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Abstract The GMR-2 cipher is a type of stream cipher currently being used in some inmarsat satellite

phones. It has been proven that such a cipher can be cracked using only one single-frame (15 bytes) known

keystream but with moderate executing time. In this paper, we present a new thorough security analysis of

the GMR-2 cipher. We first study the inverse properties of the cipher’s components to reveal a bad one-way

character of the cipher. By then introducing a new concept called “valid key chain” according to the cipher’s

key schedule, we propose an unprecedented real-time inversion attack using a single-frame keystream. This

attack comprises three phases: (1) table generation; (2) dynamic table look-up, filtration and combination;

and (3) verification. Our analysis shows that, using the proposed attack, the size of the exhaustive search

space for the 64-bit encryption key can be reduced to approximately 213 when a single-frame keystream is

available. Compared with previous known attacks, this inversion attack is much more efficient. Finally, the

proposed attack is carried out on a 3.3-GHz PC, and the experimental results thus obtained demonstrate

that the 64-bit encryption-key could be recovered in approximately 0.02 s on average.
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1 Introduction

1.1 Backgrounds and the GMR-2 cipher

With the rapid evolution and development of 4G technologies, nowadays, mobile phone systems are

available worldwide; however, it is difficult to build a complete mobile network in some remote areas

such as outlying desert areas, oceans, and mountains. Thus, to fill the gaps left behind by radio-based

technologies, the use of satellite phones has become widespread in these areas. Currently, the commonly

used satellite communication standards are primarily developed by international standards organization

ETSI [1]; this includes the GMR-1 and the GMR-2 standards. For instance, Thuraya phones are based

on the GMR-1 standard, while the Inmarsat phones adopt GMR-2 standard.

Given that the confidentiality is a very crucial aspect in satellite communications, the encryption

algorithms in the satellite phones should be strong enough to withstand various eavesdropping risks. In the

mobile application scenario, several symmetric ciphers have been developed and adopted as cryptographic

components for secure communications, e.g., A5, SNOW, and ZUC, and their security has been sufficiently

evaluated in the past years [2–8]. However, the GMR cryptographic algorithms are not included in the
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officially published GMR standards, and the details of these satellite cipher algorithms were non-public

until the German research team Driessen et al. [9,10] uncovered the GMR-1 and the GMR-2 ciphers using

reverse engineering in 2012. Their analysis results illustrate that both the aforementioned ciphers are

stream ciphers. In particular, the GMR-1 cipher is a proprietary variant of the GSM A5/2 algorithm [9],

and thus, the cryptanalytic methods against the A5/2 algorithm [11,12] can almost be well-adopted to it.

The GMR-2 cipher is an entirely newly designed stream cipher; however, it has been found to be insecure

in the case of two types of known plaintext attacks. Driessen et al. [9] proposed a known plaintext

attack against it for the first time based on the read-collision technique according to the key-scheduling

features of the GMR-2 cipher. This type of attack can reduce the size of the brute-force space from 264

to approximately 218 with approximately 50–65 bytes of the keystream. Li et al. [13] further put forward

a low data complexity attack method called the dynamic guess-and-determine attack which can break

the GMR-2 cipher by guessing approximately 28 bits on average when 15 bytes of the keystream are

available.

1.2 Main contribution and the outline

Generally speaking, stream ciphers first generate keystreams by implementing a series of complex crypto-

graphic transformation on the initial vectors and the encryption-key, and then perform an XOR operation

on the keystreams with plaintexts in order to obtain the ciphertexts. Therefore, in order to resist a known

plaintext attack, a vital requirement of stream ciphers is the one-way property, i.e., it must be difficult for

the adversary to derive the encryption-key from the keystream using an inversion procedure. According

to [14–16], Golic et al. proposed an inversion attack method against the keystream generator consisting

of a linear feedback shift register and a nonlinear filter and proved the effectiveness of such an attack for

some cases.

In this paper, we study the inverse properties of the GMR-2 cipher to reveal a bad one-way character

of such a cipher. By then introducing a new concept “valid key chain”, we propose what we call the

inversion attack against the GMR-2 cipher using a single-frame (15 bytes) keystream. It should be noted

that Ref. [13] also presents a low-data-complexity attack on the cipher. Such an attack is based on

the inner structure of the cipher in the forward direction and adopts the dynamic guess-and-determine

strategy, which finally reduces the size of the brute-force space to approximately 228. Our proposed

attack mainly concentrates on the backward direction of the cipher and comprises three major phases:

(1) table generation; (2) dynamic table look-up, filtration and combination; and (3) verification. With

the help of an extra 6-KB memory storage, this inversion attack can reduce the size of the exhaustive

search space from 264 to approximately 213 on average when a single-frame keystream is available. This

indicates that the inversion attack is very efficient and practical, which could lead to a real-time crack on

the GMR-2 cipher. The experimental results obtained with a 3.3-GHz PC demonstrate that the 64-bit

encryption key can be completely retrieved in approximately 0.02 s.

This paper is organized as follows: a brief introduction to the GMR-2 cipher is presented in Section 2.

Sections 3 and 4 present an analysis of the inverse properties of the three components of the GMR-2

cipher as well as the cipher itself. Section 5 presents the proposed attack strategy and details the attack

procedure. The experimental results and the attack complexity are subsequently analyzed in Section 6.

Finally, Section 7 presents a concise summary of this study.

