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Abstract Consider a two-way amplify-and-forward (AF) relay network where two legitimate nodes com-

municate through a relay in the presence of an eavesdropper. Assuming full duplexity at the legitimate nodes

and the relay, a robust artificial noise (AN)-aided AF scheme is proposed to maximize the worst-case sum

secrecy rate under imperfect channel state information (CSI) of the eavesdropper. This robust sum secrecy

rate maximization (SSRM) problem is formulated as a max-min semi-infinite problem and is tackled by the

semidefinite relaxation (SDR) method. In particular, we first convert the max-min semi-infinite problem

into a maximization problem with a finite number of constraints. Then, an efficient two-block alternating

difference-of-concave (DC) programming approach is proposed to iteratively solve the SDR problem, with

one of the blocks computed in closed form. In addition, a specific robust rank-one solution construction

procedure is presented to extract a feasible solution for the original robust SSRM problem from the SDR

solution. The efficacy of the proposed method is demonstrated by numerical simulations.
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1 Introduction

Relay communications have received considerable attention, owing to their capability of enlarging cover-

age. In the last several decades, extensive studies have been conducted on one-hop relays and multi-hop

relays, and more recently on two-way relays. Compared with the one-way relay, a two-way relay can

achieve higher spectral efficiency by using the idea of analog network coding to mitigate the self inter-

ference (SI) at the user end. Recent advances in SI mitigation techniques make it possible to further

improve the spectral efficiency by using full-duplex (FD) relays. Theoretically, an FD relay can provide

double the spectral efficiency of a half-duplex relay. Apart from that, full duplexity also provides more

design flexibility owing to simultaneous transmission and reception.

Recently, there has been growing interest in applying full duplexity to enhance physical-layer (PHY)

security [1–8]. PHY security is a means of achieving confidentiality by using information-theoretic PHY
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coding and decoding strategies, without leveraging upper-layer encryption and decryption [9]. In this

work, we focus on the PHY secrecy design for FD two-way relay networks, where two FD legitimate

nodes exchange confidential information through a trusted FD relay, and an eavesdropper intercepts the

transmission. Our goal is to design the forwarding strategy at the relay to prevent information leakage

to the eavesdropper during two-way transmissions. Specifically, by assuming erroneous channel state

information (CSI) of the eavesdropper, a robust artificial noise (AN)-aided amplify-and-forward (AF)

beamforming strategy is proposed to maximize the worst-case sum secrecy rate by jointly optimizing the

AN covariance matrix and the AF matrix. This robust sum secrecy rate maximization (SSRM) problem

is a nonconvex and semi-infinite problem. By applying a S-procedure, the robust SSRM problem is first

reformulated into a form with only a finite number of constraints, and is then relaxed by semidefinite

relaxation (SDR). Building upon the relaxation, an alternating difference-of-concave (DC) optimization

approach is developed to iteratively solve the relaxed problem. Since the SDR may not be tight, we further

present a rank-one solution recovery procedure to extract an approximate solution for the original SSRM

problem.

Our contributions are summarized as follows.

(1) A robust AN-aided AF beamforming strategy is proposed to achieve PHY security for FD two-way

relay networks.

(2) An SDR-based alternating DC approach is developed to iteratively maximize the worst-case sum

secrecy rate, and we show that one of the DC subproblems can be solved efficiently with a closed form.

(3) A novel rank-one solution recovery procedure is proposed to extract a feasible robust solution for

the SSRM problem from the SDR solution.

There are some related studies worth mentioning. Two-way relay network beamforming under full

and partial CSI was considered in [10, 11]. This work [10] focused on the half-duplex relay with the

objective of minimizing the total mean square error (MSE) of two-way relay transmissions. Both full

and partial statistical CSI are investigated in [10]. In [11], the authors considered MIMO two-way

relays under statistical CSI. By leveraging the Lagrangian multiplier method, an analytical MSE-optimal

solution is derived. We should mention that Refs. [10,11] focus on the MSE performance metric without

a secrecy consideration, but in this work we aim for a secrecy-based optimal relaying scheme under a

worst-case CSI error model. With regard to PHY security, FD relay secure communications were also

considered in [3–5], but their focus was on one-way relay transmission and secrecy outage analysis under

different relaying modes, namely, FD jamming and FD transmission. Herein, we consider simultaneous

FD transmission and jamming in two-way communications. The most related work is [6]. Different

from [6], herein we include the imperfect CSI of the eavesdropper, and aim for a robust secrecy design,

whereas Ref. [6] assumes accurate CSI of the eavesdropper, which may not be practical, especially for a

passive eavesdropper.

