block-Korkine-Zolotarev)

reduction [9]. The other important technique is the enumeration technique which is an exact algorithm

to find shortest vectors in a reduced space. These two techniques are complementary in the following

sense. Usually, a reduction cannot output shortest vectors in high dimensional lattices, it is used to

find vectors that are sufficiently short to ensure an enumeration search to work efficiently. Whereas the

enumeration technique works as a subroutine and applies to sublattices of lower dimension repeatedly

to greatly improve the output quality of reductions. One of the most earliest algorithm simultaneously

with reasonably time-efficiency and space-efficiency was provided by Kannan [2] in 1980s. This theoret-

ical enumeration algorithm is based on a strong preprocessing ‘quasi-HKZ-reduced’ basis and achieves

worst-case time complexity of 2O(n logn). A more accurate analysis on Kannan’s algorithm was given by

Helfrich [10], with the complexity of d
d
2
+o(d); the complexity bound was further improved to d

d
2e

+o(d) by

Hanrot and Stehlé in [11] (d is the dimension of the lattice and e represents the base of natural loga-

rithm). Another popular polynomial-space algorithm is the Schnorr-Euchner enumeration based on the

the work of Fincke and Pohst [12] enumeration using LLL-reduced basis, and its enumeration complexity

is estimated by Gama et al. [13] as
∑n

l=1 q
(n−l)l/22O(n) (q is a constant depending on the basis). Although

the complexity of the Schnorr-Euchner enumeration (2O(n2)) seems higher than that of Kannan’s, it is in

fact a widely used practical method. For example, it is a fundamental tool in the popular mathematical

library NTL [14]. It is noted that many security assessments [15–18] and SVP searching methods [19,20]

of lattice cryptosystems are based on BKZ implementation of NTL. Therefore, a further improvement to

the enumeration technique is of significant importance for SVP searching. Gama et al. [13] proposed an

improved enumeration using the extreme pruning technique and the speedup is exponential. Chen and

Nguyen [21] used the technique to design BKZ 2.0 which improves the BKZ algorithm. Further recent

improvements of BKZ include methods based on progressive strategy [22] and result predictions [23].

The main purpose of our paper is to propose a new enumeration method called the orthogonalized

enumeration. Our design is motivated by the integer sparse representation of the shortest vector with

respect to the Gram-Schmidt basis. It is observed that for a BKZ-reduced basis, the norms of the

orthogonalized basis tend to decrease quickly as the component index gets large. This indicates that for

a shortest lattice vector, its coefficients with respect to the othogonalized basis are likely to be zero after

rounding when their indices are not big enough. The idea of using sparse representation of shortest vectors

with respect to the Gram-Schmidt basis can be traced back to Schnorr’s random sampling algorithm [24].

This idea was expanded independently by Ding et al. [25] in a genetic algorithm and by Fukase and

Kashiwabara [26] in a sampling algorithm. The genetic algorithm was initiated by Holland [27] in 1975,

and it has been used to solve optimization problems such as timetabling, scheduling, and engineering

problems [28–30]. The essence of the method is to transform a shortest lattice vector into a new integer

vector corresponding to the Gram-Schimdt orthogonal basis. The new integer vector is sparse in the sense

that most of its components are zero and has some special properties such as those nonzero components

are mostly ±1 and they are located at the lower segment. With the help of the sparse representations,

vectors act like chromosomes to start a genetic algorithm which performs searching of shortest lattice

vectors successfully. Fukase and Kashiwabara [26] extended Schnorr’s random sampling technique by

considering integer sparse representation (also known as natural number representation); they combined

this technique with restricting reduction techniques to solve SVP challenge in dimensions that are much

higher than ever.

Our contributions. Our main contribution is to give a more efficient enumeration utilizing the sparse

integer representation of shortest vectors. Firstly, we study the orthogonalized integer representation of
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the shortest vector. This representation enables us to describe a very natural enumeration method which

is called the orthognalized enumeration. This enumeration takes a new input parameter k as a measure to

control the number of nodes needed for enumeration. To be more specific, the main purpose of our method

is to reduce the number of enumeration trials by considering some relationship between the sparse integer

(rounding coefficients) vector y = (y1, . . . , yn) under the Gram-Schmidt basis B∗ and the (coefficients)

vector x = (x1, . . . , xn) with respect to the lattice basis B of a shortest lattice vector to be searched. By

choosing a theoretical estimated threshold k and setting yi = 0 (1 6 i 6 n − k) where the components

of short vectors are zero with high probability, we are able to cut the searching space for the shortest

vector v into (xn−k+1, . . . , xn). For every (xn−k+1, . . . , xn) and its corresponding (yn−k+1, . . . , yn), we

can compute the unique values of xi, ∀i = 1, . . . , n− k. This means that, our enumeration only searches

k-dimensional subspace instead of that for n-dimensional space in those previous methods (e.g., full

enumeration, linear enumeration, extreme enumeration). Another difference between our technique and

other existing enumeration methods is that the integer sparse representation technique in our approach

makes the number of nodes for enumeration to be strictly bounded above by a rather small number

depending on the parameter k. Because of these features, our method is ideal for use in high dimension

case or in the case with limited computing resources by adjusting the parameter k according to the

actual problem’s dimension or available computing resources. Furthermore, we propose a new BKZ

method called MBKZ by alternately using orthognalized enumeration and traditional enumeration in

this paper. By using the Monte-Carlo simulation, we estimate the expectation of number of nodes under

different enumeration methods, and the result shows that exponential speedup can be achieved by our

new method, MBKZ. Implementation of our methods have been tested to solve challenging SVP problems

with dimension up to 121, the experimental results are also consistent with our theoretical estimation.

