
SCIENCE CHINA
Information Sciences

March 2018, Vol. 61 032105:1–032105:14

doi: 10.1007/s11432-016-9030-0

c© Science China Press and Springer-Verlag Berlin Heidelberg 2017 info.scichina.com link.springer.com

. RESEARCH PAPER .

Attacking OpenSSL ECDSA with a small amount of

side-channel information

Wenbo WANG1,2 & Shuqin FAN2*

1Luoyang University of Foreign Languages, Luoyang 471003, China;
2State Key Laboratory of Cryptology, Beijing 100878, China

Received 25 August 2016/Revised 13 December 2016/Accepted 21 January 2017/Published online 30 August 2017

Abstract In this work, we mount a lattice attack on the ECDSA signatures implemented by the latest

version of OpenSSL which uses the windowed non-adjacent form method to implement the scalar multipli-

cation. We first develop a new way of extracting information from the side-channel results of the ECDSA

signatures. Just given a small fraction of the information about a side-channel result denoted as double-and-

add chain, we take advantage of the length of the chain together with positions of two non-zero digits to

recover information about the ephemeral key. Combining the information of both the most significant digits

and the least significant bits, we are able to gain more information about the ephemeral key. The problem

of recovering ECDSA secret key is then translated to the hidden number problem which can be solved by

lattice reduction algorithms. Our attack is mounted to the secp256k1 curve, and the result shows that 85

signatures would be enough to recover the secret key, which is better than the result that previous attack

gained only utilizing the information extracted from the least significant bits, using about 200 signatures to

recover the secret key.

Keywords ECDSA, OpenSSL, lattice attack, windowed non-adjacent form, hidden number problem,

Flush+Reload attack

Citation Wang W B, Fan S Q. Attacking OpenSSL ECDSA with a small amount of side-channel information.

Sci China Inf Sci, 2018, 61(3): 032105, doi: 10.1007/s11432-016-9030-0

1 Introduction

Digital signature schemes can be used to provide the data integrity, data origin authentication and non-

repudiation for basic cryptographic services. They are widely used as primitives in cryptographic protocols

that support entity authentication, authenticated key transport and authenticated key agreement [1–3].

As a popular used algorithm, the digital signature algorithm (DSA) [4,5] was specified in the FIPS, known

as the digital signature standard (DSS). The elliptic curve digital signature algorithm (ECDSA) [6], which

was first proposed by Vanstone [7] in 1992, is the elliptic curve variant of the DSA. It has been widely

used in many situations, including the Austrian Citizen Card, the Apple’s CommonCrypto framework

(as included in iOS versions 7.1.2 through 8.3) and the Bitcoin [8], etc.

OpenSSL implementation of ECDSA and its possible side-channel attacks. One of the

most popular software implementations of ECDSA is its OpenSSL [9] implementation. As a commonly

used open-source cryptographic library, OpenSSL has been widely used to implement many cryptographic

protocols and standards, including the secure sockets layer (SSL) protocol, transport layer security (TLS)

*Corresponding author (email: fansq@sklc.org)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-016-9030-0&domain=pdf&domain=pdf&date_stamp=2017-8-29
https://doi.org/10.1007/s11432-016-9030-0
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-016-9030-0

Wang W B, et al. Sci China Inf Sci March 2018 Vol. 61 032105:2

protocol, the OpenPGP standard, etc. For elliptic curves over characteristic two fields, the Montgomery

ladder method is used in OpenSSL to implement the scalar multiplication, which has been attacked by

Yarom and Benger [10] using the side-channel attack with one signature fully recovering the ECDSA

private key. For elliptic curves over prime fields, the windowed non-adjacent form (wNAF) method

is used to implement the scalar multiplication, which is now being used by default in the OpenSSL

implementation of ECDSA in its latest version (version 1.0.2h, published in May 3, 2016). We only focus

on those curves over prime fields with wNAF methods in this paper.

In a real-world scenario, implementation issues are always the main vulnerabilities that influence the

security of the algorithm. After the initial work of side-channel attack by Kocher et al. [11], more

side-channel attacks [12–18] have been well developed to mount on software implementations. In the

implementation of the ECDSA algorithm, one core operation is to implement the scalar multiplication of

the given point G on the elliptic curve by the ephemeral key k. One recent work of the cache side-channel

attack that named the Flush+Reload attack is proposed by Yarom and Falkner [19] in 2014, which can

get information about k by observing the execution of kG. It can get the sequence of point additions and

doublings (denoted as the double-and-add chain) which are used to implement the scalar multiplication.

More recently, Allan et al. [20] proposed an amplified side-channel attack, being able to extract more

information. Their new side-channel attack manages to obtain a perfect double-and-add chain without

error with probability being nearly 100%. Given the double-and-add chain, one can seek to retrieve

information about the ephemeral key, thus being able to recover the secret key. For different methods of

implementing the scalar multiplication, the information that can be obtained from the double-and-add

chain is different.

There are several ways to implement the scalar multiplication, among which the following three methods

are perhaps the most popular ones: double-and-add method, the sliding-window method and the wNAF

method. Suppose we get the double-and-add chain of the scalar multiplication by Flush+Reload attack.

If the double-and-add method is used for scalar multiplication, then getting the double-and-add chain

indicates that the scalar itself be fully recovered; if the sliding-window method is used, then applying the

method described in [21], the secret key can be easily recovered since the double-and-add chain helps to

directly determine some discrete bits of the ephemeral key. While for the wNAF method, recovering the

secret key would not be that easy, since it is not convenient to obtain direct information on bits of scalar

from the double-and-add chain. In fact, one cannot get any direct information of the scalar except for

several least significant bits (LSBs) [22].

Attacks against ECDSA. It has been known that the leakage of the ephemeral key can be used to

recover the private key of ECDSA. It was first in 2001 that Howgrave-Graham and Smart [23] proposed

their attack against DSA heuristically under the assumption that some consecutive leaked ephemeral

key bits be known by side-channel attacks. In 2002, Nguyen and Shparlinski [24] analyzed their method

in further details and gave a provable polynomial-time attack against DSA when some consecutive bits

(e.g., the LSBs) of the ephemeral keys were leaked. They also extended their results to ECDSA [25] and

managed to recover a 160-bit private key with 100 signatures each leaking 3 consecutive least significant

bits. The basic idea is to reduce the key recovery problem to an instance of the hidden number problem

(HNP), which can be further reduced to the closest vector problem (CVP) in a suitable lattice, with the

knowledge of consecutive leaked ephemeral key bits. The best result of this method so far is achieved

by Liu and Nguyen [26] in 2013, using the algorithm BKZ 2.0 [27], which is one of the best lattice

reduction algorithms up to now. A 160-bit signature with 2-bit leakage of LSBs can be recovered with

100 signatures.