This paper is organized as follows. The system model and problem formulation are given in Section 2.

In Section 3, we propose an SDR-based alternating optimization for the robust SSRM problem. Numerical

results are given in Section 4. Section 5 concludes the paper.

Our notations are as follows. (·)T and (·)H denote the transpose and conjugate transpose, respectively;

I denotes an identity matrix with appropriate dimension; A � 0 means that A is Hermitian positive

semidefinite; Diag(A,B) represents a block diagonal matrix with A and B on the main diagonal; Tr(·)
denotes a trace operation, and CN (a,Σ) represents a complex Gaussian distribution with mean a and

covariance matrix Σ.

2 System model and problem formulation

Our considered model is similar to [6], where two legitimate nodes, named Alice and Bob, exchange con-

fidential information through an AF relay, and an eavesdropper, named Eve, overhears the transmission

from the relay; see Figure 1. We assume that Alice, Bob, and the relay all work in FD mode, and that all

nodes have a single transmit antenna and/or receive antenna except for the relay, which employs multiple
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Figure 1 System model.

transmit and receive antennas to perform secure beamforming. Let hAR ∈ CM , hRA ∈ CN and hAA

be the channels between Alice to the relay and the SI channel at Alice, respectively, where N and M

represent the number of transmit and receive antennas at the relay, respectively. Similarly, we denote

hBR ∈ CM , hRB ∈ CN and hBB for Bob. Let xA(t) ∈ C and xB(t) ∈ C be transmit signals at Alice and

Bob with E{|xA(t)|2} = pA and E{|xB(t)|2} = pB. Then, the received signal yR(t) at the relay consists

of the sources’ signals and the relay’s SI, i.e.,

yR(t) = hARxA(t) + hBRxB(t) +HRRxR(t) + nR(t),

where HRR ∈ CM×N is the SI channel at the relay, nR(t) ∼ CN (0, σ2
RI) is the additive white Gaussian

noise, and xR(t) ∈ CN is the SI arising from in-band FD operation at the relay, which has the following

form:

xR(t) = WyR(t− τ) + z(t). (1)

Herein, τ > 0 is the processing delay at the relay, W ∈ CN×M is the AF matrix employed at the relay,

and z(t) is the artificial noise (AN) used for interfering with Eve. We assume z(t) ∼ CN (0,Q) with

Q � 0.

Upon (1), the received signal at Alice is expressed as

yA(t) = hH
RAxR(t) + hAAxA(t) + nA(t)

= hH
RAWhBRxB(t− τ) + v(t), (2)

where v(t) = hH
RAWhARxA(t− τ) + hAAxA(t) + hH

RAWHRRxR(t− τ) + hH
RAz(t) + hH

RAWnR(t− τ) +

nA(t). Notice that the term hH
RAWhARxA(t − τ) is SI induced by two-way communications, which

is approximately at the same power level as the useful signal. Therefore, following the standard two-

way relay reception model, hH
RAWhARxA(t − τ) can be safely eliminated by Alice herself with a priori

knowledge of xA(t − τ). The second and the third terms in v(t) are SI induced by FD operations at

Alice and the relay. Since the relay has multiple antennas, zero-forcing receive beamforming, i.e., by

imposing WHRR = 0, can be employed to eliminate hH
RAWHRRxR(t − τ). However, as for hAAxA(t),

its power level is overwhelmingly larger than the far-end useful signal, and analog and digital SIC should

be leveraged to suppress the hAAxA(t) to some extent, but are not completely removed in practice. To

take this residual FD SI effect into account, let 0 < κA < 1 denote the SI residual factor after the analog

and digital SIC at Alice. Then, after two-way SI cancelation and FD SI suppression, the received signal

at Alice may be modeled as

ŷA(t) =hH
RAxR(t) +

√
κAhAAxA(t) + hH

RAz(t) + hH
RAWnR(t− τ) + nA(t),

and the achievable rate at Alice is calculated as

RA(W ,Q) = log

(

1 +
|hH

RAWhBR|2pB
κA|hAA|2pA + σ2

R‖hH
RAW ‖2 + hH

RAQhRA + σ2
A

)