2 Description of the GMR-2 cipher

The GMR-2 cipher is a type of stream cipher with 64-bit key. As shown in Figure 1, the internal

states of the cipher include a 8-byte shift register S = (S7, S6, . . . , S0), an 8-byte encryption-key register

K = (K7,K6, . . . ,K0), a counter c ∈ {0, 1, . . . , 7}, and a toggle-bit t ∈ {0, 1}. They are transformed

through three components F , G, and H. At each clock l, the cipher generates 1-byte keystream denoted

by Zl.
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Figure 1 Overall structure of the GMR-2 cipher.

Figure 2 Structure of the F-component.

Table 1 Definition of τ1 and τ2

α τ1(α) τ2(τ1(α)) α τ1(α) τ2(τ1(α))

(0,0,0,0) 2 6 (1,0,0,0) 3 7

(0,0,0,1) 5 3 (1,0,0,1) 0 4

(0,0,1,0) 0 4 (1,0,1,0) 6 2

(0,0,1,1) 6 2 (1,0,1,1) 1 5

(0,1,0,0) 3 7 (1,1,0,0) 5 3

(0,1,0,1) 7 1 (1,1,0,1) 7 1

(0,1,1,0) 4 4 (1,1,1,0) 4 4

(0,1,1,1) 1 5 (1,1,1,1) 2 6

The F -component can be treated as a key schedule part of the GMR-2 cipher, it combines two bytes

of the encryption-key with the previous output (a keystream byte) to compute a 12-bit output. The G-

component is designed for mixing purpose and is a linear function with a 12-bit input and 12-bit output.

The H-component is a nonlinear filter and comprises two parallel DES S-boxes with a 12-bit input and

8-bit output. Subsection 2.1 describes these three components in detail and Subsections 2.2 describes the

mode operation of the cipher.

2.1 Components of the GMR-2 cipher

2.1.1 F-component

As the most interesting part of the cipher, the internal structure of the F -component is depicted in

Figure 2. The 8-byte encryption key K = (K7,K6, . . . ,K0) is fed into a 64-bit register, and it remains

unchanged during the execution of the entire cipher. At each clock, the F -component selects two key bytes

(one from the lower side and another from the upper side) for further computation, and the procedure

can be formally described as follows.

Let us assume that the cipher is executed at the l-th clock. Besides the 8-byte encryption key K, the

inputs of the F -component also contain three variables c, t, and p, where c = l mod 8 is a counter ranging

from 0 to 7 sequentially and repeatedly, t = c mod 2 is a toggle bit, and p = (p7, p6, . . . , p0) ∈ {0, 1}
8 is

a feedback keystream byte that has already been generated in the last clock. We simply use p = Zl−1 to
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Figure 3 Structure of the G-component.

denote the keystream byte that was generated at the previous (the (l− 1)-th) clock. The outputs of the

F -component comprise an 8-bit O0 and a 4-bit O1 with the following definitions:

{

O0 =(Kτ1(α) ≫ τ2(τ1(α)))8,

O1 =((((Kc ⊕ p)≫ 4)&0x0F)⊕ ((Kc ⊕ p)&0x0F))4,
(1)

where α is defined by

α = N (t,Kc ⊕ p) =

{

((Kc ⊕ p)&0x0F)4, if t = 0,

(((Kc ⊕ p)≫ 4)&0x0F)4, if t = 1,
(2)

and τ1 : {0, 1}4 → {0, 1}3, τ2 : {0, 1}3 → {0, 1}3 are two functions implemented via table look-up as

shown in Table 1.

2.1.2 G-component

Figure 3 illustrates the structure of the G-component, where B1, B2, and B3 are all linear functions that

return a 4-bit output on being provided a 4-bit input and have the following definitions:











B1 : (x3, x2, x1, x0) 7→ (x3 ⊕ x0, x3 ⊕ x2 ⊕ x0, x3, x1),

B2 : (x3, x2, x1, x0) 7→ (x1, x3, x0, x2),

B3 : (x3, x2, x1, x0) 7→ (x2, x0, x3 ⊕ x1 ⊕ x0, x3 ⊕ x0).

The G-component obtains the outputs of the F -component (O0 and O1) and 1-byte state register

S0 = (S0,7, S0,6, . . ., S0,0) as its inputs, and after a series of linear transformation, transposition, and

XOR operations, it outputs two 6-bit outputs O′
0 and O′

1, which can be expressed as follows:























O′
0 = (O0,7 ⊕O0,4 ⊕ S0,5, O0,7 ⊕O0,6 ⊕O0,4 ⊕ S0,7, O0,7 ⊕ S0,4,

O0,5 ⊕ S0,6, O1,3 ⊕O1,1 ⊕O1,0, O1,3 ⊕O1,0)6,

O′
1 = (O0,3 ⊕O0,0 ⊕ S0,1, O0,3 ⊕O0,2 ⊕O0,0 ⊕ S0,3, O0,3 ⊕ S0,0,

O0,1 ⊕ S0,2, O1,2, O1,0)6.

(3)

2.1.3 H-component

The H-component obtains the two 6-bit outputs of the G-component as its input. Figure 4 shows the

structure of H-component which comprises two 6-in and 4-out S-boxes (S2 and S6) that are used in the

DES algorithm (refer to Tables 2 and 3). However, these two S-boxes have been reordered to account for



Hu J, et al. Sci China Inf Sci March 2018 Vol. 61 032113:5

Figure 4 Structure of the H-component.

Table 2 S-box S2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

Table 3 S-box S6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

the different addressing. Let us assume that the 6-bit input of the S-box is (x5, x4, x3, x2, x1, x0)2. For the

GMR-2 cipher, the most-significant 4-bits (x5, x4, x3, x2) determine the column index of the S-box while

the least-significant 2-bits (x1, x0) determine the S-box row index. Finally, depending on the toggle-bit

t, the output 1-byte keystream can be defined as

Zl =

{

(S2(O
′
1), S6(O

′
0))8, if t = 0,

(S2(O
′
0), S6(O

′
1))8, if t = 1.

