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Appendix A Proof of Theorem 3
Assume (P),; = (ao,...,an—1), (PT)j = (bo,...,bn—1). If the input is of the form
(COy -y Cim 1y iy Ci 1y - vy Crm1) T
where ¢, s are constants. Let y = .S; (:vl & kgl)), then the output of the first round is
(aoy @ do, ..., an—1y ® dn—1)"
where d,s are some constants. Let gm = dm D ks,%>, then the j-th byte of the output of second round is
T (y) =boSo (a0y ® q0) ® - D bp—1Sn—1 (an-1y ® n—1) .

Now, ambm = 0 implies that b, Sm (amy @ qo) is a constant. Taking Z (P) = 2 and am, = bmg = am; = bm; = 1 into
consideration, we have
T (y) = Smo (Y D mo) ® Smy (Y © amy) ®

where « is a constant. From Theorem 1, different values of S; (T (y) ® k§3)> appear even times, which ends our proof. [

Appendix B Distinguishers of ARIA and SPN Ciphers Using 32 x 32 Matrix of [1] as Linear
Layer
Distinguishers of ARIA obtained by Theorem 3 are listed in Table B1.

Table B1 2.5-Round Integral Distinguishers of ARIA

Active byte | Balanced bytes Active byte | Balanced bytes
0 6,9, 15 8 1,7, 14
1 7,8, 14 9 0, 6, 15
2 4,11, 13 10 3,5, 12
3 5, 10, 12 11 2,4,13
4 2, 11, 13 12 3,5, 10
5 3,10, 12 13 2, 4,11
6 0,9, 15 14 1,7, 8
7 1,8, 14 15 0,6,9

When using 32 x 32 matrix of [1] as linear layer, by Theorem 3, if Sy, = Sm,, some 2.5-round distinguishers D (%, j) of
SPSPS could be found which are listed in Table B2.
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Table B2 Distinguishers of SPSPS

(4,7) my, Mo (4,7) my,ma
(4,7) 12,15 (18,22) 14,30
(4,27) 9,22 (19,23) 15,31
(5, 4) 12,13 (20,10) 24,25
(5,24) 10,23 (20,16) 12,28
(6, 5) 13,14 (21,11) 25,26
( 6,25) 11,20 (21,17) 13,29
(7,6) 14,15 (22, 8) 26,27
(7,26) 8,21 (22,18) 14,30
(8,22) 25,26 (23, 9) 24,27
( 8,30) 1,12 (23,19) 15,31
(9,23) 26,27 (24, 7) 10,21
(9,31) 2,13 (25, 4) 11,22
(10,20) 24,97 (26, 5) 8.23
(10,28) 3,14 (27, 6) 9,20
(11,21) 24,25 (28,10) 1,14
(11,29) 0,15 (29,11) 2,15
(16,20) 12,28 (30, 8) 3,12
(17,21) 13,29 (31, 9) 0,13

Appendix C Proof of Theorem 5 and Theorem 6
Assume J, @ P is a permutation. Then for any 0 < 4,7 <n—1, w ((P)Z) =w ((PT)].) = n — 1, thus there exist at least
one j, such that w ((PZ) ® (PT)7_> = n — 2. Since for any a,y € F} with w(a) =w () =n—1, w(a® B8) > n—2. So
Z(P)y=n-—2.
Now, assume the second condition is satisfied. Since we have:
n ji=k
w((P)e® (PT);) =
(P (PT);) {nl ok

and

w(erown)={"_, 12

For i # t and j # k, we always have w ((P): ® (PT))) = n — 2. Therefore, Z(P) = n — 2.

Next, assume Z (P) = n — 2. According to Theorem ??, for any 0 < ¢ < n—1, w ((P)Z) > n — 1. Thus there exist
at most one column all of whose components are 1. If w ((P)y) =+ = w ((P)ni1 = n — 1, taking non-singularity into
consideration, J, @ P is obviously a permutation matrix. If there is a column and row all of whose components are 1, then
P*, the sub-matrix of P by deleting the correspondence column and row, satisfies that J,_1 ® P* is a permutation matrix.
This ends our proof of Theorem 5. g

Since for an odd integer n, if J, @ P is a permutation matrix, the sum of all rows (columns) is 0, which tells that P is
singular, thus we have Theorem 6.

Appendix D Proof of Theorem 7
We only give the proof of the case that J, @& P is a permutation matrix.

Notice the fact that a permutation matrix is corresponding to a permutation = on {0,1,...,n — 1}, thus
Xo X (o)
X1 Xr(1)
(Jn 5] P) X2 = Xﬂ'(2)

Xn—1 Xr(n—1)
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Let T=Xo®X1®---® Xpn—1, then

Xo T@er(o)

X, T & Xp)

Pl X2 | =] T®Xyq
Xn-1 T® Xr(n-1)

(1) If the weight of the input is 1, then T" # 0, thus the weight of the output is at least n — 1;

(2) If the weight of the input is 2, there are following 2 cases: T'=0 and T # 0. If T = 0, the weight of the output is
exactly 2; and if T' # 0, the weight of the output is at least n — 2;

(3) If the weight of the input is 3, there are also following 2 cases: T'=0 and T # 0. If T' = 0, the weight of the output
is exactly 3, and if T" # 0, the weight of the output is at least n — 3.

According to the definition of branch number, B (P) = 4, which ends our proof. d
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