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Appendix A Probabilistic model of information diffusion.

Our method is based on Continuous-Time Independent Cascade Model [1] which indicates that each node v can be infected

by at most one neighbor u. The diffusion trace forms a directed transmission tree T , which is also a subgraph of G. When

node u gets infected, it immediately attempts to activate all of its uninfected neighbors with the probability γuv . If the

neighbor v is successfully activated, the information is transmitted between u and v after a period of time delay, denoted

as ∆tuv . We define P (u, v) as the likelihood that node u transmits the information to node v. To simplify the problem we

assume that P (u, v) follows Exponential law:

P (u, v) ∝ αe−α∆tuv = αe−α(tv−tu). (A1)

There are many possible directed transmission trees that can lead to a cascade. According to NetInf, we only consider

the most likely transmission tree as approximation to reduce the computation complexity. Given a complete cascade t, the

likelihood that a cascade spreads along the specific directed transmission tree T is:

f(t;T ) =
∏

(u,v)/∈T,(u,v)∈G
(1− γuv)

∏
(u,v)∈T,(u,v)∈G

γuvP (u, v). (A2)

Appendix B Network inference problem on incomplete cascades.

Network inference on incomplete cascades (NIIC) aims to infer the structure of the network underlying these incomplete

cascades set, denoted by C̃. With the assumption that the number of edges in the underlying network is bounded by a

given number m, NIIC could be formalized as maximizing the likelihood function f(t̃;G):

G = argmax|G|6mf(C̃;G)

= argmax|G|6m
∑
t̃∈C̃

f(t̃;G). (B1)

Given an incomplete cascade t̃, there is a set of possible complete cascades D(t̃) that can lead to t̃. Define P (t|D(t̃)) as

the probability that one possible complete cascades t happens among D(t̃), thus we have:

f(t̃;G) =
∑

t∈D(t̃)

P (t|D(t̃))f(t;G). (B2)

Based on the theoretical result of NetInf, submodularity of NIIC problem can be proved:

Theorem 1. Given the nodes set V and cascades C, the likelihood function f(t̃;G) is a submodular function: 2W → V ×V
Proof. We start by considering a complete cascade t, graphs G ⊆ G′ and an edge e = (u, v) /∈ G′. Gomez-Rodriguez et

al. [2] has proved that f(t;G) is a submodular function, that is:

f(t;G ∪ e)− f(t;G) > f(t;G′ ∪ e)− f(t;G′). (B3)

As P (t|D(t̃)) is the same both in G and G′, f(t̃;G) is submodular because nonnegative linear combinations of submodular

functions are submodular.
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Appendix C Generate possible cascades set D(t̃)

Given the incomplete cascade t̃ in the Monte-Carlo simulation, we aim to recover the infection time of Ṽ based on observed

infection time and produce a set of simulated complete cascades t. We assume that the time of source node s in each

cascade must be observed.

During the simulation process, the activation time of an newly activated node is sampled as follows:

tv = tu +
−log(1− U)

α
. (C1)

Proof. According to inverse transform sampling method,

U =

∆tuv∫
0

αe−αtdt = 1− e−α∆tuv .

e−α∆tuv = 1− U ⇒ ∆tuv =
− log(1−U)

α
.

After the simulation process, it’s possible that there are still some inactive nodes after simulation, because their neighbors

in Gi−1 fail to transmit the information to them. In some cases, an unobserved node w in cascade c can be reached by 2

or more observed nodes in Gi−1. That is, node u1 and u2’s infection time in c have been actually observed while w doesn’t

have time stamp in c, and there exist a path from u1 to w and a path from u2 to w. If spanning trees T (u1) and T (u2)

both contain node w, we just take in the earlier simulated time stamp of w and keep it in corresponding spanning tree. The

trace of w in the other spanning tree is erased.

