
SCIENCE CHINA
Information Sciences

March 2018, Vol. 61 032114:1–032114:16

https://doi.org/10.1007/s11432-017-9288-4

c© Science China Press and Springer-Verlag GmbH Germany 2018 info.scichina.com link.springer.com

. RESEARCH PAPER .

An adaptive system for detecting malicious

queries in web attacks

Ying DONG1, Yuqing ZHANG1,2*, Hua MA2,3, Qianru WU4,

Qixu LIU1,2, Kai WANG5 & Wenjie WANG1

1National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences,

Beijing 101408, China;
2State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100093, China;
3School of Mathematics and Statistics, Xidian University, Xi’an 710071, China;

4Security Department, Alibaba Group, Beijing 100026, China;
5Zhanlu Laboratory, Tencent Incorporation, Beijing 100080, China

Received 1 August 2017/Accepted 27 October 2017/Published online 2 February 2018

Abstract Web request query strings (queries), which pass parameters to a referenced resource, are always

manipulated by attackers to retrieve sensitive data and even take full control of victim web servers and web

applications. However, existing malicious query detection approaches in the literature cannot cope with

changing web attacks. In this paper, we introduce a novel adaptive system (AMOD) that can adaptively

detect web-based code injection attacks, which are the majority of web attacks, by analyzing queries. We also

present a new adaptive learning strategy, called SVM HYBRID, leveraged by our system to minimize manual

work. In the evaluation, an up-to-date detection model is trained on a ten-day query dataset collected from an

academic institute’s web server logs. The evaluation shows our approach overwhelms existing approaches in

two respects. Firstly, AMOD outperforms existing web attack detection methods with an F -value of 99.50%

and FP rate of 0.001%. Secondly, the total number of malicious queries obtained by SVM HYBRID is

3.07 times that by the popular support vector machine adaptive learning (SVM AL) method. The malicious

queries obtained can be used to update the web application firewall (WAF) signature library.
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1 Introduction

Web attacks are attacks that exclusively use the HTTP/HTTPS protocol. Symantec internet security

threat report (ISTR) [1] revealed that the number of web attacks had explosively increased, reaching

1.1 million every day in 2016, more than twice the rate in 2015 (0.783 million). Among web attacks,

code injection attacks against web applications [2] increased each year and accounted for at least 96.15%

of the entire web attacks in 2016, according to the Imperva web application attack report (WAAR) [3]

and WhiteHat web application security statistic report (WASSR) [4]. In 2015, Team GhostShell claimed

to have hacked numerous websites using SQL injection (SQLI) attacks [5], and disclosed thousands of

compromised account details [6].
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This paper focuses on the most frequent types of web-based code injection attacks [7] in 2016, namely,

cross-site scripting (XSS) [3], SQLI, directory traversal (DT) [3], and remote file inclusion (RFI) [3], each

accounting for 49.09%, 28.32%, 9.82% and 8.92% of the entire web attacks [1, 4]. In the following, web

attacks refer to web-based code injection attacks. Attack vectors of web attacks exist in user input [8].

Whenever user input is improperly handled, these attacks can succeed. Since most user input data exists

in queries1), detecting malicious queries is the core of detecting web attacks. For web applications whose

source code is unavailable, web intrusion detection systems (IDSs) are the only option [9]. A web IDS

acts as an intermediate layer between the protected web application and users, and analyzes web traffic

to detect possibly malicious activities.

A considerable amount of effort has been made to detect malicious queries in web requests using web

IDSs. Two major detection approaches are utilized: signature-based detection and anomaly-based detec-

tion. Signature-based approaches are effective in detecting known attacks with a low false positive (FP)

rate, but unable to detect previously unknown attacks (e.g., zero-day attacks). A popular signature-based

detection approach is WAF. In contrast to signature-based approaches, anomaly-based approaches [10–15]

can detect unknown attacks, but with a high FP rate. The ability to detect unknown attacks has drawn

wide academic attention to anomaly-based approaches.

However, most existing web attack detection models using anomaly detection are unaware of behavior

changes of web attacks, which we call constant learning. Adaptive learning overcomes this shortcoming

by frequently improving the detection ability to adapt to the changing attacks [16,17]. Previous adaptive

attack detection methods [18–20] are designed for network intrusions [21, 22] and are not applicable to

detecting malicious queries in web attacks. A practical solution for keeping the web attack detection model

always updated is to incorporate both informative queries and representative malicious queries, which

together we call important queries. An intuitive approach to obtaining important queries is randomly

selecting requests from web traffic and then manually labeling them. Unfortunately, most randomly

selected queries are similar benign ones, with a low probability of being important, leading to considerable

manual labeling work. This challenge has motivated our research to build a malicious query detection

system that can adaptively incorporate the latest important queries to update the detection model.