The attacks mentioned above are mainly based on the fact that at least several bits of the ephemeral

key k are definitely known. However, this would become quite hard when the wNAF method is used in

implementation of ECDSA as the former one does not reveal direct information on bits of the ephemeral

key.

Benger et al. [22] proposed a method to extract the LSBs of the ephemeral key with the knowledge

of double-and-add chain of the execution of scalar multiplication in ECDSA implementation via the

Flush+Reload attack, being able to recover the private key of the secp256k1 curve using about 200

Wang W B, et al. Sci China Inf Sci March 2018 Vol. 61 032105:3

signatures with success probability being 3.5%. However, the number of required signatures is too big,

as the average number of leaked LSBs is about
∑∞

i=0 i/2
i ≈ 2 per signature.

In [28], van de Pol et al. proposed a new way of obtaining information about the ephemeral key by

extracting information indirectly from a perfect double-and-add chain. They managed to obtain 47.6 bits

of information per signature on average, which is far more than the result of Benger et al., leading to 13

signatures recovering the private key of the secp256k1 curve based on results of the Flush+Reload

attack. However, this method requires that the double-and-add chain be perfect, which means that it

should be full and without any error. Meanwhile it relies on the property of some special curves, i.e., the

order q of point G can be expressed as 2n − ε, where |ε| < 2p, p ≈ n/2. On the other hand, the instances

used to construct the HNP are not relatively independent, with the information of one signature being

used more than once, which means that the correct solution might not correspond to the lattice problem.

In [29], Fan et al. proposed a new effective way of extracting and utilizing information from the perfect

double-and-add chain, being able to obtain as much as 105.8 bits of information per signature on average

for 256-bit ECDSA based on the result of the Flush+Reload attack. The problem of recovering the

secret key is then translated to the extended hidden number problem (EHNP) which can be solved by

lattice reduction algorithm. They managed to successfully recover the secret key of the secp256k1 curve

with only 4 signatures. Their method does not rely on the special property of q, and each signature is

only used once to construct an EHNP instance, which fully avoids the drawbacks in [28].

Our contribution. In this paper, we give a lattice attack on the ECDSA implementation in the

latest version of OpenSSL which uses the wNAF method to implement the scalar multiplication, using

only a small fraction of information of the double-and-add chain of the ephemeral key. We propose a

new way of extracting information about the ephemeral key, only using the length of the double-and-add

chain together with positions of the second non-zero digit and the last non-zero digit (counted from the

higher index). Combining the information of both the most significant digits and the LSBs, we are able

to gain no less than 2.99 bits of information on average per signature on 256-bit curve. The problem of

recovering private key is then translated to the hidden number problem, which can be solved by lattice

reduction algorithms. Our attack is mounted to the secp256k1 curve, and the result shows that 85

signatures would be enough to recover the secret key.

Comparing with [29], our attack only uses a small fraction of the double-and-add chain of the ephemeral

key k. In fact, we only need to know the positions of the second non-zero digit and the last non-zero

digit (from the higher index) together with the length of the chain rather than obtaining a perfect one

from the side-channel attack. We utilize only the most significant bits together with the least significant

bits rather than utilizing all positions of the double-and-add chain. From this aspect, our attack may be

more convenient to be used. On the other hand, we are able to obtain averagely no less than 2.99 bits

information about the ephemeral key each signature, and even about 3.99 bits on average for q ≈ 2n − ǫ

where ǫ > 0 is small, which is more than the 2 bits on average in [22] extracting information only from

the least significant bits. So reasonably the required signatures are decreased from 200 to 85. We also

propose some selection rules on signatures to improve the attack results.

2 Preliminaries

In this section we briefly recall the elliptic curve digital signature algorithm (ECDSA). We further intro-

duce its implementation in OpenSSL which use the wNAF representation to implement scalar multipli-

cation and the possible attack against it. After that the Hidden Number problem is introduced.

2.1 The elliptic curve digital signature algorithm (ECDSA)

Let E be an elliptic curve defined over a finite field Fp where p is prime and G ∈ E be a fixed point

of a large prime order q. Both G and q are publicly known. The private key of a signer is an integer

0 < α < q, and the public key is the point Q = αG. Given a hash function H , the ECDSA signature

(r, s) of a message m is computed as follows:

Wang W B, et al. Sci China Inf Sci March 2018 Vol. 61 032105:4

(1) Choose an ephemeral key k randomly such that 0 < k < q.

(2) Compute the point (x, y) = kG, and let r ≡ x mod q; if r = 0, go back to the first step.

(3) Compute s = k−1 (H(m) + r · α) mod q; if s = 0, go back to the first step.

Given the knowledge of the ephemeral key k and (s, r,m), the private key can be easily recovered by

α = r−1(s · k −H(m)) mod q. (1)

2.2 OpenSSL implementation of ECDSA by wNAF and its possible attack

Let us first describe the basic implementation of scalar multiplication using the windowed Non-adjacent

Form (wNAF) representation, which is used by default in the latest version of OpenSSL.

First, a window size w is chosen (e.g., for curve secp256k1, w = 3) before computing the scalar

multiplication kG. Then precomputation and storage of the points {±G,±3G, . . . ,±(2w − 1)G} are

executed. After that the scalar k is converted to its non-adjacent form (NAF). Algorithm 1 introduces

the concrete method for converting a scalar into its NAF. Suppose there are totally l non-zero digits

in the output sequence {ei} of Algorithm 1. Denote the i-th non-zero digit in {ei} as ki, where ki ∈
{±1,±3, . . . ,±(2w − 1)} for 1 6 i 6 l. Let λi be the position of each ki in the chain of {ei}, then for

i > 2, λi − λi−1 > w + 1 and the scalar k can be rewritten as k =
∑l

i=1 ki · 2λi . We call kl the most

significant digit (MSD), and MSDs denotes kl together with kl−1.

Algorithm 1 Conversion to wNAF form

Require: Scalar k and window size w;

Ensure: e0, e1, e2, . . . , eλl
is the wNAF form of k;

1: i ⇐ 0;

2: while k > 0 do

3: if k mod 2 = 1 then

4: ei = k mod 2w+1;

5: if ei >= 2w then

6: ei ⇐ ei − 2w+1;

7: end if

8: k ⇐ k − ei;

9: else

10: ei ⇐ 0;

11: end if

12: k ⇐ k/2;

13: i ⇐ i+ 1;

14: end while

After converting k to the wNAF form, the multiplication kG is executed as the Algorithm 2 describes.

