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Introduction and related work. Network inference
problem covers lots of fields in real life, such as
viral-marketing, stopping rumors and controlling
the spread of diseases. It aims to infer the hid-
den network topology with only the infection time
stamps of nodes when various messages diffuse
among the network. Most classical methods as-
sume that the infection time of each infected node
is fully observed [1, 2]. However, in real world
scenarios, we usually only obtain incomplete cas-
cades in which some infection time of activated
node is missing. For example, microblog users may
delete the published microblogs, making the re-
lease time hard to follow. Several researches focus
on incomplete scenario recently. Refs. [3, 4] tackle
with different scenario of incomplete as they con-
sider snapshot data. The work of [5] distinguishes
potential short edges that contain missing nodes
and then adjusts the network structure inferred by
other models. Refs. [6, 7] can recover the network
edge weights but need topology as input. Our work
is to efficiently infer the network structure from in-
complete cascades without knowledge of topology.

Our main challenge is to recover the missing
time stamp, in case that those nodes are incor-
rectly regarded as failing to transmit and then
mislead the transmission probability. We pro-
pose a Greedy-NIIC (network inference on incom-
plete cascades) algorithm to recover the cascades
via Monte-Carlo simulation diffusion process and
greedily select the edge that can maximize the

marginal gain. Experiments on both synthetic and
real-world data reveal that NIIC can accurately re-
cover the network structure from incomplete cas-
cades comparing with existing methods.

Model. Given a hidden directed network
G(V,E) that contains n nodes, the information is
diffused over the network and leaves a trace or cas-
cade t = {t1, t2, . . . , tn}, which is a n-dimensional
vector that records the time when each node gets
infected. Observations are recorded as a set C of
cascades {t1, t2, ..., tc}.

However, the infection time of some nodes may
be missing. In each cascade, set Ṽ contains un-
infected nodes or missing nodes whose infection
time has not been observed. Then, the incomplete

cascades set is denoted by C̃ ={t̃1, t̃2, ..., t̃c}.

Our method is based on Continuous-Time Inde-
pendent Cascade Model [8]. The diffusion process
is controlled by activation probability γuv and the
pairwise transmission likelihood P (u, v). Former
researches have pointed out that P (u, v) usually
follows Exponential, Power-Law or Rayleigh dis-
tribution. To simplify the problem, we assume
that P (u, v) follows Exponential law. The diffu-
sion trace starting from root node and spreading
to the others forms a directed transmission tree T .
Many possible T s can lead to a given cascade t.
The probability that t spreads among network G,
denoted as f(t;G), is approximated by only con-
sidering the most likely transmission tree accord-
ing to NetInf. The likelihood f(t;T ) that a cas-
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cade spreads along a specific directed transmission
tree is the joint likelihood of pairwise transmission
likelihood P (u, v). More details can be found in
Appendix A.

Network inference on incomplete cascades aims
to infer the structure of the network (with no more
than m edges) underlying these incomplete cas-

cades set C̃, which is

G = argmax|G|6mf(C̃;G)

= argmax|G|6m

∑

t̃∈C̃

f(t̃;G). (1)

The submodularity of this problem is proved
in Appendix B. Maximizing submodular function
has been proved to be NP-hard [9]. Greedy algo-
rithm is commonly applied in such circumstance
which can acquire at least (1 − 1

e
) of the optimal

value. Starting from an empty graph, we itera-
tively add a new edge ei at step i, which maximizes
the marginal gain:

ei =argmaxe∈G\Gi−1

∑

t̃∈C̃

f(t̃;Gi−1 ∪ e)

− f(t̃;Gi−1), (2)

and stops when there have been already m edges
in graph G.

To solve the problem, we first have to recover
sufficient number of possible cascades for each in-
complete cascade, so as to approximate the case of
the hidden truth one. We use Monte-Carlo simu-
lation to generate a set of possible cascades D(t̃).