In this paper, we address the issues related to the adaptive detection of malicious queries in web

attacks. We present a novel adaptive system (AMOD) for this purpose. AMOD leverages an efficient

adaptive learning strategy, SVM HYBRID, which is a hybrid of suspicion selection (SS) and exemplar

selection (ES). SS features in acquiring the most important informative queries, namely, suspicions, while

ES specializes in harvesting representative malicious queries, exemplars. Suspicions and exemplars are

called important queries. AMOD progressively enhances its detection ability by periodically checking the

latest important queries from incoming traffic. The number of important queries is trivial, so manual

labeling work is minimized. The important queries are then incorporated into the training pool to update

the detection model, which is a meta-learning [23,24] based ensemble classifier [25], with SVM as its meta

classifier. A ten-day query dataset collected from an academic institute website’s web server logs is used

for evaluation. Malicious queries obtained by our system can be used to update the WAF signature

library.

The main contributions of this study are as follows:

• We introduce AMOD capable of detecting web-based code injection attacks, which are the majority

of web attacks.

• We present SVM HYBRID, a new adaptive learning strategy leveraged by AMOD. SVM HYBRID

composes of SS and ES, the contribution of SVM HYBRID is also a hybrid of theirs, namely improving

detection performance and harvesting truly malicious queries respectively.

• Evaluation demonstrates that AMOD outperforms existing web attack detection methods on both a

real-world ten-day query set and the HTTP dataset CSIC 2010 [26] (with F -values of 99.50% and 99.96%,

FP rates of 0.001% and 0.03%, respectively). The total number of malicious queries obtained by SVM

HYBRID is 3.07 times that by SVM AL during the ten-day detection using AMOD.

1) Web request query string is consistently termed as query in this paper for simplicity.
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Figure 1 Sample entry in web server access logs.

Table 1 Comparison of normal queries and malicious queries in web-based code injection attacks

No. Type Query in a web request URL

(a) Normal http://site/index.php?postID=123

(b) SQLI
http://site/index.php?postID=’/**/union/**/select/**/0,

concat(username,0x3a,password)/**/from/**/users/*’

(c) XSS
http://site/index.php?postID=<script>document.location

=“http://mal site/stealcookie.cgi?”+document.cookie</script>

(d) DT http://site/index.php?postID=../../../../etc/passwd

(e) RFI http://site/index.php?postID=http://mal site/hack.txt?ls

The remainder of the paper is organized as follows. Section 2 provides background and related work.

Detailed design and implementation of the system will be presented in Section 3. Section 4 shows data

preparation. Next, Section 5 introduces the process of determining the best configuration of AMOD. In

addition, AMOD is compared with a constant stacking approach and five adaptive approaches, in terms

of both the detection performance and the number of malicious queries obtained. Detection performance

comparisons with related work are also demonstrated. Afterwards, we clarify some relevant issues of our

approach in Section 6. Finally, Section 7 concludes this paper.

2 Background and related work

2.1 Background

Queries contain most user input and are thus closely related to web-based code injection attacks, which

are the most threatening web attacks [1, 3]. Queries can be found in HTTP GET requests recorded in

web server logs. Figure 1 shows a sample entry in web server access logs in common log format (CLF).

The framed text in the request string is a query, which our system examines. A query is identified by a

leading “?” character following the referenced resource, and lists pairs of parameter names and values.

Table 1 compares a normal request and four types of code injection attacks analyzed in this paper:

SQLI, XSS, DT, and RFI. We include remote code execution (RCE) into XSS attacks, since RCE is

essentially a special kind of XSS attacks [27]. The requests in Table 1 are forwarded to a vulnerable

script named “index.php” in a forum website, and the script can extract posts from the database and

present a post to a user. “postID” is a parameter name for this script and takes an integer input value as

the post ID while recording the transaction. As shown in Table 1, (a) is a normal query, and (b)–(e) are

malicious. It can be seen that malicious queries in web-based code injection attacks and normal queries

are different in both character distribution and character sequences.

2.2 Related work

In the literature, most network intrusion detection approaches used HTTP datasets with very few web

attacks [28]. Based on whether a detection method can adapt to the change of web attacks, we divide

existing web attack and HTTP attack detection techniques that use anomaly detection schemes into two

categories: adaptive detection and constant detection. Adaptive detection methods always incorporate

new traffic data to induce an up-to-date detection model, while constant detection methods use a period

of traffic data to build a detection model once and use it for all later detection.
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Figure 2 Taxonomy of the latest academic researches on anomaly detection methods of web attacks and HTTP attacks.

Unfortunately, most adaptive detection techniques [18–20] are designed for HTTP attacks, whose

landscape differs from web attacks’: malicious queries in web attacks have more subtle distinctions from

legitimate queries. Existing adaptive detection approaches of web attacks either ignored parameter values

in queries [16], or only focused on SQLI attacks [17]. The adaptive detection of various types of web

attacks has been found deficient. In this paper, AMOD is proposed to bridge this gap. Figure 2 gives

our taxonomy of the latest researches on anomaly detection of web attacks and HTTP attacks.

2.2.1 Adaptive detection

Adaptive detection can detect the latest unknown attacks by adapting to the changing behaviors of

attacks, yet most adaptive detection methods to date only have been related to HTTP attack detection.

HTTP attack detection. These detection methods analyze packet payloads in network traffic of

port 80, namely HTTP traffic. Three types of unsupervised learning techniques are utilized. (1) Statistic

based. Meng et al. [18] used a statistic-based approach to develop an adaptive blacklist-based packet

filter, which can help filter out network packets based on IP confidence. (2) Dynamic clustering. Wang et

al. [19] employed affinity propagation (AP) in dynamical clustering to detect HTTP attacks adaptively.