In the actual OpenSSL execution, the bitlength of k is set to a fixed value of ⌊log2 q⌋ + 1 by adding q

or 2q to the ephemeral key, which can resist the Brumley and Tuveri remote timing attack [16]. In most

cases, the multiplication is done as (k + q)G.

Algorithm 2 OpenSSL implementation of kG using wNAF

Require: Scalar k in the wNAF form e0, e1, . . . , eλl
and precomputed points {±G,±3G, . . . ,±(2w − 1)G};

Ensure: Q = kG;

1: Q ⇐ 0;

2: for i = λl, λl − 1, . . . , 0 do

3: Q ⇐ 2 ·Q;

4: if ei 6= 0 then

5: Q ⇐ Q+ eiG;

6: end if

7: end for

We can see that in Algorithm 2, when the if-then block is ran into, digit ei is non-zero, and vice

versa. So if whether the if-then block is executed or cannot be detected during each loop of for-do,

we can determine whether ei is zero or not. The Flush+Reload attack [10, 19], which is a new kind

Wang W B, et al. Sci China Inf Sci March 2018 Vol. 61 032105:5

of cache side-channel attack [11] that targets the last-level cache (LLC) shared between different cores,

can be used to detect whether the program has ran into the if-then block of Algorithm 2 by using a spy

program to monitor LLC hits/misses. Denote “A” for an add operation in the if-then block, and “D” for

a double operation. As a double operation is done every time before the if-then block is executed, there

is a “D” right before each “A”, but we omit these “D”s. Under the assumption of a perfect side-channel,

we may obtain a “double-and-add” chain of information as below (assume that the window size w = 3,

and the sequence is written from the higher digit to the lower digit):

“ADDDADDDDDDADDDDADD”.

In fact, the position of the i-th “A” (counted from the lower index) is just the position of the non-zero

digit ki, which is denoted before as λi for 1 6 i 6 l. Note that λl +1 is the length of the double-and-add

chain.

OpenSSL uses the modified wNAF representation in the actual implementation instead of the gener-

alized one as stated in Algorithm 1 to avoid length expansion in some cases and to make exponentiation

more efficient. The representation of modified wNAF is very similar to the wNAF. Each non-zero coeffi-

cient is followed by at least w zero coefficients, except for the most significant digit which is allowed to

violate this condition in some cases. As the use of modified wNAF affects the attack results little, we

only consider the case of the wNAF for simplification. In fact, we propose how to deal with the modified

wNAF in Subsection 3.1.

2.3 The hidden number problem

Given a prime number q and a positive integer z. Let t1, . . . , td be randomly chosen, which are uniformly

and independently in Fq. For 1 6 i 6 d, let ui be the value such that |vi| = |ui − αti|q 6 q/2z+1, where

0 < α < q is unknown and | · |q denotes the reduction modulo q into range [−q/2, . . . , q/2). The HNP is

to find the hidden number α.

This problem can be translated to a CVP instance which can be further converted to a shortest vector

problem (SVP). This is done by constructing a (d + 2)-dimensional lattice L spanned by the following

matrix:

M =





















q

. . .

q

t1 . . . td 1/2z+1 0

u1 . . . ud 0 q/2z+1





















.

In the lattice L = L(M), there exists a vector

w = (h1, . . . , hd, α,−1) ·M =
(

v1, . . . , vd, α/2
z+1,−q/2z+1

)

∈ L,

where hi is the integer satisfying that hiq + αti − ui = vi for 1 6 i 6 d. Its Euclidean norm satisfies

that ‖w‖ 6
√
d+ 2 · (q/2z+1), while the determinant of L(M) is qd+1/22z+2. The ratio of ‖w‖ and

|L|1/(d+2) is thus no greater than
√
d+ 2(q/2d(z+1))1/(d+2), which indicates that if z is not too small and

d is properly large, w is a very short vector. The second vector in a reduced basis is expected to be equal

to w with a “good” chance for a suitably strong lattice reduction algorithm. Note that the first reduced

basis vector is likely to be (−t1, . . . ,−td, q, 0) ·M = (0, . . . , 0, q/2z+1, 0).

3 Attacking ECDSA

In this section, we introduce how to utilize only a fraction of the double-and-add chain of the ephemeral

key k to extract information and use the obtained information to recover the ECDSA secret key. We first

Wang W B, et al. Sci China Inf Sci March 2018 Vol. 61 032105:6

propose a new way of extracting information that takes advantage of the length of the double-and-add

chain and the positions of two non-zero digits to recover information about k. After that, we give an

efficient way of utilizing the obtained information, translating the problem of recovering ECDSA secret

key to the HNP, which is further converted to the problem of solving approximate SVP.

In the rest of this paper, assume that we have gotten a fraction of the double-and-add chain of the

ephemeral key k, say the positions of the second “A” and the last “A” (from the higher index) together

with the length of the double-and-add chain. Suppose there are l non-zero digits in the wNAF represen-

tation of k. Let ki be i-th non-zero digit and λi > 0 be the position of ki for 1 6 i 6 l. Then we have

k =
∑l

i=1 ki2
λi . Let LAD be the length of the double-and-add chain of k, and L0 be the length of its

binary string. In the OpenSSL implementation of ECDSA, L0 is always set to be ⌊log2 q⌋ + 1 as stated

in Subsection 2.2.

3.1 Extracting information

In this subsection, we first show how to extract information about k from the MSDs. After that, a

combined method using information of both MSDs and LSBs is proposed to extract more information.

By writing k as an algebraic expression of a new unknown variable with a smaller range, we are able to

extract some information about k. Estimation about the amount of extracted information will be further

stated in Subsection 3.3.

As can be observed that there exist three different cases of the double-and-add chain in total considering

the length, i.e., LAD < L0, LAD > L0 and LAD = L0. According to Algorithm 2, if LAD < L0 there

must be L0 − LAD < w, where w is the window size. If LAD > L0, then there must be LAD − L0 = 1

(this will be further proved in Proposition 1). So when w = 3, all the possible cases are LAD − L0 = 1,

LAD = L0, L0 − LAD = 1 and L0 − LAD = 2. Moreover, it can be easily checked that λl = LAD − 1 and

that 2L0−1 6 k 6 2L0 − 1.

3.1.1 Utilizing the MSD information

We first introduce some lemmas and propositions before presenting our results of extracting information

about the ephemeral key k utilizing the MSDs. The following two lemmas follow directly from the results

of [29].