,
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where the residual SI is treated as Gaussian noise for simplicity. In the same way, we can express the

achievable rate at Bob as

RB(W ,Q) = log

(

1 +
|hH

RBWhAR|2pA
κB|hBB|2pB + σ2

R‖hH
RBW ‖2 + hH

RBQhRB + σ2
B

)

and the achievable sum rate at Eve as

RE(W ,Q) = log

(

1 +
|hH

REWhAR|2pA + |hH
REWhBR|2pB

σ2
R‖hH

REW ‖2 + hH
REQhRE + σ2

E

)

.

According to [12], the sum secrecy rate of the two-way relay system is calculated as

Rs(W ,Q) = [RA(W ,Q) +RB(W ,Q)−RE(W ,Q)]
+
. (3)

Moreover, the total transmit power at the relay is given by

p(W ,Q) = pA‖WhAR‖2 + pB‖WhBR‖2 + σ2
R‖W ‖2F +Tr(Q).

In [6], the authors considered the sum secrecy rate optimization under perfect CSIs of all links; however,

this could be too ideal, especially for Eve’s link. In this work, we focus on imperfect CSI of Eve by adopting

the widely used norm-bounded deterministic error model:

hRE = h̄RE +∆hRE, (4)

where h̄RE is the estimated CSI of Eve, and ∆hRE is the estimation error. Herein, we assume that ∆hRE

lies in an uncertain sphere with radius ǫ, i.e.,

∆hRE ∈ B , {∆h | ‖∆h‖ 6 ǫ}.

Using the above imperfect CSI model, we aim to design the AF matrix W and the AN covariance Q

such that the sum secrecy rate of two-way relay communications is maximized for arbitrary Eve’s CSI

error ∆hRE in B. Mathematically, this robust sum secrecy rate maximization (SSRM) problem may be

formulated as the following max-min problem:

max
W ,Q

min
∆hRE∈B

{RA(W ,Q) +RB(W ,Q)−RE(W ,Q)} (5)

s.t. p(W ,Q) 6 PR, (5a)

WHRR = 0, (5b)

where PR > 0 is the maximal transmit power at the relay. Notice that a zero-forcing constraint (5b) is

imposed to eliminate the FD SI at the relay, and M > N is implicitly assumed.

The robust SSRM problem (5) is challenging to solve because (1) the uncertainty set B contains

an infinite number of CSI errors, thereby making problem (5) essentially a semi-infinite optimization

problem, which is generally hard to solve; and (2) the objective of (5) is nonconcave and depends on

the variables W and Q in a highly nonlinear manner. In the following section, we develop a tractable

approach to iteratively obtain an approximate solution for (5) by leveraging the SDR technique and the

alternating DC programming.

3 SDR-based alternating optimization approach to robust SSRM problem

In this section, we develop an SDR-based alternating optimization approach to the robust SSRM prob-

lem (5). Our approach is described as follows.

Since ∆hRE appears only in RE, problem (5) can be rewritten as

max
W ,Q,γE

RA(W ,Q) +RB(W ,Q)− log(1 + γ−1
E ) (6a)
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s.t. RE(W ,Q) 6 log(1 + γ−1
E ), ∀∆hRE ∈ B, (6b)

(5a) and (5b), (6c)

where γE > 0 is a slack variable introduced to simplify the objective. The main difficulty of problem (6)

lies in the constraint (6b). Essentially, it involves an infinite number of inequalities because the uncertainty

set B has an infinite number of elements. To turn (6b) into a more tractable form, let us denote

Ξ(W , γE) , pAγEWhARh
H
ARW

H + pBγEWhBRh
H
BRW

H − σ2
RWWH.