(4)

2.2 Mode of operation

As mentioned in [9], we can now describe the mode of operation for the GMR-2 cipher. When the cipher

is clocked at the l-th time, the state of the GMR-2 cipher will be changed as follows:

• The cipher generates 1-byte keystream Zl based on the current value of the state-register S, the

counter c and the toggle bit t = c mod 2.

• The counter c is incremented by 1, and when it attains a value of 8, it is reset to 0.

• The state-register S is shifted by 1 byte to the right, thus Si=Si+1, for i = 0, 1, 2, . . . , 6, and S7=Zl.

Meanwhile, p = Zl
1) is passed to the F -component as the input parameter for the next iteration (the

(l + 1)-th clock).

The GMR-2 cipher is operated in two modes: the initialization mode and the generation mode.

Initialization mode. In the initialization phase, the following steps are performed:

• The counter c = 0 and the toggle-bit t = 0.

• The 64-bit encryption key is written into the register in the F -component.

• The state register S is initialized with a 22-bit frame-number N according to a special rule, which

is not detailed here as it is irrelevant to our attack.

• After c, t, S have been initialized, the cipher is clocked eight times, but the resulting keystream is

discarded.

Generation mode. After the initialization is finished, the cipher is switched into generation mode

in order to produce and output actual keystream bytes. We use Z
(N)
l to denote the l-th keystream byte

after initialization with the frame number N . For each frame number N , the cipher operates 15 clocks

1) When l = 0, the value of p is set to zero.
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and generate a 15-byte keystream. After that, the frame number N automatically increases by 1 and

the state register is re-initialized with the new frame number. The cipher then generates another 15-byte

keystream. Based on the assumption that the frame numbering starts from 0, the actual keystream Z ′ is

made up of blocks of 15 bytes that are concatenated as follows:

Z ′ =
(

Z
(0)
0 , Z

(0)
1 , . . . , Z

(0)
14 ;Z

(1)
0 , Z

(1)
1 , . . . , Z

(1)
14 ;Z

(2)
0 , . . .

)

. (5)

3 Inverse properties of the GMR-2 cipher’s components

The GMR-2 cipher consists of three components, in which the F -component plays the role of the key

schedule, the G-component acts as a linear transformation, and the H-component implements a nonlinear

transformation. Both the cryptanalytic methods proposed in [9, 13] concentrate on the forward analysis

of the GMR-2 cipher, whereas our proposed inversion attack focuses on the backward analysis, i.e., we

attempt to reverse the encryption procedure to deduce the encryption key from the output keystream

directly. Thus, in this section, we first study the inverse properties of the three components that are

related to our subsequent analysis.

3.1 Inverse property of the H-component

The H-component comprises two parallel S-boxes, and it selects the column and row indices of the two

S-boxes through the toggle-bit t, as show in Eq. (4). Furthermore, We can extract the relationship

between the input (O′
0, O

′
1) of H and the output Zl of H (the keystream byte) by “inverting” the two

S-boxes. Thus, we make the following proposition.

Proposition 1. For the H-component, if the row index and the output of an S-box are known, then

its column index can be uniquely determined. If only the outputs of both S-boxes are known, there will

be 4× 4 = 16 different corresponding row and column indices.

3.2 Inverse property of the G-component

Let us assume that the shift register S0 is known. The G-component can then be represented by an affine

transformation. We focus on how to extract the inputs O0 and O1 of G, given the output O′
0 and O′

1 along

with S0. According to [13] and Eq. (3), the link2) between the input and output of the G-component can

be expressed as

{

y1 = W1 · x 1 ⊕Q ′ · v ,

y2 = W2 · x 2,
(6)

where

W1 =

(

A 0

0 A

)

, W2 = (B), Q ′ =

(

C 0

0 C

)

,

A=













1 0 0 1

1 1 0 1

1 0 0 0

0 0 1 0













, B=













1 0 1 1

1 0 0 1

0 1 0 0

0 0 0 1













, C =













0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0













, 0=













0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0













,

and






y1 =
(

O′
0,5, O

′
0,4, O

′
0,3, O

′
0,2, O

′
1,5, O

′
1,4, O

′
1,3, O

′
1,2

)T
,

y2 =
(

O′
0,1, O

′
0,0, O

′
1,1, O

′
1,0

)T
,

2) It should be noted that the definition of the variable v in Eq. (6) in this paper is different from that in [13]. In fact,

Q ′ · v in this paper is equivalent to v1 as defined in [13].
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













x 1 = (O0,7, O0,6, O0,5, O0,4, O0,3, O0,2, O0,1, O0,0)
T
,

x 2 = (O1,3, O1,2, O1,1, O1,0)
T
,

v = (S0,7, S0,6, S0,5, S0,4, S0,3, S0,2, S0,1, S0,0)
T
.

In the above formulas, x1, x2 and v are used to represent O0, O1 and S0, which is the input of G,

and (y1, y2) is used to represent a simple permutation of (O′
0, O

′
1) which is the output of G. On carefully

observing the H-component, it can be seen that y1 corresponds to the column indices of the two S-boxes,

and y2 corresponds to the row indices of the two S-boxes.