Appendix D Approximate the likelihood of incomplete cascade f(t̃;G)

Let φ(t̃;G) be the probability density function of D(t̃), we can easily get the true value of f(t̃;G) as follows:

f(t̃;G) =

∫
t̃
φ(t̃;G)f(t̃;G)

∏
i∈Ṽ

dti. (D1)

Note that under the mild regularity conditions, the Monte-Carlo approximation of f(t̃;G) will converge to the true value

when M is sufficiently large, which means:

f(t̃;G) =

∫
t̃
φ(t̃;G)f(t̃;G)

∏
i∈Ṽ

dti ≈
1

M

M∑
i=1

f(ti;G). (D2)

As discussed in NetInf, f(t;G) is the likelihood function as the cascade t spreads on the network. Many possible

transmission trees can lead to t, but it considers only the most likely transmission tree T ∗ as approximation:

f(t;G) ≈ max
T∈T (G)

log(f(t;T )) = log(f(t;T ∗)), (D3)

where T (G) is the set consists of all the possible directed transmission trees. f(t;T ∗) has been defined in Eq. A2. Thus,

f(t̃;G) =
1

M

M∑
i=1

log(f(ti;T
∗)). (D4)

Finding T ∗ based on simulation traces. The spanning trees in simulation process can help to find the most likely

transmission tree T ∗. One simulation of one cascade leaves us with |V \ Ṽ | spanning trees: T (u1),T (u2),...,T (u|V \Ṽ |). We

consider firstly to find the parents of all the root nodes u1, u2, ..., u|V \Ṽ | except source s and connecting all spanning trees

into one new tree, namely Maximum Combination Tree T̃ . And we prove that the maximum combination tree is the

most likely transmission tree.

Definition 1 (Maximum Combination Tree).

T̃ =
⋃

u∈V \Ṽ

T (u) ∪ (par∗(u), u)

par∗(u) = argmaxv 6=u,tv<tuP (v, u),

where par∗(u) is the node that infects u. The parent par∗(u) of each observed node u is the node that maximizes the

probability P (par(u), u). Note that for each node u from V \ Ṽ , par∗(u) and u do not share a same spanning tree, since

tpar∗(u) < tu and u is the root of T (u). The directed edge (par∗(u), u) combines two different spanning tree together. And

the likelihood of t along T̃ is:

log(f(t; T̃ )) =
∑

u∈V \Ṽ

f(t;T (u)) +
∑

u∈V \Ṽ

P (par∗(u), u). (D5)

The algorithm to find the maximum combination tree T̃ can be described as the following three steps, also seen in

Algorithm D1:

(1) initialize T̃ with the combination of all simulated spanning trees T (u1),T (u2),...,T (u|V \Ṽ |)

(2) find the parent par(u) for each observed node u

(3) combine T̃ and edge (par(u), u)
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Lemma 1. For each cascade t, the Maximum Combination Tree T̃ and the most likely transmission tree T ∗ are the same.

Proof. Assuming T̃ 6= T ∗, there is at least one node u so that

(x, u) ∈ T ∗, (y, u) ∈ T̃ , x 6= y.

Notice that y = argmaxv 6=u,tv<tuP (v, u) and x 6= y, so P (x, u) < P (y, u) and thus f(t, T ∗) < f(t, T̃ ), which means T ∗ is

not the most likely transmission tree. Therefore, we have T̃ = T ∗

Algorithm D1 Greedy-NIIC

1: G0 = null;

2: for i=1, 2, ..., m do

3: for each edge e /∈ Gi−1 do

4: for each t̃ ∈ C̃ do

5: for j=1, 2, ..., M do

6: while each node u that is activated in t̃ do

7: if du = 0 then

8: continue; //du is node u’s degree

9: end if

10: for each node v {v|(u, v) ∈ Gi−1 ∪ e & tv = null} do

11: u tries to infect v and samples tv;

12: end for

13: end while

14: return T (u1),T (u2),...,T (u|V \Ṽ |);

15: T ∗ =
⋃

u∈V \Ṽ T (u);

16: for each u ∈ V \ Ṽ do

17: par∗(u)← u;

18: P (u, u) = 0;

19: for each v ∈ V, tv < tu do

20: if P (v, u) > P (par∗(u), u) then

21: par∗(u)← v;

22: end if

23: end for

24: if par∗(u) 6= u then

25: T ∗ = T ∗ ∪ (par∗(u), u);