(3) Subspace analysis. Zhang et al. [20] proposed adaptive stream projected outlier deTector (A-SPOT),

which used a novel adaptive subspace analysis approach to detect anomalies from network connections.

Web attack detection. Existing adaptive detection approaches of web attacks are as follows.

(1) Markov Models. Fan [16] used multiple hidden Markov models (HMMs) as an adaptive model to

detect web attacks. HMMs were built on benign requests and can identify attacks by calculating dis-

creteness of requests. (2) Neural networks. AIIDA-SQL [17] was an adaptive detector of SQLI attacks,

using case-based reasoning engine to achieve adaptability. Artificial neural networks and SVM were

combined as the detection model to detect malicious SQL queries in HTTP requests.

2.2.2 Constant detection

In terms of constant detection methods for HTTP attacks, Markov models were used by Garcia-Teodoro

et al. [29], Zhong et al. [30] and Ariu et al. [31] to represent the normal behaviors of a service in a

network intrusion detection system (NIDS). N -gram technique is also widely used in NIDSs, such as

PAYL [32], Anagram [33], RePIDS [28] and literature [34]. One-class classifiers were first used in NIDSs

by McPAD [35] to detect HTTP attacks, and recently used by Swarnkar et al. [36] and Duessel et al. [37].

As for web attacks, linear combination was first used by Kruegel et al. [10], and then used by Robertson

et al. [11] to compute the anomaly score of a web request. Besides, Markov models were also used to
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Figure 3 (Color online) System overview.

model queries [12]. Wavelet transform and dimension reduction were used as query anomaly sensor by

Kozakevicius et al. [13] and Juvonen et al. [14], respectively.

3 Design and implementation

In this section, we first illustrate the design of our proposed system for adaptive malicious query detection

(AMOD, “O” for “Q”), followed by the core adaptive learning technique, named SVM HYBRID. Finally,

we introduce our stacking-based training and classification.

3.1 System design

In this paper, we introduce the concept of important queries, which consist of the most informative

normal queries and the most representative malicious queries, as mentioned in Section 1. The goal of

AMOD is to progressively enhance the ability to identify malicious queries by periodically checking the

latest important queries. To reach this goal, our system leverages an adaptive learning approach called

SVM HYBRID to obtain important queries from huge unlabeled traffic.

The system is initialized with a training pool composed of a small set of labeled queries, from which the

initial detection model is trained. The detection model is based on stacking, and composed of three base

classifiers and a meta classifier. SVM is used as its meta classifier, so that SVM HYBRID could exert the

detection model to obtain important queries. To update the initial detection model, the system takes web

server logs as its data source, and examines unlabeled queries in HTTP GET requests in batch mode.

Classified unlabeled queries are analyzed by SVM HYBRID to obtain important queries for labeling.

Thus, the manual work is greatly reduced. As shown in Figure 3, the system proceeds as follows.

(1) Collecting unlabeled requests. We consider it unbeneficial to detect attacks detectable by WAF,

since there must be signatures in the WAF signature repository that can match these attacks. Hence, only

unlabeled requests containing benign queries and malicious queries undetected by WAFs are collected.

(2) Data preparation (Section 4). Data preparation transforms requests into feature vectors of queries

in batches of N days, including data preprocessing, feature construction and reduction.

(3) Classification (Subsection 3.3). Unlabeled queries on the 1st day are classified using the current

detection model, and the classification results are recorded.

(4) Queries selection (Subsection 3.2). A fixed number (150) of important queries are obtained from

classified unlabeled queries on the 1st day using SVM HYBRID.
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(5) Label the obtained important queries manually to identify their exact labels.

(6) Add all the labeled important queries into the training pool2). Update the WAF signature library

using the obtained important queries that are labeled as malicious.

(7) Update the detection model (Subsection 3.3). Retrain the detection model on current training

pool.

(8) Iterate steps (3)–(7) for unlabeled queries of the rest N − 1 days.

3.2 SVM HYBRID

SVM HYBRID, our proposed adaptive learning strategy, operates in the kernel feature space of SVM, and

relies on positions of queries in SVM kernel feature space to decide queries for labeling. Given training

set T = {(x1, y1) , . . . , (xn, yn)}, where xi ∈ R
N is a feature vector, and yi ∈ {−1, 1} is a class label,

the margin is defined as the maximal perpendicular distance between samples of the two classes [38].

SVM aims to find the optimal linear classifier whose separating hyperplane maximizes the margin. When

original samples are non-linearly separable, they could be mapped to a new kernel feature space where

they are linearly separable. Given a feature mapping process ϕ, the corresponding kernel is defined as

K(x, z) = ϕ (x)
T
ϕ (z) . (1)

For data that are non-linearly separable though mapped to infinite dimensional feature space, the

optimization problem can be formulated as

maxα

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyjx
T
i xj ,

s.t. 0 6 αi 6 C (i = 1, . . . , n),

n
∑

i=1

αiyi = 0,

(2)

where αi is non-zero only for samples that are closest to the hyperplane, namely support vectors, the

number of which is usually small. Therefore, the kernel distance is efficient to compute. Penalty parameter

C controls the relative weighting of a large margin and low misclassification rate of training data.