The rest of the paper is organized as follows. In Section 2, we provide some necessary backgrounds

on lattice and describe the orthogonalized integer representations. In Section 3, we introduce our basic

orthogonalized enumeration, and estimate the success probability. Section 4 introduces the details of

MBKZ. Finally a conclusion is given in Section 5.

2 Preliminaries

Lattice. A lattice L is defined as the set of all integral combinations of n linearly independent vectors

b1, . . . , bn in R
m (m > n), these linearly independent vectors are a basis of L:

L(b1, . . . , bn) =

{ n
∑

i=1

xibi, xi ∈ Z

}

.

The integer n is the dimension of L and vol(L) is the volume or determinant of L. A basis of L is not

unique, but all bases have the same number of elements and the same volume vol(L). When m = n, the

lattice is called full-rank.

Shortest vector. A non-zero vector with the smallest Euclidean norm in a lattice L is called a shortest

vector of L. The length of a shortest vector is also called the first minimum and written as λ1(L). Let

‖v‖ denote the Euclidean norm of a vector v ∈ R
m, then λ1(L) = minv∈L\{0} ‖v‖.

Gram-Schmidt orthogonalization. The Gram-Schmidt orthogonalization is a method for orthog-

onalizing a set of vectors in an inner product space, most commonly the Euclidean space Rn. For a basis

B = [b1, . . . , bn], the Gram-Schmidt process generates an orthogonal set B∗ = [b∗1, . . . , b
∗
n] as follows:

b∗i = bi −

i−1
∑

j=1

µijb
∗
j . (1)

where µij =
〈bi,b

∗

j 〉
〈b∗

j ,b
∗

j 〉
, for 1 6 j < i 6 n.

The Gram-Schmidt procedure projects each bi to the space orthogonal to the space spanned by
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b∗1, . . . , b
∗
i−1, and keeps the determinant unchanged, det(B) =

∏n
i=1 ‖b

∗
i ‖.

BKZ. BKZ is a lattice reduction technique with blockwise algorithms [9]. It applies successive ele-

mentary transformations to an input basis, and outputs a BKZ-reduced basis whose vectors are shorter

and more orthogonal. More specifically, for a blocksize β > 2 and a basis B = (b1, . . . , bn) of a lattice, it

firstly applies LLL to B and then applies enumeration to each lattice L[j,min(j+β−1,n)] generated by the

block B[j,min(j+β−1,n)] = [πj(bj),πj(bj+1), . . . ,πj(bmin(j+β−1,n))], where πj(x) =
∑n

i=j
〈x,b∗

i 〉
〈b∗

i ,b
∗

i 〉
b∗i is the

orthogonal projection on span(b1, . . . , bj−1)
⊥. As a result, an integer vector v = (vj , . . . , vmin(j+β−1,n)) is

found such that ‖πj(
∑min(j+β−1,n)

i=j vibi)‖ = λ1(L[j,min(j+β−1,n)]). After finding vectors that are shorter

than any base vectors, LLL is called to update the basis. These steps would be repeated several times

until no vector shorter than the basis vectors can be found in each block, and the final basis is the output.

It is observed that the output basis seems to obey ‖b∗i ‖/‖b
∗
i+1‖ ≈ q with q depending on the quality of

BKZ, see also [13]. All of the lattice bases B discussed in this paper are BKZ-reduced bases unless

specified otherwise.

In the rest of our discussion, we shall use the same set of heuristics as that in [13]. These heuristics

are listed as follows.

(1) Gaussian heuristic. The Gaussian heuristic is used to estimate the number of vectors in a lattice. It

assumes that the number of points in a set is related to its volume. Given a lattice L and a (measurable)

subset S ⊆ R
m , the number of points in L ∩ S is approximately vol(S)/vol(L).

(2) Heuristic 2. The distribution of the coordinates of the shortest vector v, when written in the

normalized Gram-Schmidt basis (b∗1/‖b
∗
1‖, . . . , b

∗
n/‖b

∗
n‖) of the input basis, has the same distribution as

that of a uniformly distributed vector of norm ‖v‖.

(3) Heuristic 3. The distribution of the normalized Gram-Schmidt orthogonalization (b∗1/‖b
∗
1‖, . . . ,

b∗n/‖b
∗
n‖) of a random reduced basis (b1, . . . , bn) has the same distribution as that of a uniformly dis-

tributed orthogonal matrix.