Now if we treat y1, y2 and v (thus O′
0, O

′
1, and S0 ) as known values and x1 and x2 (thus O0 and

O1) as unknown variables, the first and second formulas in Eq. (6) can be regarded as a system of linear

equations with 8 and 4 variables, respectively. As both A and B are invertible matrices, we obtain

{

x 1 = W−1
1 · y1 ⊕Q · v ,

x 2 = W−1
2 · y2,

(7)

where

W−1
1 =

(

A−1 0

0 A−1

)

, W−1
2 =

(

B−1
)

, Q = W−1
1 ·Q ′ =

(

A−1 ·C 0

0 A−1 ·C

)

,

A−1 =













0 0 1 0

1 1 0 0

0 0 0 1

1 0 1 0













, B−1 =













0 1 0 1

0 0 1 0

1 1 0 0

0 0 0 1













, A−1 ·C =













0 0 0 1

1 0 1 0

0 1 0 0

0 0 1 1













.

Therefore, we have the following proposition.

Proposition 2. For the G-component, if O′
0, O

′
1 and S0 (thus y1, y2 and v) are known values, then O0

and O1 (thus x1 and x2) can be calculated directly using Eq. (7). Furthermore, O0 (thus x1) is uniquely

determined by y1, and O1 (thus x2) is uniquely determined by y2.

3.3 Inverse property of the F-component

F is the only component that relates to the original encryption-key bytes, and thus, it is critical that we

analyze it. At each clock, the F -component selects Kc and Kτ1(α) for further computation. Kc is simply

selected by the counter c, while Kτ1(α) is selected based on the subscript τ1(α) which can be determined

according to Eq. (2) and Table 1.

The inverse analysis of the F -component aims at deducing the above two selected key bytes from the

known output (O0, O1) and the feedback byte p. On rewriting the second formula of Eq. (1), Kc can be

expressed by using O1 and p as follows:























Kc,7 ⊕Kc,3=O1,3 ⊕ p7 ⊕ p3,

Kc,6 ⊕Kc,2=O1,2 ⊕ p6 ⊕ p2,

Kc,5 ⊕Kc,1=O1,1 ⊕ p5 ⊕ p1,

Kc,4 ⊕Kc,0=O1,0 ⊕ p4 ⊕ p0.

(8)

For simplicity, let us use the following notations:























kh = (Kc,7,Kc,6,Kc,5,Kc,4)
T
,

k l = (Kc,3,Kc,2,Kc,1,Kc,0)
T
,

ph = (p7, p6, p5, p4)
T,

pl = (p3, p2, p1, p0)
T.
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Figure 5 (Color online) Links among the three inverse components.

Thus, Eq. (8) becomes

kh ⊕ k l = O1 ⊕ ph ⊕ pl. (9)

Therefore, for i = 0, 1, 2, 3, when O1,i ⊕ pi+4 ⊕ pi = 0, the candidate for (Kc,i+4,Kc,i) is selected from

{(0, 0), (1, 1)}, and when O1,i ⊕ pi+4 ⊕ pi = 1, the candidate can only be selected from {(0, 1), (1, 0)}.

This implies that given O1 and p, Eq. (8) has 16 solutions for Kc.

Similarly, on rewriting the first formula of Eq. (1), Kτ1(α) can be obtained from O0 using

Kτ1(α) = O0 ≪ τ2(τ1(α)), (10)

where α is related to Kc and p and can be calculated on the basis of Eq. (2). This leads us to the

following proposition.

Proposition 3. For the F -component, if O1 and p are known, then all possible values of Kc can be

narrowed down from 28 to 24 according to Eq. (8). If O0, p, and Kc are known, the input-key byte

Kτ1(α) can be uniquely retrieved using Eq. (10).

Now we have obtained three inverse properties of the components of the GMR-2 cipher as described

in Propositions 1–3. At the end of this subsection, we briefly discuss the links among these inverse

components as depicted in Figure 5. Given the start point — a keystream byte Z
(N)
l at the l-th clock

with frame number N , let us assume that the feedback byte S0 and p is known. On then using the

H−1-component, 16 possible values of (O′
0, O

′
1) are obtained. The G−1-component is subsequently used,

which results in 16 different values of (O0, O1). Finally, after using the F−1-component, each possible

value of (O0, O1) results in 16 candidates for (Kc,Kτ1(α)). In total, one can obtain at most 16× 16 = 256

possible values for (Kc,Kτ1(α)). The details of the analysis are described in the following section.

4 Inverse properties of the GMR-2 cipher

In this section, we analyze how the three inverse components interact with each other and demonstrate

the links between the keystream bytes and the original encryption-key bytes.

Given a frame number N, let S
(l)
i denote the state of Si at the l -th clock and Z

(N)
l denote the keystream

byte at the l -th clock with N -th frame in the keystream generation phrase, then for 8 6 l 6 14 we have

S
(l)
0 = Z

(N)
l−8 and p = S

(l)
7 = Z

(N)
l−1 ,

which demonstrates that S
(l)
0 is equal to the keystream byte generated 8 clocks before, and p is equal

to the last keystream byte. Hence, for 8 6 l 6 14, both S
(l)
0 and p are known to us, and the vector v

(as previously defined) is also known. We therefore only focus on the cipher at the (c+ 8)-th clock with

0 6 c 6 6 in the following analysis. The main results obtained are the following two theorems.

Theorem 1. At the (c+8)-th clock with 0 6 c 6 6, if Kc is known, then the corresponding encryption-

key byte Kτ1(α) can be uniquely determined using the current keystream byte Z
(N)
c+8.
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Proof. As p is known at the (c + 8)-th clock, from Eq. (2), knowing Kc would aid in calculating α,

as well as τ1(α) and τ2(τ1(α)) by looking up Table 1. Moreover, O1 (thus x 2) can be obtained using

Eq. (1), based on which y2 can be calculated from Eq. (6). Owing to Proposition 1, y1 which corresponds

to the column indices for the two S-boxes can be uniquely determined from Z
(N)
c+8 and the row indices y2.