The illustrative graph of SVM HYBRID is presented in Figure 4. The middle solid line is the separating

hyperplane, while the two external solid lines indicate the margin. The upper side of the hyperplane is

the malicious side. “+” represents a query in the positive class, namely, a malicious query, while “−”

stands for a query in the negative class: a normal query. SVM HYBRID comprises of SS and ES. SS

obtains the most important informative queries, which are suspected of being malicious and thus are

called suspicions. Suspicions are within the prone-to-be-misclassified region, called the confusing region:

the grey area delimited by two dashed lines in Figure 4. The two points surrounded by red circles within

the confusing region are suspicions. Conversely, ES obtains the most representative malicious queries,

which are called exemplars, since each of them is an exemplar of similar malicious queries. Exemplars

lie in the malicious side and are far away from the hyperplane. As shown in Figure 4, the four points

surrounded by red circles on the upper side are exemplars.

The main contribution of SS and ES is also different: the former contributes more to improving

detection performance, while the latter harvesting truly malicious queries. The contribution of SVM

HYBRID is a hybrid of these two strengths. Each unlabeled query set is partitioned into two disjointed

subsets for SS and ES respectively. SVM HYBRID starts with SS on one subset and then switches to

ES on the other subset. The partition ratio is an adjustable parameter in SVM HYBRID to address the

tradeoff between detection performance improvement and the number of malicious queries obtained.

3.2.1 Suspicion selection (SS)

Adaptive learning with SVM uncertainty sampling is also known as SVM AL [39–41]. SVM AL and SS

both select unlabeled samples within the margin. However, SVM AL simply selects samples the closest

2) In the following, the terms “training pool”, “training set”, and “labeled set” are used interchangeably.
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Figure 4 (Color online) Illustrative graph of SVM HYBRID.

to the hyperplane and does not consider their distribution. Consequently, similar samples might be

selected, making SVM AL prone to sample bias. Labeling similar samples is also a waste of manual work.

Therefore, given a large pool of unlabeled samples, it is desirable to preserve the density distribution [42]

of samples in the pool during the learning process. Our proposed SS pursues the idea of preserving data

distribution by using clustering to find potential informative queries from unlabeled queries within the

confusing region. In brief, SVM AL concentrates on the most informative data, while SS focuses on the

most important informative data so that data redundancy is reduced to the minimum. The procedure of

SS is as follows.

Firstly, the confusing region is determined. The set of misclassified queries in a training set that fall

into the margin during training is denoted as Q. Queries in Q are sorted in order according to their

kernel distances computed using (3),

f(x) =
n
∑

i=1

αiyiK (xi, x) + b. (3)

The query in Q with the minimal kernel distance (the “+” point with the rectangular frame in Figure 4)

determines the lower boundary of the confusing region (the lower dashed line). Oppositely, the query in

Q with the maximal kernel distance (the “−” point with the rectangular frame) determines the upper

boundary of the confusing region (the upper dashed line). That is,

flower = min
x∈Q

f(x), fupper = max
x∈Q

f(x). (4)

To ensure the existence of the confusing region, the margin should be wide enough to allow misclassifi-

cations of training samples within the margin, which can be achieved by adjusting the penalty parameter

C and SVM kernel parameter of the meta classifier SVM.

Secondly, K-medoids clustering [43] is performed on the unlabeled queries that fall into the confusing

region. The final cluster centers are suspicions. K-medoids begins with K randomly selected samples as

medoids (cluster centers). Then each remaining sample is assigned to the cluster whose medoid is the

closest to it. That is, the partitioning method is based on minimizing the sum of the distances between

each sample and its corresponding referenced medoid. This sum is denoted as E, and is defined as

E =
k

∑

j=1

∑

x∈Cj

|ϕ(x) − ϕ(Mj)|, (5)

where x is a given sample in cluster Cj , whose cluster center is Mj . |ϕ(x) − ϕ(Mj)| is the Euclidean

distance between x and Mj in kernel feature space, and using (1), it can be given by

|ϕ(x)− ϕ(Mj)| =
√

K(x, x) +K(Mj,Mj)− 2K(x,Mj). (6)
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The K cluster centers with which E reaches its minimum value are optimal. The partitioning step

is repeated until the number of unlabeled samples within the confusing region is less than K. When

partitioning terminates, the final cluster centers are suspicions.

Figure 4 shows that the confusing region covers two clusters, each represented by a dashed circle.

Their cluster centers are the two points surrounded by red circles in the two dashed circles. One cluster

center is a normal query and another is a misclassified malicious one. In other words, suspicions might be

misclassified and also might not be malicious. On the contrary, queries obtained by ES are highly likely

malicious. ES is described in the following subsection.

3.2.2 Exemplar selection (ES)

ES serves to obtain representative malicious queries, called exemplars, from the unlabeled queries. New

web attacks are very commonly variants of existing attacks. Queries in variant attacks might be similar to

those in existing attacks. Labeling similar queries would unnecessarily increase manual labeling workload.

As a result, we hope that each exemplar is the unlabeled malicious query that differs most from all the

malicious queries in the current labeled set.