Orthogonalized integer representations. A lattice vector v can be represented as a combination

of basis vectors v = Bx. According to the orthogonalized integer representation [25, 26], x can be

transformed into an integer vector y with respect to B∗ through the following manner: the basis B =

[b1, . . . , bn] and its Gram-Schimdt orthogonalization B∗ = [b∗1, . . . , b
∗
n] are related by B = B∗RT where

R = [Rij ] with

Rij =















µij , if 1 6 j < i 6 n,

1, if 1 6 i = j 6 n,

0, if 1 6 i < j 6 n.

For any vector v ∈ L(B), assume that v = Bx with = (x1, . . . , xn). We define y to be the rounding

integer vector of RTx. More precisely, we first define a vector t = (t1, . . . , tn) ∈ R
n as

ti =











0, for i = n,
n
∑

j=i+1

µj,ixj , for i < n,

and compute y = (y1, . . . , yn) ∈ Z
n as

yi = ⌊x
∗
i ⌉ = ⌊xi + ti⌉ = xi + ⌊ti⌉, for 1 6 i 6 n.

Since xi ∈ Z, we have established a one-to-one correspondence between x and y, and also a one-to-one

correspondence between v and y:

y
y=x+⌊t⌉
←−−−−−→ x

v=Bx
←−−−→ v.

We shall call y the orthogonalized integer representations in the rest of this paper.
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3 Enumeration

In this section, we first recall full enumeration and extreme pruning enumeration. We shall present our

main contribution, the orthogonalized enumeration, in the latter part of this section.

3.1 Full enumeration

Given a Gram-Schmidt orthogonalized basis B∗ and an upper bound R, the full enumeration method [9]

enumerates xn, xn−1 . . . , x1 of x successively under the following constraints:

x2
n‖b

∗
n‖

2
6 R2,

(xn−1 + µn,n−1xn)
2‖b∗n−1‖

2
6 R2 − (xn)

2‖b∗n‖
2,



xi +

n
∑

j=i+1

µj,ixj





2

‖b∗i ‖
2
6 R2 −

n
∑

j=i+1

lj .

Here li = (xi +
∑

j>i xjµj,i)
2‖b∗i ‖

2.

The number of nodes that need to be searched is determined by the size of enumeration tree. The total

number of tree nodes Ne is estimated as Ne ≈
∑n

l=1 Hl [13], with the summand Hl being the estimated

number of nodes at level l:

Hl =
1

2
·

Vl(R)
∏n

i=n+1−l ‖b
∗
i ‖
≈ q(n−l)l/22O(n),

where Vl(R) = Rl · π
l/2

Γ(l/2+1) and ‖b∗i ‖/‖b
∗
i+1‖ ≈ q according to the heuristic of BKZ output. It is noted

that Hl gets its maximum value qn
2/82O(n) when l = n/2.

3.2 Extreme pruning enumeration

Extreme pruning enumeration improves full enumeration by replacing the bound R by a serial of bounding

functions R1, . . . , Rn. Two strategies of choosing bounding functions are often used. One is linear pruning

with success probability about 1/n, and the other is extreme pruning with success probability extremely

small.

The number of nodes in enumerating tree of an extreme pruning is

Next =
1

2

n
∑

t=1

VR1,...,Rt
∏n

i=n+1−t ‖b
∗
i ‖

,

where VR1,...,Rt = Vt(Rt) ·Pru∼Ballt(∀j ∈ [1, t],
∑j

i=1 u
2
i 6

R2

j

R2

t
), Vt(Rt) = Rt

t ·
π

t/2

Γ(t/2+1) and Ballt denotes

a t-dimensional Euclidean ball.

Analysis under the aforementioned heuristics given by [13] shows that (1) with well-chosen bounding

functions, the linear pruning can reduce the number of nodes searched by a factor of 1.189n over the

full enumeration; and (2) furthermore, a well-chosen extreme pruning can achieve a speedup of 1.414n

compared to the full enumeration.

3.3 Orthogonalized enumeration algorithm

The idea of the orthogonalized enumeration is to make use of orthogonalized integer representations,

which has been used in solving SVP in many methods including sampling [26] and genetic algorithm [25].

However, to the best of our knowledge, a new efficient enumeration method based on orthogonalized

integer representations has not ever been designed. It is therefore one of the purpose of this paper to

develop the orthogonalized enumeration in order to make a further improvement for enumeration.
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For the orthogonalized enumeration, we introduce a new parameter k to control the number of nodes

enumerated. This is one of the main differences between our method and existing enumeration methods.

By choosing a proper k and setting yi = 0 (1 6 i 6 n − k), an enumeration is performed among

(xn−k+1, . . . , xn). For every (xn−k+1, . . . , xn) and its corresponding (yn−k+1, . . . , yn), we can compute

the unique values of xi, ∀i = 1, . . . , n − k under the condition that yi = 0, ∀i = 1, . . . , n − k by using

the method of Babai’s nearest hyperplane algorithm. For more detail, one can find a pseudo-code of

orthogonalized enumeration in Algorithm 1.