Consequently, the value of O0 can be uniquely determined using Proposition 2. Finally, with the help of

Proposition 3, the value of Kτ1(α) can be calculated definitely from O0, Kc and p.

Theorem 2. At the (c+ 8)-th clock with 0 6 c 6 6, each keystream byte Z
(N)
c+8 exactly corresponds to

256 possible values of the triple (Kc,Kτ1(α), τ1(α)), where Kc ranges from 0 to 255.

Proof. Firstly, according to Propositions 1 and 2, each keystream byte Z
(N)
c+8 corresponds to 16 different

O1, and for each O1, Proposition 3 further indicates the existence of 16 different candidates for Kc.

Next, by contradiction, we can prove that the candidates for Kc obtained by different O1 will be

different from each other. That is to say, assuming that O
(i)
1 6= O

(j)
1 holds, one can state that the

candidatesK
(i)
c andK

(j)
c that are derived from O

(i)
1 and O

(j)
1 must be different. Otherwise, ifK

(i)
c = K

(j)
c ,

then Eq. (1) indicates that O
(i)
1 = O

(j)
1 , which contradicts the aforementioned hypothesis.

The above two steps demonstrate that each keystream byte Z
(N)
c+8 exactly corresponds to 256 values of

Kc. Moreover, through Theorem 1, τ1(α) and Kτ1(α) can be uniquely obtained from the Kc and Z
(N)
c+8,

which completes this proof.

Theorem 2 shows that each Z
(N)
c+8 can be used to derive several triples (Kc, Kτ1(α), τ1(α)) for 0 6 c 6 7.

Next, how these triples can be further used to obtain new information on K is discussed. Here we list

two rules that are crucial to our attack.

Rule 1. Given one triple (Kc,Kτ1(α), τ1(α)) corresponding to the keystream byte Z
(N)
c+8 with 0 6 c 6 6,

if τ1(α) = c , we can compare Kτ1(α) with Kc:

(i) If Kc = Kτ1(α), it indicates that such a value of Kc can be regarded as a candidate.

(ii) If Kc 6= Kτ1(α), it means that such a value of Kc cannot be a candidate and should be discarded.

Rule 2. Given two triples
(

Km,Kτ1(αm), τ1(αm)
)

and
(

Kn,Kτ1(αn), τ1(αn)
)

which correspond to

Z
(N)
m+8 and Z

(N)
n+8 with 0 6 m 6= n 6 8:

(i) If τ1(αn) = m, we can compare Kτ1(αn) and Km:

• If Kτ1(αn) = Km, it indicates that such a value of (Km,Kn) can be regarded as a candidate.

• If Kτ1(αn) 6= Km, such a value of (Km,Kn) cannot be a candidate and should be discarded.

(ii) If τ1(αn) = τ1(αm), we can compare Kτ1(αn) and Kτ1(αm):

• If Kτ1(αn) = Kτ1(αm), it indicates that such a value of (Km,Kn) can be regarded as a candidate.

• If Kτ1(αn) 6= Kτ1(αm), such a value of (Km,Kn) cannot be a candidate and should be discarded.

5 The real-time inversion attack on the GMR-2 cipher

In this section, we present a very efficient and practical attack against the GMR-2 cipher with low time

and data complexity. We call this attack the real-time inversion attack.

5.1 An overview of the inversion attack

As shown in Figure 6, we first briefly explain the inversion attack procedure, which is divided into the

following three phases.

Phase 1: table generation. Intercept a certain number of keystream bytes (usually only one frame

is sufficient) and then adopt Theorem 2 to generate the seven lists which map the keystream bytes at the

(c+ 8)-th clock with 0 6 c 6 6 to the original key bytes. Meanwhile, build a virtual list for the seventh

original-key byte K7. We refer to these lists as tables.

Phase 2: dynamic table look-up, filtration and combination. Alternately perform table look-up

(8 lists) and the filtration procedure (through Rules 1 and 2) to construct valid key chains (the definition

is provided in Subsection 5.3; it is a special form of candidate key byte), and combine them to form the

full 8-byte candidate keys.
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Figure 6 Overview of the inversion attack procedure.

Figure 7 Table generation procedure.

Phase 3: verification. Verify the correctness of those candidate keys obtained in Phase 2 using the

intercepted keystream bytes (usually the first 8 bytes of a frame are sufficient), discard all wrong 8-byte

encryption-keys.

5.2 Phase 1: table generation

Without the loss of generality, let us assume the frame number of the keystream bytes is N = 0, and let

(Z
(0)
0 , Z

(0)
1 , . . ., Z

(0)
14 ) denote the known 15 bytes of keystream. In order to ensure that the values of p

and S0 = v are known, we analyze the cipher at the (c+ 8)-th clock for 0 6 c 6 6.

According to the mechanism of the GMR-2 cipher, each keystream byte Z
(0)
c+8 is related with

(

Kc,Kτ1(α), τ1(α), p, S
(c+8)
0 , t

)

=
(

Kc,Kτ1(α), τ1(α), Z
(0)
c+7, Z

(0)
c , c mod 2

)

,

which means that a mapping between (Z
(0)
c+8, Z

(0)
c+7, Z

(0)
c ) and (Kc,Kτ1(α), τ1(α)) can be established if

c is known. Thus, from the known keystream (Z
(0)
0 , Z

(0)
1 , . . . , Z

(0)
14 ), we can obtain seven groups of

(Z
(0)
c+8, Z

(0)
c+7, Z

(0)
c ) for 0 6 c 6 6, and each group can be used to build 256 possible values of the triple

(Kc,Kτ1(α), τ1(α)) based on Theorem 2.