To attain this goal, we apply the kernel farthest-first (KFF) algorithm [44], a greedy heuristic, to obtain

exemplars from the malicious side of the SVM hyperplane. KFF always chooses from the unlabeled query

set the query that is the farthest from all the malicious queries in the labeled set. Given unlabeled query

set U and labeled query set L, the farthest distance is defined as the maximum of the sum of distances

between each malicious query y in L and a query x in U in kernel feature space. Formally, the optimal

x is determined by

argmax
x∈U

〈

∑

x∈L

|ϕ (x)− ϕ (y)|
〉

, (7)

where |ϕ(x) − ϕ(y)| is computed using (6). Each optimal x is an exemplar, and is added to the labeled

set. As can be seen from Figure 4, ES obtains four exemplars, represented by four points surrounded by

red circles. One of the exemplars is a misclassified normal query, yet most exemplars are truly malicious.

At each iteration of the adaptive detection process, suspicions and exemplars are manually labeled to

refine the decision boundary of the meta classifier SVM of the detection model.

To conclude, SS uses the kernel distance of unlabeled queries to the hyperplane, which is already solved

when a query is classified, while ES uses the kernel distance of unlabeled ones to malicious ones in current

training set, which could be computed using the efficient-to-compute kernel function.

3.3 Training and classification

In our approach, we employ stacked generalization [45], also named stacking, a well-known meta-learning

technique, as our underlying detection model. The ability to learn from different learning biases makes

meta-learning an appropriate approach for malicious query detection, due to the complex, dynamic,

confrontational nature of its problem domain. The key idea of stacking is to train a meta classifier from

the prediction results of base classifiers [45]. During training, stacking tries to induce which base classifiers

are reliable and which are not by using a meta classifier. During classification, a test sample is classified

by each of the base classifiers; then these classifications are fed into the meta classifier that makes the final

decision. The base classifiers in our stacking detection model are chosen from three different classifier

families. This combination scheme of base classifiers serves to obtain learning diversity and overcome the

learning bias of classifiers in the same category. The meta classifier in our stacking detection model is

SVM so that SVM HYBRID can operate on our model by exerting its meta classifier.

4 Data preparation

The web server access logs of an academic institute web application during the period of July 1–July 10,

2016 are used to evaluate our system. The institute uses an Apache web server, whose logs are in
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Table 2 Description of web server logs and data preprocessing

Raw logs Data preprocessing

Item Duration Log size Original Cleaned Normalized Filtered
(days) (GB) requests queries queries queries

# 10 31.1 4764598 1882901 1189228 1123497

Table 3 Statistics of query dataset

#Queries Benign Malicious Total

Initial set 900 100 1000

Ten unlabeled sets 990000 10000 1000000

CLF format as shown in Figure 1. In addition, the sever is equipped with a commercial WAF, called

Hillstone [46], and only requests that pass through the WAF are recorded in its web server access logs.

The institute website contains many dynamic pages which accept user input, and thus its web traffic

contains a large number of the web attacks examined in our paper (see Subsection 2.1). During data

preparation, data preprocessing is performed to obtain queries which are later used in feature construction

and reduction.

4.1 Data preprocessing

Our system models queries in HTTP GET requests shown in Figure 1. These requests are preprocessed

using following steps. (1) Data cleaning. Requests whose return code is equal to or greater than 200,

and less than 300 are collected. Then, static requests are removed and the remaining requests are parsed

to extract queries. (2) Data normalization. These steps are performed in order for the cleaned queries:

decoding printable ASCII characters, un-escaping, transforming to lowercase and removing queries whose

length is less than four. (3) Character filter. The general syntax of URI in RFC 2616 [47] defines the

unsafe characters that should not appear in standard queries. We consider queries that contain any

unsafe characters as malicious and use a character filter to remove these queries. Note that we consider

queries with obfuscated code as malicious and do not make further analysis on them, because the goal of

obfuscation in web requests is to evade detection; it is futile to obfuscate benign web requests.

A description of the raw logs and data preprocessing procedure is presented in Table 2. The number of

queries after each step of data preprocessing is shown. As presented in Table 3, eleven disjointed query

sets created from the remaining 1123497 queries are used in our experiments. The initial set is used to

induce the initial detection model, while the ten unlabeled sets (each containing 1000 malicious queries

and 99000 benign ones) are used to update the model.

4.2 Feature construction and reduction

Feature construction transforms each query into a numerical feature vector of N -grams, and is performed

on the eleven sets used in our experiment. An N -gram is an N -character slice of a string, which is

fully automatic and requires no prior knowledge of target web application and target attacks. As for

the value of N , we choose N=2 to balance computational consumption and detection performance; it

also captures both character distribution and the sequence information, which is necessary for attack

detection in strings [28,32–34]. Since 63 unique characters exist in all the queries after data preparation,

632 (3969) distinct N -grams are used in feature construction. To capture the structure of queries more

accurately, a frequency-based N -gram model instead of a binary-based model is applied. Each N -gram

frequency is then divided by the most frequently appearing N -gram frequency in the same query.