26: end if

27: end for

28: return T ∗;

29: end for

30: end for

31: Le =
∑̃
t∈C̃

f(t̃;Gi−1 ∪ e)− f(t̃;Gi−1)

32: end for

33: ei = argmaxe/∈Gi−1
Le;

34: Gi = Gi−1 ∪ ei
35: end for

36: return Gm;

Appendix E Discussion

The Greedy algorithm starts from an empty graph G0. In iteration 1, we independently consider every possible under-test

edge e being added into G1 and compute the marginal gain. Here f(t̃;Gi−1 ∪ e) reduces to f(t̃; e) and f(t̃;Gi−1) is 0.

The simulation process begins as follows. For each incomplete cascade t̃ in C̃, we consider the state of nodes on edge e.

If both ends of e have got time stamps in t̃, there is no need to do simulation as there is only one edge that can transmit

message. If there are both observed node and unobserved node in t̃, we perform M times of simulation on t̃ as discussed
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above. If no node in t̃ has time stamp, there are 2 treatments. One is to regard this cascade as invalid and ignore it. This

will reduce the marginal gain. For some datasets when miss rate of incomplete cascade is high, the probability increases

that both ends of an edge miss time stamps. This can lead to bad choice of edge at the initial stage of iteration and affect

the following edge selection. The other one treatment is to use the average of ∆t in other cascades that the time stamps

are available as approximation to compute marginal gain for the all-missing case. The edge ei with the largest marginal

gain is then preserved and added into G1 as fixed edge.

The algorithm proceeds until it finishes m iterations and m edges have already been collected in Gm. During this in

middle iteration i, it will update the time stamps of all missing nodes by performing the simulation process again based

on new network Gi−1 ∪ e and erase the old simulated time stamps of iteration i − 1. This is because the under-test edge

e brings changes to network structure and can affect the topology of most likely tree in some cases. For example in t̃, the

start node of e is u and tu is observable. The end node of e is v that doesn’t have time stamp. If v has one and only

parent w in Gi−1 whose time is observable in t̃. Node u and w compete to activate v. The distribution of tv can differ

a lot between iteration i − 1 and i, which changes v’s activation chronological sequence and thus affects transmission tree

structure. So that the simulated time stamps in i− 1 iteration are hard to be reused in i iteration.

Figure E1 Performance on miss mode.

Figure E2 Performance on network structure.

Appendix F Experimental evaluation

In this section, we evaluate our method on both synthetic and real world incomplete data and show that our method

outperforms other three widely-used baseline methods for network inference.
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Figure F1 Experiment results on synthetic data.

Baseline Methods:

• PSE [3] introduces a method to distinguish and locate the missing node and then estimates the missing time stamps.

(Note that the authors haven’t gave an abbreviation of their method, we call it PSE for convenience.)

• NetInf [2] introduces a tractable approximation method by exploiting a diminishing returns property of the model,.

• NetRate [4] is proposed to find the optimal network and transmission rates that maximizing the likelihood of an

observed set of infection cascades and then reduces to solving a convex program.

Appendix F.1 Experiments on synthetic data

Experimental Setup We consider the Kronecker Graph model to generate the diffusion networks, and we consider three

different types of network structure: random(Kronecker parameter matrix[0.5,0.5;0.5,0.5]), hierarchical([0.9,0.1;0.1,0.9]),

core-periphery ([0.9,0.5;0.5,0.3]). We then simulate the cascades on the generated network with the Exponential transmission

model and a given transmission rate. Each time we pick the starting node uniformly at random so that at least 95% nodes

are recorded in the cascades. Once a node gets infected, we record the time of the infection and mark it as infected status

in case that it will be infected later.

Performance on miss mode Intuitively, different miss modes may lead to different performance, thus we consider the

following three miss mode to evaluate our method under various conditions:

• Random Miss: Given a miss rate q, we randomly choose q|V | nodes(infected or uninfected) from V and change their

infection time to +∞.

• Edge Miss: Given a miss rate q, we randomly choose mutually disjoint q|V |/2 edges from E and change all the

infection time of nodes from these q|V |/2 edges to +∞.