Algorithm 1 Orthogonalized enumeration algorithm

Input: BKZ-reduced basis: B, an upper bound of ‖v‖2: Rb, k.
Output: The shortest vector v with ‖v‖2 < Rb.
1: For the input basis B, compute Gram-Schmidt orthogonalization of it as B∗ and µi,j as the elements of the lower-

triangular matrix where bi = b∗i +
∑i−1

j=1 µi,jb
∗

j ;

2: Compute the d← [d1, . . . , dn] = [R0.5
b

n−0.5/‖b∗1‖, . . . , R
0.5
b

n−0.5/‖b∗n‖]; // the average values
3: sv1×n ← 0, slen← 0; // sv stores the shortest vector and slen stores its norm
4: unn×n ← 0, ylen1×n ← 0, uvec1×n ← 0; // store intermediate results
5: poss vn×5 ← 0, poss v cnt1×n ← 0, poss v ind1×n ← 0; // store the choices for enumeration and point out which

one is the next for search
6: for xn = ⌈dn⌉, ⌊dn⌋, 0 do

7: uvecn ← xn;
8: unn,i ← xn · µn,i, ∀i = 1, . . . , n− 1;
9: ylenn ← x2

n‖b
∗

n‖
2; // a depth first search starts after recording these values

10: for t = n− 1, . . . , 1 do

11: if poss v cntt = 0 then

12: (poss vt,poss v cntt)← CPV(t, k, dt,unt+1,t);
13: poss v indt ← 1; // poss v cnt = 0 means CPV procedure has not been called, so update poss v, poss v cnt

and poss v ind by calling the procedure CPV
14: else

15: poss v indt ← poss v indt + 1; // poss v cnt 6= 0 means CPV has been called, poss v ind should be increased

for the next choice
16: end if

17: uvect ← poss vt,poss v indt
;

18: unt,i ← unt+1,i + uvect · µt,i, ∀i = 1, . . . , t − 1;
19: ylent ← ylent+1 + (uvect + unt+1,t)2‖b∗t ‖

2; // recording to avoid repeated calculation
20: if t = 1 then

21: if Rb > ylen1 then

22: if slen = 0 or slen > ylen1 then

23: slen← ylen1;
24: sv← uvec;
25: end if

26: end if // when t = 1, the enumeration of a node is done, check if it has a shorter norm, and always store the

shortest one in sv and its norm in slen
27: for i = t, . . . , n− 1 do

28: if poss v indi < poss v cnti then

29: t← i;
30: break
31: else

32: poss v cnti ← 0;
33: end if

34: end for // find the first i where poss v indi < poss v cnti from deep to shallow and reset all poss v cnt on the

road to switch to another branch
35: t← t+ 1; // offset the decrease in step 10
36: end if

37: end for

38: end for

39: v = sv;
40: return v.

Besides the advantage of using a smaller searching space, our strategy of choosing nodes to be searched

by orthogonalized enumeration is also different from others. Instead of scoping a range where xi may lie

in the existing enumeration methods, we decrease the scope of search into a small number of nodes. In

particular, enumeration for each xi is conducted among the following two types of special values: zero

point and balance point. Zero point represents the value that makes |x∗
i |‖b

∗
i ‖ smallest for given values

of xi+1, . . . , xn. This is because x∗
i is of the form xi +

∑n
j=i+1 µj,ixj and the summation part has been
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caluclated. Balance points are values that make |x∗
i |‖b

∗
i ‖ closest to the average value

√
R√

n‖b∗

i ‖
of the i-th

coefficient of shortest vectors in terms of B∗, where R is the radius of searching. Note that these average

values are computed based on Heuristic 2 and 3. It is clear that the zero point is always unique but

there are two balance points, namely the positive one and the negative one. Note that the average value

obtained by heuristics might be erroneous, we set the tolerance bound to be 0.4 (the distance between

x∗
i ‖b

∗
i ‖ and the average value has an upper bound 0.5). If a balance point cannot make x∗

i ‖b
∗
i ‖ close

enough (according to the tolerance bound) to the average value, we extend the balance point to the

values that make x∗
i ‖b

∗
i ‖ the second closest to the average value. This enumeration strategy ensures that

there are at most 5 choices for each xi (n− k < i < n) and 3 choices for xn during the enumeration, the

latter because negative balance points are not considered for choosing xn due to symmetry. This leads

to a conclusion that a process of orthogonalized enumeration will search at most 3 · 5k−1 nodes. This is

an important routine used by orthogonalized enumeration algorithm, and more detail can be found in

Procedure 1.

Procedure 1 CPV
Input: t, k, dt,unt+1,t.
Output: A set c and its cardinality.
1: c← {⌊−unt+1,t⌉}; // initialize with the zero point
2: if t > n− k + 1 then

3: if |dt − unt+1,t − ⌊dt − unt+1,t⌉| > 0.4 then

4: c← c ∪ {⌊dt − unt+1,t⌋, ⌈dt − unt+1,t⌉};
5: else

6: c← c ∪ {⌊dt − unt+1,t⌉};
7: end if // add the second positive balance point if the first one is not close enough
8: if | − dt − unt+1,t − ⌊−dt − unt+1,t⌉| > 0.4 then

9: c← c ∪ {⌊−dt − unt+1,t⌋, ⌈−dt − unt+1,t⌉};
10: else

11: c← c ∪ {⌊−dt − unt+1,t⌉};
12: end if // add the second negative balance point if the first one is not close enough
13: end if // for those where t < n− k + 1, only the zero point is included
14: return c, card(c).