5 Experiments and evaluation

In this section, we report and analyze the results of a series of experiments. Experiment 1 (Subsection 5.1)

determines the best configuration of AMOD. Experiment 2 (Subsection 5.2) compares AMOD with a
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Table 4 Determining the best setting

Feature reduction Stacking model SVM HYBRID

IG PCA Base classifiers Meta classifier Partition #Obtained queries (/day)

800 80 RF, Logistic, MLP SVM-RBF 1:1 150

constant stacking approach and five adaptive approaches in terms of detection performance and the

number of malicious queries obtained. Lastly, Experiment 3 (Subsection 5.3) compares AMOD with the

most related work.

All the experiments are implemented in Java and on a machine with 32-GB memory and Inter R© Core
TM

2.93-GHz CPU. To allow SVM HYBRID to work well with the meta classifier SVM of the detection model,

we implement stacking on our own. Single classifiers are applied using WEKA, except that SVM is applied

using LibSVM. Primary metric employed for detection performance evaluation is F -value along with true

positive (TP) rate and FP rate. As defined in (8), F -value is a combination of Precision and Recall. β

corresponds to the relative importance of Precision versus Recall and is set to default 1.

F -value = (1 + β)
2
∗

Precision

β2 ∗ (Precision + Recall)
. (8)

5.1 Experiment 1: determining the best setting of AMOD

Experiment 1 aims to determine the best setting of AMOD as shown in Table 4, and is performed on the

superset of the eleven query sets shown in Table 3 using 10-fold cross validation. Queries in the superset

are represented by N -gram feature vectors in the 3969-dimensional feature space (see Subsection 4.2).

The determination metric is the average F -value of each setting.

Feature reduction. In order to reduce the time in dimensionality reduction and training as well

as improve classification performance [48], we apply feature selection before dimensionality reduction.

Various combinations of feature selection methods (chi-square test, information gain (IG) and document

frequency (DF)) and top selection (150, 200, 300, 500, 800, 1100, 1500 and 2000) are tested. IG with top

800 overwhelms other combinations, and thus is chosen. Then, different combinations of dimensionality

reduction methods (principal component analysis (PCA) and random projection (RP)) and reservation

quantities (10, 20, 30, 40, 60, 80, 150 and 300), as well as a full feature set, are also tested. PCA with

top 80 reserved dimensionalities outperforms others and thus is chosen.

Classifier selection. Using the best setting of feature reduction, classifier selection is carried out

in three steps. (1) Determine base classifier candidates. Twelve classifiers chosen from various classifier

families are tested. MLP, random forest, JRip and simple logistic perform best in their respective family.

Hence, they are chosen as base classifier candidates. (2) Determine the best combination of base classifiers.

All combinations of base classifier candidates are tested in stacking with the meta classifier being SVM

with RBF and polynomial kernel respectively. The combination of random forest, logistic and MLP

outperforms other combinations, and thus is chosen. (3) Determine the best meta classifier SVM. In

terms of meta classifier SVM, RBF kernel outperforms the polynomial kernel, thus SVM with RBF

kernel is used as the meta classifier of the detection model. The optimal pair of SVM penalty parameter

C and RBF kernel parameter γ is (C, γ) = (0.05, 2), obtained using grid-search cross-validation [49].

SVM HYBRID parameters. SVM HYBRID impacts AMOD in both detection performance and

the number of malicious queries obtained by adjusting partition ratio (the ratio of the size of query

subset for SS to that for ES), which is set to 1:1 in our experiment, since we expect that our system

could maintain a desirable detection performance and simultaneously obtain as many malicious queries

as possible. The number of obtained important queries (suspicions and exemplars) each day is set to 150.

5.2 Experiment 2: comparisons of constant approach and adaptive approaches

Experiment 2 aims to compare AMOD with a constant stacking approach and five adaptive detection

approaches, including SS, ES, random selection, SVM AL and adaptive SVM. All the approaches are

implemented in the adaptive learning framework of AMOD (see Subsection 3.1) to carry out the ten-day
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Figure 5 (Color online) (a) SS vs. SVM AL; (b) comparisons of F -values; (c) #Mal. queries obtained.

detection using the configuration obtained in Experiment 1, except that SS and SVM AL are required to

obtain at most 150 important queries each day. As for detection model, except that adaptive SVM uses

SVM, other approaches use stacking. The model in constant stacking approach is trained only once on

the superset of the initial query set and the first-day unlabeled query set. The detection performance of

the models on each day’s unlabeled set (see step (3) in Subsection 3.1) is analyzed as follows.

Figure 5(a) depicts the process of SS in regard to the number of queries within the SVM margin (SS

margin), within the confusing region (SS confusing), and obtained as suspicions (SS suspicion) separately.

SVM AL is also shown about the number of queries within the margin (AL margin). They all present

a decreasing trend. In comparison with SVM AL, important queries obtained by SS (SS suspicion) are

constantly fewer than those obtained by SVM AL (the smaller one of AL margin and 150). However,

queries within the margin in SS are always fewer than those in SVM AL, which implies that SS is more

effective than SVM AL in reducing classifier uncertainty [50].