For a better explanation, one can refer the table generation procedure in Figure 7. During this phase,

for each group (Z
(0)
c+8, Z

(0)
c+7, Z

(0)
c ) with 0 6 c 6 6, the following steps are performed:

(i) Look up the two S-boxes in order to obtain the 16 values of (y1, y2) using the keystream byte Z
(0)
c+8

and the toggle-bit t.

(ii) Calculate the corresponding values of (x 1, x 2) using Eq. (7) for a given (y1, y2) from step (i), this

also corresponds to O0 and O1.

(iii) Find 16 different values of Kc for a given O1 according to Eq. (8), and then obtain the related

values of Kτ1(α) and τ1(α) according to Theorem 1, which yields 16 triples (Kc,Kτ1(α), τ1(α)).

(iv) Repeat Steps (ii) and (iii) for 16 different values of (y1, y2), thereby yielding 256 triples (Kc,Kτ1(α),

τ1(α)) that are stored in a list denoted by Lc in which Kc is sorted in ascending order.

It should be noted that the above table-generation procedure cannot deduce information for the seventh

original-key byte K7 from the known keystream (Z
(0)
0 , Z

(0)
1 , . . . , Z

(0)
14 ), i.e., we can only assume that the

candidates for K7 range from 0 to 255, but the corresponding values of Kτ1(α) and τ1(α) are not available.
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Figure 8 Diagram of the links for valid key chains in Example 1. (a) Case (1) in Definition 2; (b) case (2) in Definition 2;

(c) case (3) in Definition 2.

Thus we build a virtual list for K7 ranging from 0 to 255 but with empty values for Kτ1(α) and τ1(α). In

total, we generate eight lists, each containing 256 triples. These eight lists are denoted by

{L0,L1,L2,L3,L4,L5,L6,L7} .

5.3 Phase 2: dynamic table look-up, filtration and combination

Now we have generated eight lists in Phase 1; however, simply attempting an exhaustive search using

these lists without any strategy offers no advantage over the brute-force attack. Thus, before describing

our proposed inversion attack strategy, we first introduce the concept of the “valid key chain” based on

the eight lists generated in Phase 1. The core idea of this concept is that one can use it to link the

candidate-key bytes obtained separately from the eight lists in a chain style such that Rules 1 and 2,

which are presented in Section 4, can be adopted to filter out wrong candidates efficiently.

Definition 1 (Key chain). A sequence of ordered key bytes:

( (i1,Ki1), (i2,Ki2), . . . , (il,Kil) )

with different ij (1 6 j 6 l), where ij is the index (subscript) for Kij , is called a key chain with a length

of l bytes if it satisfies the following condition: for every 1 6 m 6 l − 1, there exists a list Lim such that

(Kim ,Kim+1
, im+1) ∈ Lim . For convenience, we simply use

Ki1 → Ki2 → · · · → Kil

to denote this key chain, where Ki1 is the starting node and Kil is the ending node.

Definition 2 (Valid key chain). A key chain Ki1 → Ki2 → · · · → Kil with a length of l bytes is called

a valid key chain if it satisfies one of the following conditions:

(1) There exists an index ij ∈ {i1, i2, . . . , il} such that (Kil ,Kij , ij) ∈ Lil .

(2) il = 7 and there is no other valid key chain that contains the key byte K7.

(3) There already exists a valid key chain with a length of n bytes: Ki′
1
→ Ki′

2
→ · · · → Ki′n

;

furthermore, there exists an index ij ∈ {i′1, i
′
2, . . . , i

′
n} such that (Kil ,Kij , ij) ∈ Lil .

Definition 3 (Disjoint valid key chains). Two valid key chains C1 and C2 are said to be disjoint, if they

satisfy the condition that for each node Kim ∈ C1 and each node Kjn ∈ C2, their subscripts are different,

i.e., im 6= jn.

As the definition of valid key chain is dependent on the eight lists generated in Phase 1, to further

understand this concept as well as its properties, we provide the following example as an illustration.

Example 1. Given a key chain with a length of three bytes (all the subscripts for the key bytes are

different): Ki1 → Ki2 → Ki3 ; the following three cases imply three types of valid key chains:

(1) There exists an index ij ∈ {i1, i2, i3} such that (Ki3 ,Kij , ij) ∈ Li3 , as show in Figure 8(a).

(2) i3 = 7, and there is no other valid key chain that comprises K7, as show in Figure 8(b).

(3) There already exists a valid key chain with a length of 2 bytes: Ki′
1
→ Ki′

2
; furthermore, there

exists an index ij ∈ {i′1, i
′
2} such that (Ki3 ,Kij , ij) ∈ Li3 , as show in Figure 8(c).
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Table 4 Definitions of the variables and candidate sets

Variable Definition Initialization

R
The (i− 1) valid key chains obtained before:

R = {γ1, γ2, . . . , γi−1}.
∅

∆
The key chain currently being looked up:

∆ = γi = (δ
(i)
i1

→ δ
(i)
i2

→ · · · → δ
(i)
il−1

).
∅

Γ = {Γ1,Γ2}

The set of indices (subscripts) for the key bytes that has been

obtained by table look-up, where Γ1 corresponds to the key

bytes in R, and Γ2 for key bytes in ∆.