3.4 Running time and success probability analysis

The running time of enumeration algorithm is given by:

Tnode ·N,

where Tnode is the average amount time used in processing one node, and N is the number of nodes needed

to search. As we can see in Algorithm 1 and Procedure 1, enumerations are restricted to (xn−k+1, . . . , xn)

while other xis are directly computed. The expected number of nodes N can be computed as follows.

Let AvgNi be the average number of choices searched for xi, then AvgNi 6 5. Therefore

N = 3 ·
n−1
∏

i=n−k+1

AvgNi 6 3 · 5k−1.

For a lattice basis B = [b1, . . . , bn] and its Gram-Schimdt orthogonalization B∗ = [b∗1, . . . , b
∗
n], let

x∗ = (x∗
1, . . . , x

∗
n) be the coefficients of a shortest vector v with respect to B∗ and set vi = x∗

i b
∗
i , we have

v =

n
∑

i=1

x∗
i b

∗
i =

n
∑

i=1

vi. (2)

We note that y = (y1, . . . , yn) = (⌊x∗
1⌉, . . . , ⌊x

∗
n⌉) is the orthogonalized integer representation of v.

Under the Heuristic 2 and 3, we can assume that (‖v1‖, . . . , ‖vn‖) is distributed uniformly. Thus the

success probability of orthogonalized enumeration with parameter k in an n-dimensional lattice can be
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Figure 1 (Color online) Relationships between n and
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Figure 2 (Color online) Number of nodes needed for dif-
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estimated as

Psucc(n, k) = Pr
v∼Balln(‖b1‖)

(∀j ∈ [1, n], ⌊‖vj‖/‖b
∗
j‖⌉ ∈ τj),

where τj = {0} for j ∈ [1, n− k], Balln(‖b1‖) denotes a t-dimensional Euclidean ball of radius ‖b1‖. Let

dj denote the expected value of x∗
j , then for j ∈ [n− k + 1, n], we have

τj =























{⌊dj⌉, ⌊−dj⌉, 0}, if max(|dj − ⌊dj⌉|, | − dj − ⌊−dj⌉|) 6 0.4,

{⌊dj⌋, ⌈dj⌉, ⌊−dj⌉, 0}, if | − dj − ⌊−dj⌉| 6 0.4 < |dj − ⌊dj⌉|,

{⌊dj⌉, ⌊−dj⌋, ⌈−dj⌉, 0}, if |dj − ⌊dj⌉| 6 0.4 < | − dj − ⌊−dj⌉|,

{⌊dj⌋, ⌈dj⌉, ⌊−dj⌋, ⌈−dj⌉, 0}, if min(|dj − ⌊dj⌉|, | − dj − ⌊−dj⌉|) > 0.4.

By using Monte-Carlo simulation, we obtain relationships between the lattice dimension n (rang-

ing from 40 to 130) and success probability Psucc(n, k) of the orthogonalized enumeration for k =

8, 10, 12, . . . , 20. The results are displayed in Figure 1.

3.5 A comparison of orthogonalized enumeration and existing enumerations

The number N and probability Psucc(n, k) for the orthogonalized enumeration obtained in Subsection 3.4

gives us expected number of nodes needed to search an n dimensional basis using the orthogonalized enu-

meration, namely N/Psucc(n, k). It is remarked that a large k is not always a good choice for maximizing

enumeration efficiency. There is a proper range for k that is suitable for enumeration with certain dimen-

sion n. For example, k 6 10 when n = 90, k 6 13 when n = 100 and k 6 16 when n = 110. By studying

behavior with a proper k we can get the expected number of nodes needed to search an n dimensional

basis using the orthogonalized enumeration, denoted as North. We also estimate the expected numbers of

nodes when using full enumeration, linear pruning enumeration and extreme pruning enumeration, and

denote them Nfull, Nlinear, Nextreme. We depict the comparison in Figure 2.

Compared to full enumeration, linear pruning enumeration and extreme pruning enumeration achieve

a speedup of 1.189n and 1.414n by using a well-chosen strategy, while our experimental data shows that

the orthogonalized enumeration can improve the full enumeration by a factor of 1.512n. The extreme

pruning enumeration uses a nice technique to prune the searching space of (x1, . . . , xn−k) to a very small

extent and that makes it an extremely effective method. In orthogonalized enumeration, the segment

(x1, . . . , xn−k) is fixed and does not need to be enumerated. So the orthogonalized enumeration has a
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much smaller searching space which is limited by k.

When solving a high-dimensional problem, BKZ method that combines reduction and enumeration is

always used. Some time and space efficient enumeration methods including extreme pruning enumeration

and orthogonalized enumeration are often with low successful probability. These enumerations may fail

to return a desired vector in most cases, and that introduces a greater extra overhead in traditional

BKZ method. However, the design of orthogonalized enumeration brings another benefit which allows

us to avoid such overhead by reusing intermediate results, in other words, we can always update one of

the base vectors after conducting an orthogonalized enumeration. The detail of this benefit is discussed

in Section 4. In addition, our introduction of the parameter k also provides flexibility to control the

searching process, i.e, the larger k is, the more nodes to be searched and the larger probability to find

the shortest vectors. These features make the orthogonalized enumeration a more efficient method than

previous methods and they are among our main innovations of this paper.