Then, a simple algebraic calculation shows that the robust constraint (6b) can be rewritten as

(h̄RE +∆hRE)
H(Ξ(W , γE)−Q)(h̄RE +∆hRE) 6 σ2

E, ∀∆hRE ∈ B, (7)

or equivalently as the following implication:

∆hRE ∈ B =⇒ (h̄RE +∆hRE)
H(Ξ(W , γE)−Q)(h̄RE +∆hRE) 6 σ2

E. (8)

In view of the structure of B and the quadratic inequality on the right-hand side of (8), the implication

in (8) can be further reexpressed as a matrix inequality by applying the following lemma.

Lemma 1 (S-procedure [13]). Let

fk(x) = xHAkx+ 2Re{bHk x}+ ck

for k = 1, 2, where Ak ∈ Hn, bk ∈ Cn, ck ∈ R. The implication f1(x) 6 0 ⇒ f2(x) 6 0 holds if and only

if there exists µ > 0 such that

µ

[

A1 b1

bH1 c1

]

−
[

A2 b2

bH2 c2

]

� 0

provided that there exists a point x̂ such that f1(x̂) < 0.

To apply Lemma 1, note that

∆hRE ∈ B ⇐⇒ ∆hH
RE∆hRE 6 ǫ2,

which together with (8) yields

∆hH
RE∆hRE 6 ǫ2 =⇒ (h̄RE +∆hRE)

H(Ξ(W , γE)−Q)(h̄RE +∆hRE) 6 σ2
E. (9)

Now, by setting A1 = I, b1 = 0, c1 = −ǫ2 and A2 = Ξ(W , γE) − Q, b2 = (Ξ(W , γE) − Q)h̄RE,

c2 = h̄H
RE(Ξ(W , γE)−Q)h̄RE − σ2

E and invoking Lemma 1, we can express the robust constraint (6b) as

the following equivalent matrix inequality:

[

ηI

σ2
E − ηǫ2

]

�
[

I

h̄H
RE

]

(Ξ(W , γE)−Q)

[

I

h̄H
RE

]H

(10)

for some η > 0. Substituting (10) into (6) yields

max
W ,Q,γE,η>0

RA(W ,Q) +RB(W ,Q)− log(1 + γ−1
E )

s.t. p(W ,Q) 6 PR,

WHRR = 0,

[

ηI

σ2
E − ηǫ2

]

�
[

I

h̄H
RE

]

(Ξ(W , γE)−Q)

[

I

h̄H
RE

]H

.

(11)

Problem (11) can be expressed into a form suitable for SDR.
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Lemma 2. Let r = rank(HRR) and U0 ∈ CM×(M−r) be the left singular vectors associated with the

zero singular values of HRR. Then, problem (11) can be equivalently written as

max
w,Q,γE,η

f(wwH,Q)− g(wwH,Q)− log(1 + γ−1
E ) (12)

s.t. Ψ(η, γE,wwH,Q) ,

[

ηI

σ2
E − ηǫ2

]

−
[

I

h̄H
RE

]

F (γE,wwH,Q)

[

I

h̄H
RE

]H

� 0, (12a)

Tr(wwH) + Tr(Q) 6 PR, η > 0, (12b)

where W = vec−1(T− 1

2w)UH
0 with vec−1(·) being the inverse operation of vectorization,

T = pA(U
T
0 h∗

AR ⊗ I)(UT
0 h∗

AR ⊗ I)H + pB(U
T
0 h∗

BR ⊗ I)(UT
0 h∗

BR ⊗ I)H + σ2
RI,

f(wwH,Q) =
∑2

i=1 log(ci + αi(wwH,Q)),

g(wwH,Q) =
∑2

i=1 log(ci + βi(wwH,Q)),

c1 = κA|hAA|2pA + σ2
A,

c2 = κB|hBB|2pB + σ2
B,

α1(wwH,Q) = β1(wwH,Q) + pB(U
T
0 h∗

BR ⊗ hRA)
HT− 1

2wwHT− 1

2 (UT
0 h∗

BR ⊗ hRA),

α2(wwH,Q) = β2(wwH,Q) + pA(U
T
0 h∗

AR ⊗ hRB)
HT− 1

2wwHT− 1

2 (UT
0 h∗

AR ⊗ hRB),

β1(wwH,Q) = Tr(σ2
R(I ⊗ hRA)