F -values of the seven detection approaches are exhibited in Figure 5(b). Among them, random selection

shows the worst performance. Yet, for the five adaptive methods, a steep uptrend is shown for the first

three days and then steady uptrend for the rest days. This is because at the beginning only a few

queries are in the training pool, the decision boundary of the model is inaccurate. With more queries

incorporated into the training pool, the detection performance is rapidly improved. The F -value trend of

AMOD on datasets whose malicious queries are detectable by the WAF (AMODvsWAF) is always above

all the others during the ten days, and stabilizes at 100% on the sixth day. This phenomenon shows that

AMOD performs even better on malicious queries detectable by the WAF than on those undetectable by

the WAF, with no false positives and false negatives after six days. Detection performance improvement of

AMOD over the constant stacking approach suggests that AMOD effectively leverages knowledge gained

during the adaptive detection process to enhance subsequent detection of queries. Moreover, AMOD
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along with SS outperforms other adaptive methods. The improvement of AMOD over the adaptive SVM

approach implies the stronger classification ability of stacking over single classifiers. The superiority of

AMOD mainly lies in that it employs SVM HYBRID, which combines the contributions of SS and ES.

Furthermore, SS outperforms ES, which confirms that suspicions contribute more to an accurate detection

model. This is fair because the updated detection model would make a more accurate prediction of new

queries, when the most important uncertain queries (suspicions) are incorporated into the training pool,

rather than representative certain queries (exemplars). SS also outperforms SVM AL, even though SS

obtains fewer important queries, as shown in Figure 5(a). This phenomenon reveals the advantage of SS

over SVM AL: SS requires less manual labeling work and achieves better detection performance.

Figure 5(c) compares the number of truly malicious queries obtained by the six adaptive detection

methods during the ten-day detection. Random selection still performs the worst. Generally, AMOD,

ES and the adaptive SVM approach show an uptrend, while SS and SVM AL show a downtrend. This

distinction is due to the difference in their preference for queries. AMOD, ES and the adaptive SVM

approach prefer queries that are highly likely to be malicious, while SS and SVM AL prefer queries that

the classifier is uncertain about, and thus might not be malicious; the reduction in uncertain queries leads

to a decline in malicious queries obtained. AMOD, together with ES, outperforms other methods. The

reason why ES falls short of AMOD lies in that SS benefits the detection performance of AMOD, which

leads AMOD to obtain more correctly-classified exemplars. Moreover, the adaptive SVM approach lags

behind AMOD and ES, which demonstrates the detection ability of the stacking-based detection model

is stronger than single SVM’s. The total number of malicious queries obtained by AMOD (1315) is

3.07 times and 10.44 times that by SVM AL (429) and random selection (126) respectively. This demon-

strates the overwhelming ability of AMOD in harvesting malicious queries.

To sum up, Experiment 2 demonstrates the advantages of AMOD in two respects: improving detection

performance and obtaining malicious queries. SS does well in the former respect, while ES excels in the

latter. Both SS and ES defeat other methods except for AMOD in their advantageous respect.

5.3 Experiment 3: comparisons with related work

Experiment 3 aims at comparing AMOD with existing web attack detection methods, including linear

combination [11], wavelet transform [13] and dimensionality reduction [14]. Existing web attack detection

methods cannot adapt to the change of malicious behaviors, while our proposed adaptive detection method

is capable of detecting the latest attacks by incrementally updating the detection model.

We use the publicly available HTTP dataset CSIC 2010 [26] for evaluation, whose traffic is targeted

to an e-commerce web application. This dataset contains the four web attacks analyzed in this paper,

with 36000 benign requests and 25000 malicious ones in total, making this dataset suitable for comparing

malicious query detection systems. The dataset contains three subsets: normal traffic set for training,

normal traffic set for test and malicious traffic set for test. Linear combination [11] uses normal traffic

set for training to build the detection model, and uses the two test sets for the test phase. Its anomaly

threshold is set to the default 10% larger than the maximum anomaly score seen during training. Wavelet

transform [13] and dimensionality reduction [14] are unsupervised and thus do not require a training phase;

they are performed on the two test sets. We set their anomaly threshold to 30.62%, the percentage of

malicious queries in the dataset. TW2D-BA is used to perform wavelet transform [13], while PCA along

with RP is used for dimensionality reduction [14]. For AMOD, we use 10% of the dataset as the initial

set, and the rest as ten equal-size unlabeled sets. We also test these methods on the institute dataset,

using the tenth-day set as the test set, and other ten sets as the training sets.

Table 5 compares these detection methods in terms of both detection performance and average runtime

for 1000 web requests in test phase. As is shown, AMOD is the overall winner on both datasets, achieving

the highest F -value (99.96%) and TP rate (99.95%), as well as the lowest FP rate (0.03%) among them on

CSIC 2010 dataset. Among the three methods, linear combination [11] obtains the highest F -value and

TP rate. We attribute the success of AMOD to the principle of SVM HYBRID, namely, choosing both

the most important prone-to-be-misclassified queries (suspicions) and the most representative malicious



Dong Y, et al. Sci China Inf Sci March 2018 Vol. 61 032114:13

Table 5 Detection performance and runtime of web attack detection methods

Method
HTTP dataset CSIC 2010 Institute dataset

F -value (%) TPR (%) FPR (%) Time (s) F -value (%) TPR (%) FPR (%) Time (s)

Linear combination [11] 97.12 95.57 1.23 16.2 91.18 93.00 0.01 26.7

Wavelet transform [13] 96.60 94.19 0.81 18.3 85.42 82.00 0.01 28.1

Dimension reduction [14] 96.73 94.13 0.49 7.9 88.89 84.00 0.005 12.2

Adaptive learning (AMOD) 99.96 99.95 0.03 4.4 99.50 100.00 0.001 6.7

queries (exemplars) from unlabeled queries. By incrementally incorporating correctly-labeled suspicions

and exemplars into the training pool to update the detection model, its detection ability is progressively

enhanced. AMOD also beats other methods in terms of test speed; it takes 4.4 and 6.7 s for AMOD

to preprocess and classify 1000 web requests on average. Thus AMOD is applicable for real-time attack

detection scenarios.