4 MBKZ

4.1 Description of the algorithm

The main idea of Mixed BKZ (MBKZ) is to alternately use orthognalized enumeration and traditional

enumeration (full enumeration, linear pruning enumeration, extreme pruning enumeration) in solving

SVP. In MBKZ we set the blocksize of orthognalized enumeration to n in order to make good use of the

fact that the number of nodes needed in the orthognalized enumeration is limited by k.

The design of MBKZ is due to the following reason. According to [21], probability enumeration can

speedup the search but the output may not be a shortest vector or even may not return any vector. As

a result, in BKZ 2.0, randomizing technique is used to ensure that the enumeration process produces

a shorter vector in acceptable time. This is a useful technique, but according to [22], it also brings

unavoidable overheads since the bases are not good after being randomized and an extra reduction process

needs to be called to reduce the randomized bases before enumeration. Even though no quantitative

analysis about the proportion of the extra overheads is given, it is non-negligible in practice. While

in MBKZ, we use a new technique to avoid randomizing bases and also ensure enumeration success

probability. Experimental data shows that this new technique is more effective and it makes MBKZ a

more efficient method compared to the previous ones. We shall explain the main idea of MBKZ in detail

next.

In BKZ process, enumeration is called to successively search a better vector v which is a combination of

(bi, . . . , bj) to replace bi for all i from 1 to n−1, where j = min(i+β−1, n) with β the blocksize. However,

the searching of orthognalized enumeration is conducted among the last k dimensions (bj−k+1 , . . . , bj)

and β is set to n, so these mean that we are always searching the shortest vector v to replace bi among

the same space (bn−k+1, . . . , bn) for all i. All nodes needed to enumerate for replacing bi are usually

included by those enumerated for replacing bi−1 if no changes have been made to the basis after the

enumeration for bi−1. Therefore if the enumeration for bi−1 fails, we can reuse the intermediate results

to search bi to avoid repeating enumeration process. As a result, we can run orthognalized enumeration

when i = 1, store a best result for each depth and decide which bi should be replaced after enumeration.

The pseudo code of MBKZ can be found in Algorithm 2 and also the pseudo code of a slightly modified

version of orthognalized enumeration algorithm for MBKZ in Algorithm 3.

4.2 Running time and success probability analysis of orthognalized enumeration in MBKZ

Based on our previous discussion, the success probability of the orthognalized enumeration in MBKZ,

denoted as Psucc MBKZ(m, k), should be computed as follow:

Psucc MBKZ(m, k) = Psucc(m, k)
n
∏

i=m+1

(1− Psucc(i, k)).
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Algorithm 2 The mixed block Korkin-Zolotarev algorithm

Input: A basis B = (b1, . . . , bn), a blocksize β ∈ {2, . . . , n}.
Output: A MBKZ−β reduced basis (b1, . . . , bn).
1: For the input basis B, compute Gram-Schmidt orthogonalization B

∗ and the Gram-Schmidt triangular matrix µ;
2: svn×n ← 0, slen1×n ← 0; // different from those in Algorithm 1, sv and slen expand n times to store n vectors with

small norm which are respectively a linear combination of n, . . . , 1 base vectors
3: z ← 0, jj← 0, cnt← 0;
4: LLL(b1, . . . , bn, µ); // LLL is called
5: while z < n− 1 do

6: jj← (jj (mod (n− 1))) + 1;
7: if jj = 1 then

8: cnt← cnt + 1; // cnt decides which enum should be called and changes when jj = 1
9: end if

10: if cnt mod 2 = 0 and jj = 1 then

11: kk← n, v ← (1, 0, . . . , 0); // in orthognalized enum the blocksize is set to the maximum
12: (sv, slen) = Orth Enum for MBKZ(µ[jj,kk], ‖b

∗

jj‖
2, . . . , ‖b∗kk‖

2, k); // get n vectors with small norm from

the enumeration
13: for i = jj, . . . , kk do

14: if sleni < ‖b
∗

i ‖
2 then

15: v ← svi, jj← i, break;
16: end if

17: end for// check successively from 1 to n and find the first vector shorter than a basis vector
18: else

19: kk← min(jj + β − 1, n);
20: v = Traditonal Enum(µ[jj,kk], ‖b

∗

jj‖
2, . . . , ‖b∗kk‖

2); // get a short vector in the block
21: end if

22: if v 6= (1, 0, . . . , 0) then

23: z ← 0;
24: insert v into the basis and update it by LLL;
25: else

26: z ← z + 1;
27: reduce the next block by LLL;
28: end if // z is the index which represents the end condition of BKZ, when a shorter vector is found, z is set to 0, and

when no shorter vector can be found for n− 1 trials, the algorithm ends
29: end while