HT− 1

2wwHT− 1

2 (I ⊗ hRA)) + hH
RAQhRA,

β2(wwH,Q) = Tr(σ2
R(I ⊗ hRB)

HT− 1

2wwHT− 1

2 (I ⊗ hRB)) + hH
RBQhRB,

F (γE,wwH,Q) = γEΞ̂1(wwH)− Ξ̂2(wwH)−Q,

Ξ̂1(wwH) = pA(U
T
0 h∗

AR ⊗ I)HT− 1

2wwHT− 1

2 (UT
0 h∗

AR ⊗ I)

+pB(U
T
0 h∗

BR ⊗ I)HT− 1

2wwHT− 1

2 (UT
0 h∗

BR ⊗ I),

Ξ̂2(wwH) = σ2
R

∑M−r
i=1 EiT

− 1

2wwHT− 1

2EH
i .

Herein, Ei , [0N , . . . , IN , . . . ,0N ] ∈ RN×N(M−r) is a zero matrix, except for the columns from (i−1)N+1

to iN , which forms an identity matrix IN , and ⊗ denotes Kronecker product.

Proof. It follows from (5b) that any feasible W must be in the form of W = W̃UH
0 for some W̃ ∈

CN×(M−r). Plugging W̃UH
0 into (5a), the total power is expressed as p(W̃ ,Q) = w̃HT w̃ + Tr(Q) =

Tr(wwH) + Tr(Q), where w̃ = vec(W̃ ) and w = T
1

2 w̃. From the definition of w, it is clear W =

vec−1(T− 1

2w)UH
0 . Then, after some tedious matrix manipulations, one can express RA, RB and (10)

into the desired form in (12).

By denoting W = wwH and dropping the rank-one constraint on W , we get an SDR of (12):

max
W,Q,γE,η

f(W ,Q)− g(W ,Q)− log(1 + γ−1
E ) (13a)

s.t. Ψ(η, γE,W ,Q) � 0, η > 0, (13b)

Tr(W) + Tr(Q) 6 PR, W � 0, Q � 0. (13c)

The objective of (13) is in the difference-of-concave (DC) form, and the constraints are convex except

for (13b), where γE and W are coupled. However, fixing either γE or W , constraints (13b) and (13c) are

convex with respect to the remaining variables. In light of this, we proposed an alternating DC (ADC)

approach to handling problem (13). Specifically, given some initial point (W0,Q0, η0, γ0
E), we repeatedly

solve the following two problems:

• Fix γk
E and optimize (W ,Q, η)

(Wk+1,Qk+1, ηk+1) = argmaxW,Q,η f(W ,Q)− Tr(∇Wg(Wk,Qk)HW)

− Tr(∇Qg(Wk,Qk)HQ)− g(Wk,Qk)

s.t. Ψ(η, γk
E,W ,Q) � 0, η > 0,

Tr(W) + Tr(Q) 6 PR, W � 0, Q � 0.

(14)
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• Fix (Wk+1,Qk+1, ηk+1) and optimize γE,

γk+1
E = argmaxγE

γE s.t. Ψ(ηk+1, γE,W
k+1,Qk+1) � 0, (15)

for k = 0, 1, 2, . . . , until some stopping criterion is satisfied.

Problem (14) is a convex optimization problem, which can be efficiently solved with interior-point

methods [14], e.g., an off-the-shelf solver CVX1). Meanwhile, problem (15) can be solved in closed form,

as revealed in the following lemma.

Lemma 3. Problem (15) has a closed-form solution

γk+1
E = λ−1

max





[

Ak+1
]†

[

I

h̄H
RE

]

Ξ̂k+1
1

[

I

h̄H
RE

]H


 ,

where Ak+1 , Diag
(

ηk+1I, σ2
E − ηk+1ǫ2

)

+
[

I

h̄
H

RE

]

(Qk+1 + Ξ̂k+1
2 )

[

I

h̄
H

RE

]H

, λmax and (·)† represent the

maximum eigenvalue and the Moore-Penrose pseudoinverse, respectively. For notational simplicity, we

used Ξ̂k+1
i to represent Ξ̂i(W

k+1), i = 1, 2.