Lemma 1 ([29]). For integer m satisfying 1 6 m 6 l − 1, we have

∣

∣

∣

∣

∣

m
∑

i=1

ki · 2λi

∣

∣

∣

∣

∣

< 2w+λm 6 2λm+1−1. (2)

Lemma 2 ([29]). For all the possible cases of LAD, we have

(1) If LAD > L0, then kl−1 < 0 and kl = 1;

(2) If LAD = L0, then kl−1 > 0 and kl = 1;

(3) If LAD < L0, then 2L0−LAD < kl < 2L0−LAD+1.

The proofs of Lemmas 1 and 2 can be found in [29].

From Lemma 1, we can easily get kl > 0. Since if kl < 0, k < kl · 2λl + 2λl−1 = (1 + 2kl)2
λl−1 <0,

which is obviously a contradiction.

The conclusion in Lemma 2 implies that when w = 3, if L0 − LAD = 1, kl = 3; if L0 − LAD = 2, the

only possible values of MSD are kl = 5, 7.

We only consider the wNAF representation here. While in the modified wNAF representation, if kl = 1,

kl−1 < 0, and λl − λl−1 = w + 1, the position of kl is modified from λl to λl − 1 to make LAD = L0. If

this case happens, the distance between kl and kl−1 is w, which can be easily detected. So if we find that

LAD = L0, but λl − λl−1 = w, then kl = 1 and kl−1 < 0.

Proposition 1. If LAD > L0, then there must be LAD − L0 = 1.

Wang W B, et al. Sci China Inf Sci March 2018 Vol. 61 032105:7

Proof. As k can be rewritten as k =
∑l

i=1 ki · 2λi = kl · 2λl +
∑l−1

i=1 ki · 2λi > 2λl +
∑l−1

i=1 ki · 2λi . If

LAD − L0 > 1, λl = LAD − 1 > L0 + 1. Applying Lemma 1, we have k > 2λl − 2λl−1 = 2λl−1 > 2L0,

which contradicts with the fact that k 6 2L0 − 1.

Next, we will show how to utilize the information of MSDs to extract information about k. We propose

the following theorems applying Lemma 2.

Theorem 1. If LAD > L0, |k − 2λl + 2w−1 · 2λl−1 | < 2λl−1+w−1.

Proof. From the conclusion (1) in Lemma 2, we have that kl = 1 and kl−1 < 0. Let k′l−1 = −kl−1,

then 1 6 k′l−1 6 2w − 1. So we have

k =
l

∑

i=1

ki · 2λi = 2λl − k′l−1 · 2λl−1 +
l−2
∑

i=1

ki · 2λi .

From Lemma 1, we have that |∑l−2
i=1 ki · 2λi | < 2λl−1−1. While on the other hand, −2w−1 + 1 6 k′l−1 −

2w−1 6 2w−1 − 1, i.e., |k′l−1 − 2w−1| 6 2w−1 − 1. Thus

∣

∣k − 2λl + 2w−1 · 2λl−1
∣

∣ =

∣

∣

∣

∣

∣

−(k′l−1 − 2w−1) · 2λl−1 +

l−2
∑

i=1

ki · 2λi

∣

∣

∣

∣

∣

< (2w−1 − 1) · 2λl−1 + 2λl−1−1

< 2w−1 · 2λl−1 = 2λl−1+w−1.

Remark 1. From Theorem 1, there exists an unknown variable k′ that k = k′ + 2λl − 2w−1 · 2λl−1 and

it satisfies that |k′| < 2λl−1+w−1. As can be easily checked that, the range of k′ is smaller than that of k.

Similarly, we can write k as an algebraic expression of a new unknown variable k′ with a smaller range

in the remaining two theorems and we will omit the explanations for simplification.

Theorem 2. If LAD = L0, then |k − 2λl − 2w−1 · 2λl−1 | < 2λl−1+w−1.

Proof. From the conclusion (2) in Lemma 2, we have that kl = 1 and kl−1 > 0. Then 1 6 kl−1 6 2w−1.

So the ephemeral key k can be rewritten as

k =

l
∑

i=1

ki · 2λi = 2λl + kl−1 · 2λl−1 +

l−2
∑

i=1

ki · 2λi .

Then similar to the proof above, we have

∣

∣k − 2λl − 2w−1 · 2λl−1
∣

∣ =

∣

∣

∣

∣

∣

(kl−1 − 2w−1) · 2λl−1 +
l−2
∑

i=1

ki · 2λi

∣

∣

∣

∣

∣

< (2w−1 − 1) · 2λl−1 + 2λl−1−1

< 2w−1 · 2λl−1 = 2λl−1+w−1.

Theorem 3. Suppose w = 3. If L0−LAD = 1, then |k− 3 ·2λl | < 2λl−1; if L0−LAD = 2, |k− 6 ·2λl | <
2λl+1.

Proof. From the conclusion (3) in Lemma 2, we have kl = 3 if L0 −LAD = 1. So k can be rewritten as

k =

l
∑

i=1

ki · 2λi = 3 · 2λl +

l−1
∑

i=1

ki · 2λi .

From Lemma 1, we have

∣

∣k − 3 · 2λl
∣

∣ =

∣

∣

∣

∣

∣

l−1
∑

i=1

ki · 2λi

∣

∣

∣

∣

∣

< 2λl−1+w
6 2λl−1.

Similarly, if L0 − LAD = 2, we have that kl = 5 or 7. So |kl − 6| 6 1. From Lemma 1, we have

∣

∣k − 6 · 2λl
∣

∣ =

∣

∣

∣

∣

∣

(kl − 6) · 2λl +

l−1
∑

i=1

ki · 2λi

∣

∣

∣

∣

∣

< 2λl + 2λl−1 < 2λl+1.

Wang W B, et al. Sci China Inf Sci March 2018 Vol. 61 032105:8

3.1.2 Combining the leaked MSDs and LSBs

Since the elements in {ki}li=1 are all odd, we have k1 = 1 + 2k′1, where k′1 is an integer. The ephemeral

key can be rewritten as k =
∑l

i=2 ki · 2λi +(1+2k′1) · 2λ1 =
∑l

i=2 ki · 2λi + k′1 · 2λ1+1+2λ1 . We can easily

have that 2λ1+1|(k − 2λ1). What’s more, it can be easily seen that if there is an integer A that 2λ1+1|A,
then 2λ1+1|(k ± A − 2λ1). The following theorem indicates the way of utilizing information about both

the MSDs and the LSBs, which can be used to extract information about k.

Theorem 4. Let A and B be two integers.