Algorithm 3 Orth Enum for MBKZ

Input: µ, ‖b∗1‖
2, . . . , ‖b∗n‖

2, k.
Output: svn×n, slen1×n.
1: Compute the d← [d1, . . . , dn] = [n−0.5‖b∗1‖/‖b

∗

1‖, . . . , n
−0.5‖b∗1‖/‖b

∗

n‖];
2: svn×n ← 0, slen1×n ← 0;
Lines from 3 to 18 are the same with the lines from 4 to 19 in Algorithm 1.
19: if slent = 0 or slent > ylent then

20: slent ← ylent;
21: svt ← (0, . . . , 0, uvect, . . . , uvecn);
22: end if

23: if t = 1 then

Lines from 24 to 35 are the same with the lines from 27 to 38 in Algorithm 1.
36: return sv, slen.

To be more precise, Psucc MBKZ(m, k) is the probability of successfully finding a better vector to replace

bn−m+1 in the process of orthognalized enumeration. Without using the orthognalized enumeration, this

task requires executing a traditional enumeration on an m dimensional lattice. Figure 3 shows graphs of

Psucc MBKZ(m, k) for k = 8, 10, 12, . . . , 20.

We compute an expected number of nodes that orthognalized enumeration needs with different k,

denoted as North,k, by using the method described in Subsection 3.4. To compare orthognalized enu-

meration and other enumeration methods, we compute expected numbers of nodes needed for different

methods inside MBKZ. Let φfull(m), φlinear(m) and φextreme(m) denote expected numbers of nodes for

finding a better vector in m dimension using full enumeration, linear pruning enumeration and extreme

pruning enumeration respectively, then the expected numbers of nodes needed by the three traditional

enumerations (to substitute the orthognalized enumeration with the parameter k), denoted as Nfull,k,

Nlinear,k and Nextreme,k, are given by
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Nfull,k =
∑

m

(Psucc MBKZ(m, k) · φfull(m)),

Nlinear,k =
∑

m

(Psucc MBKZ(m, k) · φlinear(m)),

Nextreme,k =
∑

m

(Psucc MBKZ(m, k) · φextreme(m)).

See Figure 4 for the graphs for each k = 8, 9, . . . , 20.

According to the description and discussion given earlier in this section, the design for the orthog-

nalized enumeration in MBKZ brings another speedup of O(n) compared to the original orthognalized

enumeration. We have conducted experiments with bases from the SVP challenge site [31] for dimensions

up to 140, the results are consistent with our analysis.

Based on our observation through experiments, we have several remarks to make.

(1) Orthognalized enumeration can exponentially speedup traditional enumeration, however it is uncer-

tain about which bi will be replaced. That is why combining orthognalized enumeration and traditional

enumeration method works better and MBKZ can improve previous BKZ methods sharply. It is remarked

that when using orthognalized enumeration independently as an enumeration process in BKZ algorithm,

results may not be good enough since k should be set large enough in this situation, in order to keep the

probability of updating b1 non-negligible. This may introduce extra overhead in enumeration.

(2) The output of MBKZ generally has better quality compared to that of BKZ or BKZ 2.0 with the

same blocksize (this is the blocksize of traditional enumeration used in MBKZ and is different from that

of orthognalized enumeration used in MBKZ, the latter is always n), a shortest vector for dimensions

100–120 can be directly found by MBKZ with the blocksize about 40–42. However, BKZ or BKZ 2.0

require a much larger blocksize to work, for example, the blocksize in BKZ 2.0 should be set to 75 to

solve challenges with dimensions 90–112 according to [21].

(3) When we choose linear pruning or extreme pruning as the traditional enumeration method in

MBKZ, randomizing technique is not as necessary as that in BKZ 2.0, because the orthognalized enumer-

ation and traditional enumeration methods have different searching spaces and are continuously updating

them independently. Though it is hard to make quantitative analysis, this is thought to be an effective

way to reduce duplicate searching and improve the effectiveness further.

4.3 Experiments

It should be noted that MBKZ is a deterministic method, if given the same starting basis and the same

set of parameters, the same results will be obtained eventually. We make program codes for MBKZ and
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all starting lattice bases used for the following experiments publicly available. These experiments about

MBKZ can be repeated1).

4.3.1 Comparison between orthognalized enumeration and traditional enumeration during MBKZ

MBKZ runs by alternately using orthognalized enumeration and traditional enumeration, so an important

question is that which enumeration plays the biggest role to find a shorter vector, the following experiment

result (conducted on a 121-dimensional basis with seed 0) shows the updated base vector with the smallest

index after an orthognalized enumeration or after n times traditional enumerations. Results are illustrated

in Figure 5.

4.3.2 SVP challenge

SVP Challenge [31] provides sample lattices (indexed by the dimension and seed) for testing algorithms

that solve SVP in Euclidean lattices. Many algorithms have been used for solving SVP of the sample

lattices. For examples, Fukase and Kashiwabara [26] solved challenges with dimension up to 150 by RSR

algorithm using more than 1000 cores and 394 cpu-days, Chen and Nguyen [21] finished challenges with

dimension up to 130 by BKZ 2.0 algorithm, Aono et al. [22] achieved challenges with dimension up to

123 by progressive BKZ algorithm. We also conduct experiments in SVP challenge to test MBKZ and

solve several challenges including dimension 99, 105, 113, 121, see Table 1 for detail. It is remarked that

our computation resources are quite limited.