Proof. The constraint in (15) amounts to

Ak+1 � γE

[

I

h̄H
RE

]

(Ξ̂k+1
1 )

1

2 (Ξ̂k+1
1 )

1

2

[

I

h̄H
RE

]H

⇐⇒









Ak+1

[

I

h̄H
RE

]

(Ξ̂k+1
1 )

1

2

(Ξ̂k+1
1 )

1

2

[

I h̄RE

]

γ−1
E I









� 0

⇐⇒ γ−1
E I � (Ξ̂k+1

1 )
1

2

[

I

h̄H
RE

]H
[

Ak+1
]†

[

I

h̄H
RE

]

(Ξ̂k+1
1 )

1

2

⇐⇒ γE 6 λ−1
max





[

Ak+1
]†

[

I

h̄H
RE

]

Ξ̂k+1
1

[

I

h̄H
RE

]H


 ,

where the last two steps follow from Schur’s complement [15].

Regarding the above alternating optimization, the following result is readily established.

Proposition 1. The iterate (Wk,Qk, ηk, γk
E), k = 0, 1, . . ., generated by (14) and (15), yields a nonde-

creasing objective value for (13). Thus, the alternating optimization process converges (in the sense of

the objective value).

Proof. Since (Wk,Qk, ηk) is a feasible solution of (14) and the first-order approximation of g(W ,Q) is

tight at (Wk,Qk), we have

f(Wk,Qk)− g(Wk,Qk)− log

(

1 +
1

γk
E

)

6 f(Wk+1,Qk+1)− g(Wk+1,Qk+1)− log

(

1 +
1

γk
E

)

6 f(Wk+1,Qk+1)− g(Wk+1,Qk+1)− log

(

1 +
1

γk+1
E

)

,

where the last inequality is a result of the optimality of γk+1
E for problem (15). Moreover, owing to the

power constraint, the sum secrecy rate must be upper bounded, and thus it follows from the monotone

convergence theorem that the iterate leads to a convergent objective value of (13a).

1) Grant M, Boy S. CVX: Matlab software for disciplined convex programming. 2014. http://cvxr.com/cvx/.
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Figure 2 Secrecy rate vs. iteration number.

In general, the SDR (13) may not be tight. In such a case, one needs to extract a feasible rank-one

solution for (12) from the high-rank SDR solution. Below, we give a particular way to construct a feasible

rank-one W for problem (12).

Proposition 2. Let (Wo,Qo, ηo, γo
E) be a solution of the SDR problem (13), and W

o =
∑s

l=1 w
o
l w

o
l
H

with s > 2 being the rank of Wo. Pick an arbitrary l ∈ {1, . . . , s} and let w̆ = wo
l and Q̆ = Qo +

σ2
R

∑

j 6=l

∑M−r
i=1 EiT

−1/2wo
jw

o
j
HT−1/2EH

i . Then, (w̆, Q̆, ηo, γo
E) is feasible for problem (12).

Proof. It follows from the definition of F (γE,W ,Q) that F (γo
E,W

o,Qo) � F (γo
E, w̆w̆H, Q̆) holds.

Hence, (w̆w̆H, Q̆, ηo, γo
E) fulfills (13b) [also (12a)]. Moreover, we have

Tr(Q̆) = Tr(Qo) + σ2
R

∑

j 6=l

Tr

(

M−r
∑

i=1

EiT
−1/2wo

jw
o
j
H
T−1/2EH

i

)

= Tr(Qo) + σ2
R

∑

j 6=l

Tr
(

T−1/2wo
jw

o
j
H
T−1/2

)

= Tr(Qo) + σ2
R

∑

j 6=l

Tr
(

wo
jw

o
j
H
T−1

)

6 Tr(Qo) +
∑

j 6=l

Tr
(

wo
jw

o
j
H
)

,

where the second equality is because T−1/2wo
jw

o
j
HT−1/2 and

∑M−r
i=1 EiT

−1/2wo
jw

o
j
H T−1/2EH

i have the

same diagonal elements, and the last inequality is a result of T � σ2
RI (cf. the definition of T in Claim 2).