(1) If LAD > L0, A = 2λ1 + 2λl − 2w−1 · 2λl−1 , B = q/(2λl−1+w−λ1−2).

(2) If LAD = L0, A = 2λ1 + 2λl + 2w−1 · 2λl−1 , B = q/(2λl−1+w−λ1−2).

(3) Suppose w = 3. If L0 − LAD = 1, A = 2λ1 + 3 · 2λl , B = q/(2λl−λ1−2).

(4) Suppose w = 3. If L0 − LAD = 2, A = 2λ1 + 6 · 2λl , B = q/(2λl−λ1).

Then we have
∣

∣

∣

∣

k −A

2λ1+1

∣

∣

∣

∣

6
q

B
. (3)

Proof. We will prove the inequation (3) in different cases respectively.

(1) Suppose LAD > L0. From Theorem 1, we have |k − 2λl + 2w−1 · 2λl−1 | < 2λl−1+w−1. So
∣

∣k − 2λl − 2λ1 + 2w−1 · 2λl−1
∣

∣ < 2λl−1+w−1 + 2λ1 .

If l > 2, we can easily get that 2λ1+1|(−2λl +2w−1 · 2λl−1), so 2λ1+1|(k− 2λl − 2λ1 +2w−1 · 2λl−1), which

means that
∣

∣

∣

∣

k − 2λl − 2λ1 + 2w−1 · 2λl−1

2λ1+1

∣

∣

∣

∣

< 2λl−1+w−λ1−2 +
1

2
.

As the ratio on the left of the inequation is always an integer, so we further have
∣

∣

∣

∣

k − 2λl − 2λ1 + 2w−1 · 2λl−1

2λ1+1

∣

∣

∣

∣

6 2λl−1+w−λ1−2.

This finishes the proof of the first case.

(2) Suppose LAD = L0. From Theorem 2, we have |k − 2λl − 2w−1 · 2λl−1 | < 2λl−1+w−1. So
∣

∣k − 2λl − 2λ1 − 2w−1 · 2λl−1

∣

∣ < 2λl−1+w−1 + 2λ1 .

It is easy to check that if l > 2, we have 2λ1+1|(k−2λl −2λ1 −2w−1 ·2λl−1). Similar to the proof above,
∣

∣

∣

∣

k − 2λl − 2λ1 − 2w−1 · 2λl−1

2λ1+1

∣

∣

∣

∣

6 2λl−1+w−λ1−2.

This finishes the proof of the second case.

(3) Suppose w = 3 and L0 − LAD = 1. According to Theorem 3, we have |k − 3 · 2λl | < 2λl−1. So
∣

∣k − 2λ1 − 3 · 2λl
∣

∣ < 2λl−1 + 2λ1 .

We can easily see that if l > 2, 2λ1+1|(k − 2λ1 − 3 · 2λl). Similarly, we have
∣

∣

∣

∣

k − 2λ1 − 3 · 2λl

2λ1+1

∣

∣

∣

∣

6 2λl−λ1−2.

This finishes the proof of the third case.

(4) Suppose w = 3 and L0 − LAD = 2. According to Theorem 3, we have |k − 6 · 2λl | < 2λl+1. So

|k − 2λ1 − 6 · 2λl | < 2λl+1 + 2λ1 .

Since we have 2λ1+1|(k − 2λ1 − 6 · 2λl) if l > 2, similarly, there is
∣

∣

∣

∣

k − 2λ1 − 6 · 2λl

2λ1+1

∣

∣

∣

∣

6 2λl−λ1 .

This finishes the proof of the last case.

Remark 2. From Theorem 4, there exists an unknown variable k that k = k · 2λ1+1+A and it satisfies

that |k| < q/B. As can be easily checked that, the range of k is smaller than that of k. Roughly speaking,

the smaller the range of k is, the more information we will extract by our attack.

Wang W B, et al. Sci China Inf Sci March 2018 Vol. 61 032105:9

3.2 Lattice attack

In this subsection, we translate the problem of recovering secret key to solving the HNP using the

extracted information about MSDs and LSBs, which is further converted to a SVP problem.

Assume that we capture d signatures (ri, si) of message mi for 1 6 i 6 d that share a common private

key with the i-th ephemeral key denoted as eki. Suppose we get λi,l−1, λi,1 together with the length of

the double-and-add chain of eki, where λi,l−1 and λi,1 are separately the positions of the second and last

non-zero digit of the wNAF form of eki counted from the higher index. Then we have eki = 2λi,1+1 ·ki+Ai

with |ki| 6 q/Bi, where Ai and Bi are the integers satisfying the conditions in Theorem 4. Note that

from (1), we have that eki ≡ αris
−1
i +H(mi)s

−1
i mod q. Thus we have the following d congruences:



































k1 = αr1s
−1
1 2−(λ1,1+1) + (H(m1)s

−1
1 −A1)2

−(λ1,1+1) + h1q,

· · · · · ·
ki = αris

−1
i 2−(λi,1+1) + (H(mi)s

−1
i −Ai)2

−(λi,1+1) + hiq,

· · · · · ·
kd = αrds

−1
d 2−(λd,1+1) + (H(md)s

−1
d −Ad)2

−(λd,1+1) + hdq,

(4)

where the values of α (0 < α < q), ki (|ki| 6 q/Bi) and hi are unknown. Using the method in [24, 25],

we compute the following values:

ti = ⌊ris−1
i 2−(λi,1+1)⌋q, ui = ⌊−(H(mi)s

−1
i −Ai)2

−(λi,1+1)⌋q,

where ⌊·⌋q denotes the reduction modulo q into the range [0, . . . , q). Then we have

|ki| = |αti − ui|q 6
q

Bi
.

Thus we can use (4) to construct a lattice L spanned by the following matrix:

M =































B1 · q
. . .

Bi · q
. . .

Bd · q
B1 · t1 · · · Bi · ti · · · Bd · td 1

B1 · u1 · · · Bi · ui · · · Bd · ud 0 q































.

In the lattice L = L(M), there exists a vector

w = (h1, . . . , hi, . . . , hd, α,−1) ·M =
(

B1 · k1, . . . , Bi · ki, . . . , Bd · kd, α,−q
)

∈ L.

Its Euclidean norm satisfies that ‖w‖ 6
√
d+ 2 · q, while the determinant of L(M) is

∏d
i=1 Bi · qd+1. As

explained in Subsection 2.3, the second vector in a reduced basis of M is expected to be equal to w if

the value of (
∏d

i=1 Bi)
1/d is not too small and d is properly large, while the first reduced basis vector is

likely to be (−t1, . . . ,−td, q, 0) ·M = (0, . . . , 0, q, 0).