4.3.3 Comparison of MBKZ with other methods

We also conduct experiments on different methods including BKZ, BKZ 2.0 and MBKZ under the fol-

lowing conditions.

Basis. All methods start with the same 121-dimension BKZ-10 reduced basis (separately conducted

on basis with seed 1, 2, 3 to avoid accidental circumstances).

Blocksize. The blocksize of MBKZ is set to β = 40. And for BKZ and BKZ 2.0, one of the most

efficient progressive strategies, the step-by-step progressive strategy, is used where BKZ (BKZ 2.0) with

β = 20, 21, . . . , n − 1 is called successively. Besides, we also run a MBKZ with the progressive strategy

to make further comparison.

Other parameters and implementations. The parameter k in MBKZ is set to 12, the pruning

parameter for progressive BKZ is 0.15 and the pruning parameter for progressive BKZ 2.0 is set to 20%

according to [21]. All methods are based on the C++ NTL library [14]. Progressive BKZ is implemented

based on the function BKZ FP combing with a step-by-step progressive strategy. For progressive BKZ 2.0,

since an source code of BKZ 2.0 is not publicly available, we implement it by consulting the pseudo-code

in [13, 21] and source codes in NTL library [14] and Progressive BKZ library [32].

Operating system. Linux version 2.6.18 with CPU frequency 2.93 GHz.

Results. As shown in Figures 6–8, BKZ and BKZ 2.0 fail to find a shorter vector than MBKZ in all

three experiments, even combined with the step-by-step progressive strategy. BKZ and BKZ 2.0 have

similar trends, faster in the middle and slower at the start and at the end, while MBKZ’s has a relatively

uniform speed from start to the end. To obtain a short enough vector, a large blocksize and a good basis

are both necessary for BKZ and BKZ 2.0, and that is what progressive strategy is used for. However,

an enumeration in a high dimensional lattice is expensive and demands for a low-probability pruning

strategy. BKZ and BKZ 2.0 using traditional enumeration methods with a low-probability pruning

strategy may get trapped in a local optimum easily. Therefore there is a need to to change search space

by either increasing blocksize or randomizing blocks so that the process of finding a shorter vector can be

continued. The increasing blocksize strategy has been studied in [22]. The randomizing blocks strategy

is likely to introduce extra overhead because the results are uncertain. In contrast, the orthognalized

enumeration in MBKZ can be somehow regarded as a ‘positive randomizing blocks strategy’, it changes

1) Program codes for MBKZ and experiment data are available at: https://github.com/zhengzx/MBKZ.
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Table 1 MBKZ’s results in solving SVP challenge

Dimension Previous norm Our results CPU used CPU frequency

2635 (seed 997) 3 CPUs respectively

99 2642 (seed 0) 2606 (seed 998) running in seed 2.5 GHz

2604 (seed 999) 997998 and 999

2655 (seed 997) 3 CPUs respectively

105 2659 (seed 0) running in seed 2.5 GHz

2643 (seed 997) 997998 and 999

3 CPUs respectively

113 2804 (seed 0) 2739 (seed 999) running in seed 2.5 GHz

997998 and 999

2921 (seed 72) 100 CPUs respectively

121 – running in seed 2.93 GHz

2910 (seed 62) 0,1,. . . ,99
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Figure 7 (Color online) Comparison between progressive
BKZ, progressive BKZ 2.0, MBKZ and progressive MBKZ
on basis with seed 2. The horizontal axis for time and the
vertical axis for ‖b1‖.

Figure 8 (Color online) Comparison between progressive
BKZ, progressive BKZ 2.0, MBKZ and progressive MBKZ
on basis with seed 3. The horizontal axis for time and the
vertical axis for ‖b1‖.

search space for traditional enumerations and ensures the output basis is a better one at the same time.

Combining with the advantages of orthognalized enumeration over traditional enumerations, it is seen

that MBKZ is a more efficient method compared to the existing ones. What’s more, we are glad to find
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that progressive strategy works well on MBKZ and helps to find a shorter vector than MBKZ without it

in all three test cases. Setting up a proper progressive strategy can further improve the effectiveness of

our method.

5 Conclusion

In this paper, we describe a new enumeration algorithm based on orthogonalized integer representations

of the shortest vector, and give a success probability analysis through Monte-Carlo Simulation. Based

on our analysis, we can set a suitable threshold to reduce the enumerated space greatly and achieve an

exponential speedup compared to the existing enumeration algorithms based on BKZ reduction. Another

contribution of this work is to present a new BKZ method named MBKZ. MBKZ involves less enumeration

nodes, it also uses a new technique to reduce the duplicate work caused by probability enumeration and in

the meanwhile, to avoid the overheads brought by randomizing technique. In addition, MBKZ generally

outputs better basis than other BKZ methods with the same blocksize in practice. These features make

it a practical tool in the research of lattice problems.
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