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Appendix A Proof of Theorem 3

Assume (P )i = (a0, . . . , an−1),
(
PT

)
j
= (b0, . . . , bn−1). If the input is of the form

(c0, . . . , ci−1, xi, ci+1, . . . , cn−1)
T

where cms are constants. Let y = Si

(
xi ⊕ k

(1)
i

)
, then the output of the first round is

(a0y ⊕ d0, . . . , an−1y ⊕ dn−1)
T

where dms are some constants. Let qm = dm ⊕ k
(2)
m , then the j-th byte of the output of second round is

T (y) = b0S0 (a0y ⊕ q0)⊕ · · · ⊕ bn−1Sn−1 (an−1y ⊕ qn−1) .

Now, ambm = 0 implies that bmSm (amy ⊕ q0) is a constant. Taking I (P ) = 2 and am0 = bm0 = am1 = bm1 = 1 into

consideration, we have

T (y) = Sm0 (y ⊕ qm0 )⊕ Sm1 (y ⊕ qm1 )⊕ α,

where α is a constant. From Theorem 1, different values of Sj

(
T (y)⊕ k

(3)
j

)
appear even times, which ends our proof. �

Appendix B Distinguishers of ARIA and SPN Ciphers Using 32×32 Matrix of [1] as Linear

Layer

Distinguishers of ARIA obtained by Theorem 3 are listed in Table B1.

Table B1 2.5-Round Integral Distinguishers of ARIA

Active byte Balanced bytes Active byte Balanced bytes

0 6, 9, 15 8 1, 7, 14

1 7, 8, 14 9 0, 6, 15

2 4, 11, 13 10 3, 5, 12

3 5, 10, 12 11 2, 4, 13

4 2, 11, 13 12 3, 5, 10

5 3, 10, 12 13 2, 4, 11

6 0, 9, 15 14 1, 7, 8

7 1, 8, 14 15 0, 6, 9

When using 32× 32 matrix of [1] as linear layer, by Theorem 3, if Sm1 = Sm2 , some 2.5-round distinguishers D (i, j) of

SPSPS could be found which are listed in Table B2.
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Table B2 Distinguishers of SPSPS

(i, j) m1,m2 (i, j) m1,m2

( 4, 7) 12,15 (18,22) 14,30

( 4,27) 9,22 (19,23) 15,31

( 5, 4) 12,13 (20,10) 24,25

( 5,24) 10,23 (20,16) 12,28

( 6, 5) 13,14 (21,11) 25,26

( 6,25) 11,20 (21,17) 13,29

( 7, 6) 14,15 (22, 8) 26,27

( 7,26) 8,21 (22,18) 14,30

( 8,22) 25,26 (23, 9) 24,27

( 8,30) 1,12 (23,19) 15,31

( 9,23) 26,27 (24, 7) 10,21

( 9,31) 2,13 (25, 4) 11,22

(10,20) 24,27 (26, 5) 8,23

(10,28) 3,14 (27, 6) 9,20

(11,21) 24,25 (28,10) 1,14

(11,29) 0,15 (29,11) 2,15

(16,20) 12,28 (30, 8) 3,12

(17,21) 13,29 (31, 9) 0,13

Appendix C Proof of Theorem 5 and Theorem 6

Assume Jn ⊕ P is a permutation. Then for any 0 6 i, j 6 n− 1, w
(
(P )i

)
= w

((
PT

)
j

)
= n− 1, thus there exist at least

one j, such that w
(
(Pi)⊗

(
PT

)
j

)
= n − 2. Since for any α, γ ∈ Fn

2 with w (α) = w (β) = n − 1, w (α⊗ β) > n − 2. So

I (P ) = n− 2.

Now, assume the second condition is satisfied. Since we have:

w
(
(P )t ⊗ (PT )j

)
=

{
n j = k

n− 1 j ̸= k

and

w
(
(P )i ⊗ (PT )k

)
=

{
n i = t

n− 1 i ̸= t.

For i ̸= t and j ̸= k, we always have w
(
(P )t ⊗ (PT )k

)
= n− 2. Therefore, I(P ) = n− 2.

Next, assume I (P ) = n − 2. According to Theorem ??, for any 0 6 i 6 n − 1, w
(
(P )i

)
> n − 1. Thus there exist

at most one column all of whose components are 1. If w
(
(P )0

)
= · · · = w

(
(P )n−1

)
= n − 1, taking non-singularity into

consideration, Jn ⊕P is obviously a permutation matrix. If there is a column and row all of whose components are 1, then

P ∗, the sub-matrix of P by deleting the correspondence column and row, satisfies that Jn−1 ⊕P ∗ is a permutation matrix.

This ends our proof of Theorem 5. �
Since for an odd integer n, if Jn ⊕ P is a permutation matrix, the sum of all rows (columns) is 0, which tells that P is

singular, thus we have Theorem 6.

Appendix D Proof of Theorem 7

We only give the proof of the case that Jn ⊕ P is a permutation matrix.

Notice the fact that a permutation matrix is corresponding to a permutation π on {0, 1, . . . , n− 1}, thus

(Jn ⊕ P )



X0

X1

X2

.

..

Xn−1


=



Xπ(0)

Xπ(1)

Xπ(2)

.

..

Xπ(n−1)


.
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Let T = X0 ⊕X1 ⊕ · · · ⊕Xn−1, then

P



X0

X1

X2

.

..

Xn−1


=



T ⊕Xπ(0)

T ⊕Xπ(1)

T ⊕Xπ(2)

.

..

T ⊕Xπ(n−1)


.

(1) If the weight of the input is 1, then T ̸= 0, thus the weight of the output is at least n− 1;

(2) If the weight of the input is 2, there are following 2 cases: T = 0 and T ̸= 0. If T = 0, the weight of the output is

exactly 2; and if T ̸= 0, the weight of the output is at least n− 2;

(3) If the weight of the input is 3, there are also following 2 cases: T = 0 and T ̸= 0. If T = 0, the weight of the output

is exactly 3, and if T ̸= 0, the weight of the output is at least n− 3.

According to the definition of branch number, B (P ) = 4, which ends our proof. �
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