3.3 Attack analysis

One important factor that may influence the attack result is how much information we can get from the

extracting method. As we can see from the attack in Subsection 3.2, the size of k (corresponding to

ephemeral key k) is of vital importance to the attack result. The smaller the range value of k is relative

to q, the better the attack result will be. Denote the range value of k as K, then we call log2(q/K)− 1 as

the number of leaked bits. In order to estimate the number of leaked bits, we give the following theorem.

Wang W B, et al. Sci China Inf Sci March 2018 Vol. 61 032105:10

Theorem 5. Let Nl be the expected number of leaked bits from ephemeral key k via our attack.

(1) If LAD > L0, then Nl = log2 q − L0 + 4 > 3.

(2) If LAD = L0, then Nl = log2 q − L0 + 5 > 4.

(3) Suppose w = 3. If L0 − LAD = 1, then Nl = log2 q − L0 + 4 > 3.

(4) Suppose w = 3. If L0 − LAD = 2, then Nl = log2 q − L0 + 3 > 2.

Proof. Let us first calculate the expected values of λ1 and λl − λl−1. The probability for λ1 being 0

is 1/2, for 1 is 1/4, for 2 is 1/8, Thus the expected value of λ1 is
∑∞

i=1 (i − 1)/2i ≈ 1. Similarly for

λl − λl−1, as λl − λl−1 > w + 1, the probability for λl − λl−1 being w + 1 is 1/2, for w + 2 is 1/4, for

w + 3 is 1/8, Thus the expected value of λl − λl−1 is w + 1 +
∑∞

i=1 (i− 1)/2i ≈ w + 2.

As L0 = ⌊log2 q⌋+ 1, we can easily get that L0 − 1 6 log2 q < L0.

(1) If LAD > L0, we have L0 = LAD − 1 according to Proposition 1, thus L0 = λl. From Theorem 4,

∣

∣k
∣

∣ 6
q

B
= 2λl−1+w−λ1−2 = K.

Since log2(q/K)− 1 = log2 q − log2 2
λl−1+w−λ1−2 − 1 = (log2 q − λl) + (λl − λl−1) − w + λ1 + 1, so the

expected number of leaked bits Nl = log2 q − λl + 4 = log2 q − L0 + 4. As log2 q > L0 − 1, we further

have Nl > 3.

(2) When LAD = L0, we have L0 = λl + 1. Thus

∣

∣k
∣

∣ 6
q

B
= 2λl−1+w−λ1−2 = K.

Since log2(q/K)− 1 = log2 q− log2 2
λl−1+w−λ1−2 − 1, so Nl = log2 q−λl +4 = log2 q−L0 +5. Similarly

we further have that Nl > 4.

(3) Suppose w = 3 and L0 − LAD = 1. We have L0 = LAD + 1 = λl + 2. According to Theorem 4,

there is
∣

∣k
∣

∣ 6
q

B
= 2λl−λ1−2 = K.

Since we have that log2(q/K)− 1 = log2 q − log2 2
λl−λ1−2 − 1. Thus Nl = log2 q − L0 + 4, which further

gives that Nl > 3.

(4) Suppose w = 3 and L0 − LAD = 2. We have L0 = LAD + 2 = λl + 3. So

∣

∣k
∣

∣ 6
q

B
= 2λl−λ1 = K.

Since we have that log2(q/K) − 1 = log2 q − log2 2
λl−λ1 − 1. Thus Nl = log2 q − L0 + 3. This further

gives that Nl > 2.

Remark 3. If q is quite close to 2L0 , say q ≈ 2L0 − ǫ where ǫ > 0 is small, then log2 q − L0 is quite

close to 0, thus the value of Nl for the above four cases will separately be about 4, 5, 4 and 3, i.e., 1 bit

more than the general cases. And this is the case when ECDSA is implemented on curve secp256k1.

4 Experiment results

We mount our attack to the secp256k1 curve with window size being w = 3. According to our statistical

results, the probability of ephemeral keys satisfying the four cases in Theorem 4 for a 256-bit ECDSA

signature is separately 40.175%, 19.7%, 19.45% and 20.675%. So from Remark 3, the average number of

leaked bits we can get via our new method is about 4×40.175%+5×19.7%+4×19.45%+3×20.675%= 3.99

per signature. In theory, it requires 65 signatures to recover the secret key using a (65+2)-dimensional

lattice since 65× 3.99 > 256. However, due to the limited ability of lattice reduction algorithm and other

implementation reasons, the actual number of required signatures may be more than 65. When we use

about 100 signatures to attack ECDSA, the lattice dimension turns out to be a little time-consuming for

the BKZ algorithm to find a short vector, meanwhile the success probability is not that high. So we seek

for some improvements by making some selection on signatures.

Wang W B, et al. Sci China Inf Sci March 2018 Vol. 61 032105:11

4.1 Signature selection

Basically, the average number of leaked bits of per signature together with the lattice dimension influence

the success probability of our attack. Roughly, the more bits per signature leaks, the lower the lattice

dimension will be, thus it will be easier for a lattice reduction algorithm to recover the secret key. To

increase the average number of leaked bits, one straight idea is to select those signatures who can leak

more information. By selecting signatures carefully, we are able to recover a ECDSA secret key with a

smaller lattice dimension, which leads directly to a save in the consuming time. What’s more, we can get

a higher success probability with the same lattice dimension.

While on the other hand, the total number of required signatures is the ratio of the number of selected

signatures and the probability of a signature satisfying the selection rule. If we increase the average

number of leaked bits by selecting signatures, the total number of signatures may be more. So we need

to make a compromise between the average number of leaked bits and the total number of signatures.

The following introduces three selection methods which are independent to each other and can be used

in combination.

4.1.1 Constraints on length of the double-and-add chain

As the signature that satisfies L0 − LAD = 2 when w = 3 leaks 3 bits on average, which seems to be less

than the other cases. So we discard these signatures. The average number of leaked bits will be raised to

about (4×40.175%+5×19.7%+4×19.45%)/(1−20.675%)≈ 4.248, while the probability of a signature

satisfying our selection rule being 1 − 20.675% = 79.325%. So in theory, we can recover the secret key

using a lattice with dimension being 256/4.248 + 2 ≈ 63 and the average number of signatures we need

in total is about 61/79.325% ≈ 77. As stated before, the actual number of required signatures might be

more than 77. The following two cases are similar.