For each incomplete cascade t̃, it has a set Ṽ of
nodes whose infection time is missing or who have
not been affected. In each iteration of Greedy-
NIIC algorithm, the Monte-Carlo is performed
M times for every incomplete cascade based on
current network structure. During iteration i of
Greedy-NIIC, current network Gi−1 contains i− 1
edges. The simulation starts at a node u from
V \ Ṽ = {u1, u2, . . . , u|V \Ṽ |} whose infection time

is observed. u tries to activate all of its neighbors
in Gi−1 ∪ e (e is the current under-test edge) who
have no infection time with predefined probability
γuv. For simplicity, we assume γ is the same for
every edge. If a neighbor v is activated, we firstly
generate a random number U from (0, 1) on uni-
form distribution, and then sample the tv from Ex-
ponential distribution. After v has become active,
v tries to activate its neighbors in Gi−1 that have
not got infection time. The diffusion process stops
when no new node gets infected and it naturally
forms a directed transmission tree T (u) whose root

is u. For each observed node like u from V \ Ṽ ,

we perform the above process and thus get |V \ Ṽ |
spanning trees: T (u1), T (u2),. . . , T (u|V \Ṽ |). For

each incomplete cascade t̃, we perform the pro-
cess described above for M times. Each time pro-
duces one possible complete cascade of incomplete
t̃. Those possible complete cascades should be dif-
ferent, in both the time stamps and topology of
spanning trees. As M grows larger, the simula-
tion results can cover more possible cases. The
same process should be done for each incomplete
cascade in C̃. Some detail situations that may
occur in the simulation process are introduced in
Appendix C.

Then, we are able to approximate the like-
lihood of incomplete cascade f(t̃;G) with the
average likelihood of possible cascades in D(t̃)
when M is sufficiently large. Finding the most
likely transmission tree is required for comput-
ing the likelihood of each recovered possible cas-
cade, in which the spanning trees in simula-
tion process can help. One simulation of one
cascade leaves us with |V \ Ṽ | spanning trees:
T (u1), T (u2), . . . , T (u|V \Ṽ |). We find the par-

ents of all the root nodes u1, u2, . . . , u|V \Ṽ | except

source s and connect all spanning trees into one
new tree, namely maximum combination tree T̃ .
The parent of each observed node u is the node
that maximizes the pairwise transmission likeli-
hood P (par(u), u). And we prove that the maxi-
mum combination tree is the most likely transmis-
sion tree in Appendix D.

Here are some methods for improving the effi-
ciency of Greedy-NIIC algorithm.

(1) We can let the simulation time M decrease
with the rise of edge number in the inferred net-
work;

(2) If the marginal gain of adding edge e into
network is less than threshold (e.g., the threshold
is set as 10 in our experiments), this edge will be
abandoned and will not be added in the following
iterations.

Besides, applying greedy process on incomplete
input dataset brings some controversial issues. De-
tailed greedy iteration rules are defined in order to
make full use of the available cascade information,
as shown in Appendix E.

Experimental evaluation. We evaluate our
method on both synthetic and real world incom-
plete dataset. We take NetInf [1], NetRate [2] and
PSE [5] as baselines and consider the F1-score and
precision as evaluation metrics. In synthetic ex-
periments, we use Kronecker Graph model to build
the diffusion networks and generate synthetic in-
complete cascades. We consider 3 different types
of miss mode: Random Miss, Edge Miss and Block
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Figure 1 (Color online) Experiment results on real world data. (a) Performance on different cascade sizes; (b) performance
on different miss rates.

Miss. We examine our model against different
miss mode, network size, cascade size, miss rate
and network structure. Experiment results in Ap-
pendix F show the excellent performance of our
method in all circumstances. We also make exper-
iments on real world dataset, namely the Meme-
Tracker dataset with 500 active nodes. As shown
in Figure 1, the precision of all four methods be-
comes higher with the increase of cascade num-
ber. Our method can achieve nearly 80% accu-
racy while the accuracy of NetInf is no more than
60%. As the miss rate increases, NIIC outper-
forms NetRate gradually. When the miss rate is
20%, our method can achieve over 65%, while the
accuracy computed by the other three methods is
below 60%.

Conclusion. In this article, we propose the prob-
lem of NIIC and develop an efficient method to
conduct Monte-Carlo simulation on each greedy
iteration, which shows excellent performance on
accuracy in both synthetic and real world datasets.
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