6 Discussion

In this paper, we propose an adaptive learning strategy called SVM HYBRID for efficient selection of

important queries, and develop an adaptive system for malicious query detection. In this section, we

discuss relevant issues of our approach.

Labeling the queries. We labeled the institute dataset to test the performance of AMOD. Manually

labeling is time-consuming and error-prone. Therefore, we first filtered attacks using the rules of Mod-

Security, which performs relatively better than other WAFs [51]. The rules of ModSecurity are provided

by the OWASP ModSecurity core rule set (CRS) [52] project; the CRS version we used is 3.0.0. Then we

manually confirmed the detected attacks, and concluded that the TP rate and FP rate of the detection

results were 43.52% and 4.7%. To decipher the reason for the unsatisfactory detection results, we manu-

ally checked the ModSecurity rule set and found that some rules matched queries with simple malicious

code keywords, which might appear in normal queries, resulting in false positives. Malicious queries that

contain rare or complex malicious code snippets do not match any rules, leading to false negatives. This

demonstrates the necessity of updating the WAF signature library, which can be achieved via our system.

Performance on the balanced dataset. It is rational to use a balanced dataset in most machine

learning studies. However, since it is hard to collect a ten-day query set that is sufficiently large and

balanced, we used random undersampling, which randomly removes benign queries from the original

dataset, to create a decreased balanced dataset. The performance of AMOD on the decreased balanced

dataset slightly falls behind with that on the original dataset before the seventh day, with lower F -value,

lower TP rate and higher FP rate. This is reasonable, as removing a subset of benign queries may cause

the classifier to miss important concepts related to the benign query class. Nevertheless, the performance

on the decreased balanced dataset dramatically improves over time and catches up with the original

dataset case on the seventh day. This confirms that our learning algorithm could handle data unbalance

problem well by incorporating elaborately selected queries by SVM HYBRID to adjust classifier decision

boundary.

Resistance to adversarial drift. Adaptive systems are intrinsically exposed to adversarial drift

attacks, where attackers send a set of well-crafted requests which appear malicious; they do not intend

to compromise the web server, but aim to mislead the classifier instead, so that real attacks might evade

detection [53]. We confirm our system is resistant to adversarial drift. The reasons are as follows. (1) If

the crafted queries appear similar to malicious queries in the training pool, the crafted ones would not

be selected by our system since SVM HYBRID never select similar one to known malicious patterns but

only selects representative unfamiliar ones. (2) If the crafted queries appear quite different from both

benign and known malicious patterns, they pose great uncertainty to our classifier. Hence, the crafted

one would be selected as a suspicion by SVM HYBRID. Then the selected crafted one might be labeled

by the human experts and added to the training pool. The upcoming crafted queries that are the variants
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of the selected crafted one would not be selected. (3) Even though the crafted query is selected as an

exemplar by SVM HYBRID, its variants would not be selected again. Therefore, the adversarially crafted

queries would not affect the detection ability of our classifier.

Comparisons with existing adaptive web attack detection methods. Both Fan [16] and Pinzón

et al. [17] proposed adaptive web attack detection methods. Fan [16] analyzed request URL structure but

ignored parameter values in queries, whereas we examined queries at character level to identify attacks

in parameter values. Moreover, they classified normal behaviors by characteristics such as the number

of visits and frequency. This is not reliable, since normal requests to web pages related to rarely used

functions might be misclassified as malicious. We tackled this problem by only incorporating manually

labeled queries selected by SVM HYBRID. Also, the model might be affected by adversarial drift, since

attackers could send maliciously crafted traffic with the same characteristics of normal traffic; the crafted

traffic might be misclassified as normal. In AIIDA-SQL [17], each SQL query with classification score

between 0.35 and 0.6 was manually revised, leading to huge manual workload, while we proposed SVM

HYBRID to select important queries for labeling and minimize manual work. Besides, AIIDA-SQL

required domain knowledge to extract attack features, thus unknown attacks might evade detection,

while AMOD uses N -grams for automatic feature modeling to identify unknown attacks.

7 Conclusion

This paper introduces a novel adaptive system for detecting malicious queries in web requests, called

AMOD. The core of AMOD, named SVM HYBRID, an adaptive learning strategy, composes of SS and

ES. Queries obtained by SVM HYBRID are incrementally incorporated into the training pool to update

the detection model. Experiments show that AMOD outperforms existing web attack detection methods

in terms of both the detection performance and the number of malicious queries obtained. For future

research, we intend to develop explainable deep learning techniques to make the classifier explain the

reasons behind its classification decisions for each incoming query, so that more previously unknown

attack patterns would be discovered.
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