4.1.2 Constraints on MSDs

We constrain the value of λl − λl−1 to be not less than w + 2 to get more leaked bits when LAD >

L0. The average number of leaked bits for the first two cases of Theorem 4 will separately become

about 5 and 6. We can get that the probability that a signature meets our requirement will be about

(40.175% + 19.7%) × 50% + 19.45% + 20.675% ≈ 70.07%, and the average number of leaked bits will

becomes about 4.27. We can use a (60+2)-dimensional lattice to recover the secret key in theory while

the average number of signatures we need in total is about 86.

Suppose we set λl − λl−1 > w + 3 whose probability is 25%. Similarly we can get that the probability

that a signature meets our requirement will be about 55.10% and the average number of leaked bits is

about (6× 40.175%× 25%+ 7× 19.7%× 25%+ 4× 19.45%+ 3× 20.675%)/55.10%≈ 4.26. So in theory,

the lattice required in our attack is with dimension being 256/4.26 + 2 ≈ 62, and the average number

of signatures we need in total is about 60/55.10% ≈ 109. Notice that when the constraint of value of

λl − λl−1 is set to w + 3 instead of w + 2, the expected number of leaked bits is actually not increased.

So we do not consider this case.

4.1.3 Constraints on LSBs

We can also control the number of zeros in the LSBs as in [22]. Denote the length of the known run

of zeros in the LSBs of k as z. A constraint is set to the value of z such that z > Z where Z > 0 is a

determined integer, i.e., if there are less than Z consecutive zeros in the LSBs of k, the signature would

be discarded. In fact, if we set Z = 1, the LSBs are expected to leak about 1 +
∑∞

i i/2i ≈ 3 bits of

information on average. Thus the average number of leaked bits is raised by 1 theoretically, being about

4.99 bits. And the probability of signatures satisfying this condition is 50%. So in theory, we can recover

the secret key using a lattice with dimension being 52 + 2 = 54 and the average number of signatures in

total is about 104.

Wang W B, et al. Sci China Inf Sci March 2018 Vol. 61 032105:12

Table 1 Comparisons of the selection rules

Selection rule
Average number Lattice dimensions Signature number

Signature Pr.a) (%)
of leaked bits (in theory) (in theory)

0 3.990 67 65 100

1 4.248 63 77 79.325

2 4.800 56 110 49.400

3 4.990 54 104 50.000

a) Signature Pr. denotes the probability of a signature satisfying the selection rule.

Our choice. Applying the above three selection methods, we may increase the number of leaked bits,

lower the lattice dimensions and improve the attack results with a sacrifice of a little more signatures.

In order to balance the lattice dimension with the total number of signatures, we propose the following

selection rules which can be used independently in our experiments:

Rule 0. All signatures are used without any discard.

Rule 1. Throw away those signatures that satisfy L0 − LAD = 2 when w = 3.

Rule 2. First throw away those signatures satisfying L0 − LAD = 2 when w = 3. Then if LAD > L0,

select those satisfying λl − λl−1 > w + 2; if L0 − LAD = 1, signatures are preserved without selection.

Rule 3. Select those signatures that z > 1 where z is the length of the known run of zeros in the LSBs

of k.

Rule 1 is just the selection method of constraints on LAD; Rule 2 is the combination of the selection

methods of constraints on LAD together with constraints on MSDs; Rule 3 is the selection method of

constraints on LSBs. Comparisons of the four rules are stated in Table 1. The average number of leaked

bits, the lattice dimensions, the number of signatures and the probability of a signature satisfying the

selection rule can all be computed as above.

4.2 Attack results

Our attack is mounted to curve secp256k1 on an Intel Core i7-3770 CPU running at 3.40 GHz in single

thread. It does not rely on any special property of curves, thus can be applied freely to any other curve

that use the wNAF algorithm to implement scalar multiplications. The BKZ algorithm implemented

in the NTL library written in C++ is used to implement the lattice reduction. In our experiments, we

use the BKZ algorithm with blocksize 25 and 30. The results would be surely improved with a greater

blocksize or by using a more effective lattice reduction algorithm, like BKZ2.0 [27]. Given the selection

rule and the number of selected signatures (which is value of the lattice dimension minus 2), we execute

200 experiments each time to test the success probability. Some of the results are listed in Table 2. The

experiment results show that, given the lattice dimension selection rule 1, 2 and 3 can get a higher success

probability compared to rule 0.

Compared to the best result of [22] that succeeds recovering the ECDSA secret key using 200 signatures

with probability being 3.5% (implemented by BKZ-30), our best result manages to succeed with only

85 signatures with probability being 1.5% and 90 signatures with probability being 5%, which is much

better. Note that our attack can be applied to different side-channel attacks. In [30], for example, totally

1278 signatures are needed to recover the ECDSA secret key (mounted to curve secp256k1), utilizing

only the information of LSBs of the ephemeral key. But if our method is applied, the number of signatures

can be cut down to nearly 85.

5 Conclusion

In this paper, we mount an attack on ECDSA implemented by the latest version of OpenSSL which uses

the wNAF method to execute the scalar multiplication. Our attack is based on just a small proportion of

the double-and-add chain, which can be obtained by the Flush+Reload attack but not limited to it. We

Wang W B, et al. Sci China Inf Sci March 2018 Vol. 61 032105:13

Table 2 Experiment resultsa)

Lattice Selection Number of Reduction
p (%)

Average

dimension rule signatures algorithm time (min)

67

0 65

BKZ-30

× ×

1 82 × ×

2 132 16
13.67

3 130 16.5

72

0 70

BKZ-30

× ×

1 89 × ×

2 142 35
20.96

3 140 30.5

77

0 75

BKZ-30

× ×

1 94 0.5

35.782 152 36.5

3 150 42

82

0 80 BKZ-30 × ×

1 101

BKZ-25

1.5

7.582 166 42

3 160 46.5

87

0 85 BKZ-30 1.5 26.97

1 107

BKZ-25

6

10.482 172 49.5

3 170 52.5

92

0 90

BKZ-25

5

15.77
1 113 25

2 182 44.5

3 180 50

a) “p” denotes the success probability of recovering the secret key; “Average time” denotes the average time that the

algorithm cost each time; “Selection rule” denotes the choice of selecting signatures as Subsection 4.1.3 states, and Rule

“0” means that no selection is made on signatures.

develop a new extraction method to retrieve information about the ephemeral key from the double-and-

add chain, utilizing only the positions of two non-zero digits and the length of the chain. By combining

the information of both the most significant digits and the LSBs, we are able to obtain no less than

2.99 bits of information per signature on average, and even about 3.99 bits on average for q ≈ 2n − ǫ

where ǫ > 0 is small. Mounted to the secp256k1 curve, our attack can successfully recover a ECDSA

secret key using only 85 signatures.