Therefore, (w̆, Q̆) also satisfies the power constraint (12b).

4 Numerical results

We use Monte Carlo simulations to evaluate the performances of the proposed robust design. Our default

simulation settings are as follows, unless otherwise specified: (N,M) = (3, 6), κA = κB = κ = 0.01,

σA = σB = σE = 1, pA = pB = 10 dB, PR = 15 dB, ǫ = 0.5. All channels are randomly generated

following standard i.i.d. complex Gaussian distribution.

Figure 2 shows the convergence behavior of the proposed robust design for one random channel real-

ization. From the figure, we see that the secrecy rate increases monotonically and becomes stable after

eight iterations. This observation is consistent with Proposition 1. We also tested the convergence of the

algorithm under different settings, and the results were basically the same as Figure 2, i.e., after tens of

iterations the secrecy rate becomes stable.

In the second example, we investigate the secrecy rate performance of different methods when the

source power at Alice and Bob is increased. The result is shown in Figure 3. To make a comparison,

we also include the perfect CSI-based design in [6] and its nonrobust version based on estimated CSI
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Figure 3 (Color online) Secrecy rate vs. source power. Figure 4 (Color online) Secrecy rate vs. ǫ.

h̄RE. Specifically, the perfect CSI-based design in [6] assumes that accurate CSI of Eve is available, and

that the sum secrecy rate is optimized under the perfect CSI case. However, it should be noted that

in practice, the perfect CSI is usually not available, and thus the perfect CSI-based design serves as a

benchmark and provides an upper bound on the worst-case sum secrecy rate. For a nonrobust design, the

relay ignores the CSI uncertainty and presumes the estimated CSI h̄RE as the “true” CSI. Clearly, owing

to ignoring the CSI imperfection, it is expected that the nonrobust design cannot attain a satisfactory

secrecy performance. From Figure 3, we have the following observations: (1) The secrecy rates of all three

methods increase as the source power changes from 0 dB to 12 dB. In particular, the secrecy rates of the

three methods increase quickly for the small power region (6 8 dB), but when the source power exceeds 8

dB, the secrecy rates tend to be flattened. (2) As expected, the perfect CSI-based design attains the best

secrecy rate among the three; however, when there is CSI uncertainty, its nonrobust version’s secrecy

rate degrades significantly, say from 4.8 to 2.6 nats/s/Hz at a power level 12 dB. This implies that the

perfect CSI-based design is very sensitive to CSI errors and cannot provide satisfactory robust secrecy

performance.

In the last example, we study the relationship between the sum secrecy rate and the CSI uncertainty

level ǫ. The result is shown in Figure 4. Since the perfect CSI-based design is independent of ǫ, its secrecy

rate is constant over all ǫ. However, the performance of nonrobust design and the proposed robust design

are degraded as ǫ increases. Nevertheless, we see from Figure 4 that the rate gap between the nonrobust

and the robust designs is enlarged as ǫ increases. In particular, for ǫ = 0.2 there is a negligible rate gap

between the two methods; however, when ǫ = 1, the robust design outperforms the nonrobust one by

nearly 0.8 nats/s/Hz. This enlarged rate gap between the robust and nonrobust designs implies that the

robust design is less sensitive to the CSI uncertainty than the nonrobust one, because the former already

takes the CSI uncertainty into account in the precoder design, whereas the latter does not.

5 Conclusion

This paper considered a worst-case sum secrecy rate maximization (SSRM) problem for a two-way full

duplex relay network under the imperfect CSI of an eavesdropper (Eve). A robust artificial-noise (AN)-

aided amplify-and-forward scheme is proposed to alternately optimize the legitimate receptions and those

of Eve. This alternating optimization gradually improves the sum secrecy rate. By comparing it with

a nonrobust design, the proposed robust design can achieve better secrecy gains, especially for a large

Eve’s CSI uncertainty.
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