∅

KC The candidate set of the complete 8-byte encryption keys. ∅

(c,Kc)
Query point that queries the Kc-th row in the c-th list Lc,

it is also used as the control parameter for ending Phase 2.
(0, 0)

Figure 9 Dynamic combination of valid key chains in Phase 2 (the number of valid key chain layers as well as the length

of each valid key chain are dynamically changed).

Properties of valid key chains. According to the definition, for the GMR-2 cipher, the minimum

length of a valid key chain is 1 byte, which means that the key byte is associated with itself, and this

situation corresponds to the “read-collision” case in [9]; while the maximum length of a valid key chain is

8 bytes, which means that all the 8 key bytes are connected in one chain. Therefore, an 8-byte encryption

key can be divide into at most 8 valid key chains, each containing just 1 key byte, or at least 1 valid key

chain containing the entire 8 key bytes. In general, one full 8-byte encryption key can be decomposed

into i disjoint valid key chains with 1 6 i 6 8 (this decomposition is finally combined to form an entire

8-byte candidate key in the attack procedure of Phase 2).

Main idea of Phase 2. Using the concept of the valid key chain, Phase 2 can be described as

“dynamically seeking all valid key chains (that accord with Rules 1 and 2 on looking up table and

performing filtration) and combining them to form candidates for the complete 8-byte encryption key”.

Let us define three candidate sets R, ∆ and KC, an index set Γ and a query point (c,Kc) as shown in

Table 4. Using these symbols, and referring to Figure 9, the second phase of the inversion attack can

be briefly explained as follows (for the details of the attack procedure of Phase 2, one can refer to the

algorithms described in Appendixes A and B):

(i) Choose a starting node (query point) (0,K0), and for each possible value of K0 (in the range of

0–255), dynamically look up the table (8 lists obtained in Phase 1) in a serialized manner in order to

build up a key chain ∆, and store the indices (subscripts) for the key bytes obtained in ∆ into the set Γ2.

Once ∆ becomes “valid” through the filtration procedure, treat ∆ = γ1 as the first layer of the valid key

chain, and store the key bytes of the chain as well as their indices (subscripts) into R, and copy these

indices (subscripts) into Γ1.

(ii) Choose a new starting node (min(Γ),Kmin(Γ)) where min(Γ) is the minimum subscript for the key

bytes (K0–K7) that have not been previously obtained3) (by looking up the relevant table), and for each

possible value of such a key byte (in the range of 0–255), continue to lookup the table and perform the

3) As each time the starting node is chosen in such a way and, according to Definitions 2, these constructed valid key

chains, which are finally combined to form a full 8-byte candidate encryption key, are disjoint.
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Figure 10 (Color online) Procedure of dynamic table look-up in Phase 2.

filtration alternately to build up the i-th layer of a valid key chain ∆ = γi for 1 6 i 6 8. Similarly, update

the sets R = {γ1, γ2, . . . , γi}, Γ1 and Γ2.

(iii) Check whether all the valid key chains in R exactly cover the entire 8-byte encryption key, and if

so, combine these valid key chains, save them in KC, and backtrack to the starting node of ∆ to find a

new valid key chain (in order to find new candidate keys). Else return to Step (ii).

(iv) Repeat Steps (i)–(iii) until all the candidate 8-byte encryption keys are obtained.

Procedure for dynamically looking up table to build up a key chain. Given a query point

(c,Kc) as the starting node of a chain ∆ (refer to Figure 10), we can use c to point to the list Lc,

which is then used by the adversary to look up in order to obtain (Kτ1(α1), τ1(α1)) corresponding to the

row value Kc. This is followed by a second similar procedure; at this point, we have obtained a middle

node (τ1(α1),Kτ1(α1)), then we can use τ1(α1) to point to the list Lτ1(α1), which indicates a new result

(Kτ1(α2), τ1(α2)) by looking-up its row value Kτ1(α1). On repeating this process, we can further obtain

the next middle nodes (Kτ1(α3), τ1(α3)) · · · by using the list Lτ1(α2) · · ·, and we thus obtain a key chain:

∆ = (c,Kc)→
(

τ1(α1),Kτ1(α1)

)

→
(

τ1(α2),Kτ1(α1)

)

→
(

τ1(α3),Kτ1(α3)

)

→ · · ·,

which is then passed to the filtration procedure to check whether it is a valid key chain.

Procedure for performing filtration to obtain a valid key chain. The purpose of the filtration

is to check when the key chain obtained by looking up the table will be a valid key; this can be achieved

by applying Rules 1 and 2 in order to discard the inconsistent cases. Moreover, during the filtration, we

are required to perform the following backtracking steps as well:

• If the ending node of a key chain disagrees with the constraints of Rules 1 and 2, such a chain would

not form a valid key chain. We then backtrack to the starting node of the current key chain ∆ = γi,

update Γ2 ← ∅, ∆← ∅, set a new value for this starting node (as the query point), and then perform a

similar procedure of dynamically looking up the relevant table, filtration and combination.

• If the starting node of ∆ = γi exceeds the range of 0–255, we backtrack to the starting node of

the (i − 1)-th layer of the valid key chain γi−1 in R and perform a similar procedure. This procedure

is repeated until we backtrack to the first layer of the valid key chain γ1. If the starting node of γ1 is

exceeds the range of 0–255, which indicates that all the valid key chains have been found, we then stop

Phase 2 of the inversion attack.

5.4 Phase 3: verification

In order to exclude wrong candidate keys, Phase 3 tests the candidate keys stored in KC one by one using

the first 8 bytes (Z
(0)
0 , Z

(0)
1 , . . . , Z

(0)
7 ) of the known keystream. For each candidate key, the following steps

are performed:

(i) Fill the key register K with the candidate key, and initialize the shift register S with the known

frame number.