• Block Miss: Given a miss rate q, we firstly choose a node u randomly from V . Then we can compute a radius rq
so that rq = argmin

r
|{v|duv 6 r}| > q|V |. We randomly choose q|V | nodes around node u from {v|duv 6 rq}; and

change their infection time to +∞.

We evaluate the solution quality by comparing the F1-score where F1 = 2 precision∗recall
precision+recall

. Precision is the fraction of

edges in the inferred network included in the true network. Recall is the fraction of edges of the true network included in

the inferred network. The Monte-Carlo simulation time is set to be 4 times of the number of network nodes. Note that the

iteration time of greedy method is set to be twice of network nodes amount. Figure E1 shows the F1-score of our method

on three different miss mode. We generate 500 cascades on 128 nodes with α = 1, γ = 0.2, q = 20%. When applying the

random miss mode, F1-score keeps at high level of over 70%. On the hand, F1-score can also achieve 42% with block miss

mode. If the unobserved nodes are connected with each other, they just form a ”hidden block” instead of several nodes in

the graph, of which the structure is comparatively more difficult to infer. This is why the performance based on block miss

mode is worse.

Performance on network size. Figure F1 reveals the precision of all the methods as the networks become larger. We

use the core-periphery Kronecker network and set α = 1, γ = 0.2. There are totally 500 cascades and miss rate is 20%. We

vary the number of nodes on the network from 16 to 512. The solution quality of our method is obviously better than any

other one, with at least 25% increase in precision. We also observe that the accuracy declines as the network gets larger.

This is due to the fact that, with the same number of cascades, smaller network makes it easier to infer.

Performance on cascade size. Figure F1 plots the relationship between the solution quality and the cascade size.

As expected, the accuracy can be seen increasing when the number of cascades is bigger. Here, the network has 128 nodes

while other variables are fixed. The precision rises from 65% to 92% for our method, while other methods can only achieve

at most 77% in all cases. The precision of our method flattens out after 250 cascades, which has already been 83%. This

means that, in order to achieve a good precision, a moderate number of cascades is enough.

Performance on miss rate. We also evaluate our method by changing the miss rate from 5% to 30%, studying how

miss rate affects the results, as shown in Figure F1. In this figure,we can observe that the precision declines as miss rate

increases. The gap between our method and NetRate is 6% when q = 5%, while it turns to be 31% when q = 30%.

Performance on Network Structure. From Figure E2, we can observe that the precision of our method is at least

46% in all cases and it outperforms the other three methods on different types of network structure. It also shows when
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the network is based on random structure, all four methods can achieve at least 60%, better than any other two network

structures, where the precision of PSE and NetInf and NetRate is lower than 40% on hierarchical model.

Figure F2 Experiment results on real world data.

Appendix F.2 Experiments on real data

Dataset Description and Experimental Setup. The real data we use is extracted from the quotes and phrases online

that appear most frequently from August,2008 to April,2009, and the method we apply to trace information is MemeTracker.

Specifically, the hyperlink between sites indicates that the piece of information is referred from one site to another. We

follow the hyperlinks in order to trace the diffusion of information. For the experiment, we use the network which has 500

nodes and over 3000 edges, and the nodes we choose are the top-500 documents.

Evaluation on real data. Firstly, we range the miss rate from 0 to 20% and examine how the performance of our

method depend on the integrity of cascades. Not surprisingly, our method provides a decent solution, as shown in Figure

F2. The precision of our method as expected, are higher than any method. We can see that as the number of cascades is

larger, the precision of all four methods becomes higher as expected. Our method can achieve nearly 80% accuracy while

the accuracy of NetInf is no more than 60%. Figure F2 plots the precision curves and compares our results with PSE,

NetRate, NetInf, as the miss rate changes. When there is no missing node, the result of NIIC and NetRate is better than

that of NetInf apparently, while NIIC outperforms NetRate gradually as the miss rate increases. When the miss rate is

20%, our method can achieve over 65%, while the accuracy computed by the other three methods is below 60%.
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