Acknowledgements This work was supported by National Basic Research Program of China (973 Program)

(Grant No. 2013CB338003).

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Bellare M, Canetti R, Krawczyk H. A modular approach to the design and analysis of authentication and key exchange

protocols (extended abstract). In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, Dallas,

1998. 419–428

2 Blake-Wilson S, Menezes A. Entity authentication and authenticated key transport protocols employing asymmetric

techniques. In: Proceedings of the 5th International Workshop on Security Protocols, Paris, 1998. 137–158

3 Diffie W, van Oorschot P C, Wiener M J. Authentication and authenticated key exchanges. Design Code Cryptoger,

1992, 2: 107–125

4 National Institute of Standards and Technology. Digital signature standard (DSS). FIPS PUB 186. http://csrc.nist.

gov/publications/PubsFIPS.html

5 National Institute of Standards and Technology. Digital signature standard (DSS). FIPS PUB 186-4. http://csrc.nist.

http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/fips/fips186-3

Wang W B, et al. Sci China Inf Sci March 2018 Vol. 61 032105:14

gov/publications/fips/fips186-3

6 Johnson D, Menezes A, Vanstone S A. The elliptic curve digital signature algorithm (ECDSA). Int J Inf Secur, 2001,

1: 36–63

7 Vanstone S. Responses to NIST’s proposal. Commun ACM, 1992, 35: 50–52

8 Nakamoto S. Bitcoin: a peer-to-peer electronic cash system. 2008. http://www.cryptovest.co.uk/resources/Bitcoin

%20paper%20Original.pdf

9 The openssl project. OpenSSL — cryptography and SSL/TLS toolkit. Version 1.0.2h. 2016

10 Yarom Y, Benger N. Recovering OpenSSL ECDSA nonces using the Flush+Reload cache side-channel attack. IACR

Cryptology ePrint Archive, 2014, 140. http://eprint.iacr.org/

11 Kocher P C, Jaff J, Jun B. Differential power analysis. In: Proceedings of the 19th Annual International Cryptology

Conference, Santa Barbara, 1999. 388–397

12 Page D. Theoretical use of cache memory as a cryptanalytic side-channel. IACR Cryptology ePrint Archive 2002,

2002: 169. http://eprint.iacr.org/

13 Acıiçmez O, Koç Ç K, Seifert J P. On the power of simple branch prediction analysis. In: Proceedings of the 2nd

ACM Symposium on Information, Computer and Communications Security, Singapore, 2007. 312–320

14 Brumley B B, Hakala R M. Cache-timing template attacks. In: Proceedings of the 15th International Conference on

the Theory and Application of Cryptology and Information Security, Tokyo, 2009. 667–684

15 Tromer E, Osvik D A, Shamir A. Efficient cache attacks on AES, and countermeasures. J Cryptol, 2010, 23: 37–71

16 Brumley B B, Tuveri N. Remote timing attacks are still practical. In: Proceedings of the 16th European Symposium

on Research in Computer Security, Leuven, 2011. 355–371

17 Zhang Y, Juels A, Reiter M K, et al. Cross-VM side channels and their use to extract private keys. In: Proceedings

of the ACM Conference on Computer and Communications Security, Raleigh, 2012. 305–316

18 Irazoqui G, Inci M S, Eisenbarth T, et al. Lucky 13 strikes back. In: Proceedings of the 10th ACM Symposium on

Information, Computer and Communications Security, Singapore, 2015. 85–96

19 Yarom Y, Falkner K. Flush+Reload: a high resolution, low noise, L3 cache side-channel attack. In: Proceedings of

the 23rd USENIX Security Symposium (USENIX Security 2014), San Diego, 2014. 719–732

20 Allan T, Brumley B B, Falkner K, et al. Amplifying side channels through performance degradation. In: Proceedings

of the 32nd Annual Conference on Computer Security Applications, Los Angeles, 2016. 422–435

21 Hlaváč M, Rosa T. Extended hidden number problem and its cryptanalytic applications. In: Proceedings of the 13th

International Conference on Selected Areas in Cryptography, Montreal, 2006. 114–133

22 Benger N, van de Pol J, Smart N P, et al. “Ooh aah. . . just a little bit”: a small amount of side channel can go a long

way. In: Proceedings of the 16th International Workshop on Cryptographic Hardware and Embedded System, Busan,

2014. 75–92

23 Howgrave-Graham N, Smart N P. Lattice attacks on digital signature schemes. Design Code Cryptoger, 2001, 23:

283–290

24 Nguyen P Q, Shparlinski I. The insecurity of the digital signature algorithm with partially known nonces. J Cryptol,

2002, 15: 151–176

25 Nguyen P Q, Shparlinski I. The insecurity of the elliptic curve digital signature algorithm with partially known nonces.

Design Code Cryptoger, 2003, 30: 201–217

26 Liu M, Nguyen P Q. Solving BDD by enumeration: an update. In: Proceedings of Cryptographers’ Track at the RSA

Conference, San Francisco, 2013. 293–309

27 Chen Y, Nguyen P. BKZ2.0: better lattice security estimates. In: Proceedings of the 17th International Conference

on the Theory and Application of Cryptology and Information Security, Seoul, 2011. 1–20

28 van de Pol J, Smart N P, Yarom Y. Just a little bit more. In: Proceedings of Cryptographer’s Track at the RSA

Conference, San Francisco, 2015. 3–21

29 Fan S, Wang W, Cheng Q. Attacking OpenSSL implementation of ECDSA with a few signatures. In: Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, 2016. 1505–1515

30 Genkin D, Pachmanov L, Pipman I, et al. ECDSA key extraction from mobile devices via nonintrusive physical side

channels. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,

2016. 1626–1638

http://csrc.nist.gov/publications/fips/fips186-3
http://www.cryptovest.co.uk/resources/Bitcoin%20paper%20Original.pdf
http://www.cryptovest.co.uk/resources/Bitcoin%20paper%20Original.pdf
http://eprint.iacr.org/

	Introduction
	Preliminaries
	The elliptic curve digital signature algorithm (ECDSA)
	OpenSSL implementation of ECDSA by wNAF and its possible attack
	The hidden number problem

	Attacking ECDSA
	Extracting information
	Utilizing the MSD information
	Combining the leaked MSDs and LSBs

	Lattice attack
	Attack analysis

	Experiment results
	Signature selection
	Constraints on length of the double-and-add chain
	Constraints on MSDs
	Constraints on LSBs

	Attack results

	Conclusion