(ii) Clock the cipher 8 times for initialization, and obtain the next 8 bytes keystream.

(iii) Compare this calculated keystream with the corresponding 8-byte of the intercepted known

keystream. If they match, the correct key is obtained; otherwise, this candidate key is discarded.
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6 Experimental results and complexity analysis

In order to verify the validity of our proposed attack, in this section, we present some experiments and

a complexity analysis.

6.1 Experimental results

We carried out 10000 experiments using a 3.3-GHz PC for the GMR-2 cipher with random frame numbers

and keys. Our results demonstrate that the retrieved encryption key may not be unique for a known 15-

byte keystream at some cases. In other words, there exist multiple encryption keys corresponding to the

same 15-byte keystream, and these encryption keys usually differs only one byte from each other. More

precisely, each 15-byte keystream indicates 1.03 encryption keys on average, of which approximately 97.2%

of the keystreams indicate a unique encryption key, and the remaining 2.8% keystreams indicate multiple

(at most four) encryption keys. Thus, in order to overcome this problem, one additional keystream byte

of another frame is required in these cases, which means that 9 bytes of the keystream are completely

exploited in the third phase. Therefore, an additional frame of the keystream is leveraged in Phase 1,

and the required number of keystream bytes for entire attack is 15–16.

For the comparison, the frequency distribution of the number of the candidate keys in Phase 2 for

each attack is plotted with respect to an average number of 7755, and is shown in Figure 11. It can be

observed from this figure that a verification is required to be performed 7755 times on average during

Phase 3. Meanwhile, the time consumed for each attack is also obtained with the distribution shown

in Figure 12. It can be observed that the 8-byte encryption key can be derived in approximately 0.02 s

on average, where 0.08 ms is consumed for generating the table, 3.37 ms is consumed for verifying the

candidates, and the remaining 16.55 ms is consumed in Phase 2.

We also point out that if we perform the forward verification each time an 8-byte candidate key is

combined during Phase 2 which involves alternating Phases 2 and 3 at the same time; then once an 8-byte

candidate key passes the forward verification of the 9 bytes of the keystream, the attack can be stopped.

In this case, we can accelerate the inversion attack. In this optimized inversion attack, the average

number of verifications to be performed is reduced to 3980 and the time consumed is approximately 0.01

s on average. This optimized attack procedure is presented in Figure 13.

6.2 Complexity analysis

Time complexity analysis. The time complexity of our inversion attack takes into consideration

the time required for table generation, dynamic table look-up, filtration, combination, as well as the

verification. The time complexity can be analysed from the experimental statistics (see Subsection 6.1).

However, for convenience, we only focus on the exhaustive search space. As we perform the verification

7755 ≈ 213 times on average, the size of the exhaustive search space is thus approximately 213, which

could be further reduced to 3980 ≈ 212 on average by adopting the optimized attack.

Data complexity analysis. The data complexity of our attack is 15–16 bytes of the keystream. In

10000 experiments, approximately 97.2% of the encryption keys can be uniquely determined using the

15 bytes of the keystream, and the rest (approximately 2.8%) of the cases require an extra keystream

byte. Thus, 15×97.2%+16×2.8%≈ 15.03 bytes of the keystream are required to distinguish the correct

encryption key from 213 candidates on average.

Memory complexity analysis. The memory complexity of our attack stems mainly from the table

(eight lists) generated in Phase 1. As each list comprises 256 triples (Kc,Kτ1(α), τ1(α)), our attack

requires approximately 256× 3× 8 bytes = 6 KB of storage space.

7 Conclusion

In this paper, we propose a very efficient, real-time inversion attack against the GMR-2 cipher. It can

retrieve the complete 8-byte encryption key using only one frame (15 bytes) of the keystream on average,
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Figure 11 (Color online) Frequency distribution of the number of candidate keys in Phase 2 (the numbers on the horizontal

axis are in thousand of times, and each interval a–b contains the left number a, but does not contain the right value b).
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Figure 12 (Color online) Frequency distribution of the attack time.

Figure 13 Optimized inversion attack procedure.

the size of the exhaustive search space can be reduced to approximately 213, and the memory complexity

is 6 KB.

Table 5 shows the comparison between the known cryptanalytic results and our results, from which it

can be observed that the inversion attack proposed in this paper possesses evident superiority as compared

to the dynamic guess-and-determine and the read-collision based attacks. Given one frame (15 bytes) of

the keystream, one can break the GMR-2 cipher within only 0.02 s using a 3.3-GHz PC. This further
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Table 5 Cryptanalytic results for the GMR-2 cipher

Method Data Brute force space Memory Average time

Read-collision based technique [9] 15–20 frames 210 ∼ -

Read-collision based technique [9] 4–5 frames 218 ∼ -

Dynamic guess-and-determine [13] 1 frame 228 ∼ 280 sN

Inversion attack (this paper) 1 frame 213 6 KB 0.02 s△

Optimized inversion attack (this paper) 1 frame 212 6 KB 0.01 s△

N: Experimental plantform: 3.3-GHz PC; Number of experiments: 1000.

△: Experimental plantform: 3.3-GHz PC; Number of experiments: 10000.

demonstrates that there exists serious security flaws in the GMR-2 cipher, and it is crucial for service

providers to upgrade the cryptographic modules4) of the satellite phone system in order to provide the

communication confidentiality.
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Appendix A Phase 2 (Part I) of the inversion attack
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Appendix B Phase 2 (Part II) of the inversion attack
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