• Supplementary File •

Integral Cryptanalysis of SPN Ciphers with Binary Permutations

Hailong SONG^{1,2} & Yuechuan WEI^{3*}

¹School of Information Science and Engineering, Central South University, Changsha, 410083, P. R. China;
 ²School of Information Science and Engineering, Jishou University, Jishou, 416000, P.R. China;
 ³Electronics Technology Department, Engineering University of Armed Police Force, Xi'an, 710086, P. R. China

Appendix A Proof of Theorem 3

Assume $(P)_i = (a_0, \ldots, a_{n-1}), (P^T)_i = (b_0, \ldots, b_{n-1})$. If the input is of the form

$$(c_0,\ldots,c_{i-1},x_i,c_{i+1},\ldots,c_{n-1})^T$$

where c_m s are constants. Let $y = S_i\left(x_i \oplus k_i^{(1)}\right)$, then the output of the first round is

$$(a_0y\oplus d_0,\ldots,a_{n-1}y\oplus d_{n-1})^T$$

where d_m s are some constants. Let $q_m = d_m \oplus k_m^{(2)}$, then the *j*-th byte of the output of second round is

$$T(y) = b_0 S_0(a_0 y \oplus q_0) \oplus \cdots \oplus b_{n-1} S_{n-1}(a_{n-1} y \oplus q_{n-1}).$$

Now, $a_m b_m = 0$ implies that $b_m S_m (a_m y \oplus q_0)$ is a constant. Taking $\mathcal{I}(P) = 2$ and $a_{m_0} = b_{m_0} = a_{m_1} = b_{m_1} = 1$ into consideration, we have

 $T(y) = S_{m_0}(y \oplus q_{m_0}) \oplus S_{m_1}(y \oplus q_{m_1}) \oplus \alpha,$

where α is a constant. From Theorem 1, different values of $S_j\left(T\left(y\right) \oplus k_j^{(3)}\right)$ appear even times, which ends our proof. \Box

Appendix B Distinguishers of ARIA and SPN Ciphers Using 32×32 Matrix of [1] as Linear Layer

Distinguishers of ARIA obtained by Theorem 3 are listed in Table B1.

 Table B1
 2.5-Round Integral Distinguishers of ARIA

Active byte	Balanced bytes	Active byte	Balanced bytes
0	6, 9, 15	8	1, 7, 14
1	7, 8, 14	9	0,6,15
2	4, 11, 13	10	3, 5, 12
3	5, 10, 12	11	2, 4, 13
4	2, 11, 13	12	3, 5, 10
5	3,10,12	13	2, 4, 11
6	0, 9, 15	14	1, 7, 8
7	1, 8, 14	15	0, 6, 9

When using 32×32 matrix of [1] as linear layer, by Theorem 3, if $S_{m_1} = S_{m_2}$, some 2.5-round distinguishers $\mathcal{D}(i, j)$ of SPSPS could be found which are listed in Table B2.

^{*} Corresponding author (email: wych004@163.com)

H SONG, et al. Sci China Inf Sci 2

(i,j)	m_1, m_2	(i,j)	m_1, m_2			
(4,7)	12,15	(18,22)	14,30			
(4,27)	9,22	(19,23)	15,31			
(5, 4)	12,13	(20,10)	24,25			
(5,24)	10,23	(20,16)	12,28			
(6, 5)	13,14	(21,11)	$25,\!26$			
(6,25)	11,20	(21,17)	13,29			
(7, 6)	$14,\!15$	(22, 8)	26,27			
(7,26)	8,21	(22,18)	14,30			
(8,22)	25,26	(23, 9)	24,27			
(8,30)	1,12	(23,19)	$15,\!31$			
(9,23)	26,27	(24, 7)	10,21			
(9,31)	$2,\!13$	(25, 4)	11,22			
(10,20)	24,27	(26, 5)	8,23			
(10, 28)	$3,\!14$	(27, 6)	9,20			
(11,21)	24,25	(28,10)	1,14			
(11, 29)	0,15	(29,11)	$2,\!15$			
(16,20)	12,28	(30, 8)	3,12			
(17,21)	13,29	(31, 9)	0,13			

Table B2 Distinguishers of SPSPS

Appendix C Proof of Theorem 5 and Theorem 6

Assume $J_n \oplus P$ is a permutation. Then for any $0 \leq i, j \leq n-1, w(P_i) = w(P^T_i) = n-1$, thus there exist at least one j, such that $w(P_i) \otimes (P^T)_i = n-2$. Since for any $\alpha, \gamma \in \mathbb{F}_2^n$ with $w(\alpha) = w(\beta) = n-1$, $w(\alpha \otimes \beta) \ge n-2$. So $\mathcal{I}(P) = n - 2.$

Now, assume the second condition is satisfied. Since we have:

$$w\left((P)_t \otimes (P^T)_j\right) = \begin{cases} n & j = k\\ n-1 & j \neq k \end{cases}$$

and

$$w\left((P)_i \otimes (P^T)_k\right) = \begin{cases} n & i = t\\ n-1 & i \neq t. \end{cases}$$

For $i \neq t$ and $j \neq k$, we always have $w((P)_t \otimes (P^T)_k) = n-2$. Therefore, $\mathcal{I}(P) = n-2$.

Next, assume $\mathcal{I}(P) = n - 2$. According to Theorem ??, for any $0 \leq i \leq n - 1$, $w((P)_i) \geq n - 1$. Thus there exist at most one column all of whose components are 1. If $w((P)_0) = \cdots = w((P)_{n-1}) = n-1$, taking non-singularity into consideration, $J_n \oplus P$ is obviously a permutation matrix. If there is a column and row all of whose components are 1, then P^* , the sub-matrix of P by deleting the correspondence column and row, satisfies that $J_{n-1} \oplus P^*$ is a permutation matrix. This ends our proof of Theorem 5. \square

Since for an odd integer n, if $J_n \oplus P$ is a permutation matrix, the sum of all rows (columns) is 0, which tells that P is singular, thus we have Theorem 6.

Appendix D Proof of Theorem 7

We only give the proof of the case that $J_n \oplus P$ is a permutation matrix.

Notice the fact that a permutation matrix is corresponding to a permutation π on $\{0, 1, \ldots, n-1\}$, thus

$$(J_n \oplus P) \begin{pmatrix} X_0 \\ X_1 \\ X_2 \\ \vdots \\ X_{n-1} \end{pmatrix} = \begin{pmatrix} X_{\pi(0)} \\ X_{\pi(1)} \\ X_{\pi(2)} \\ \vdots \\ X_{\pi(n-1)} \end{pmatrix}.$$

``

/

Let $T = X_0 \oplus X_1 \oplus \cdots \oplus X_{n-1}$, then

$$P\begin{pmatrix} X_0\\ X_1\\ X_2\\ \vdots\\ X_{n-1} \end{pmatrix} = \begin{pmatrix} T \oplus X_{\pi(0)}\\ T \oplus X_{\pi(1)}\\ T \oplus X_{\pi(2)}\\ \vdots\\ T \oplus X_{\pi(n-1)} \end{pmatrix}.$$

(1) If the weight of the input is 1, then $T \neq 0$, thus the weight of the output is at least n-1;

(2) If the weight of the input is 2, there are following 2 cases: T = 0 and $T \neq 0$. If T = 0, the weight of the output is exactly 2; and if $T \neq 0$, the weight of the output is at least n - 2;

(3) If the weight of the input is 3, there are also following 2 cases: T = 0 and $T \neq 0$. If T = 0, the weight of the output is exactly 3, and if $T \neq 0$, the weight of the output is at least n - 3.

According to the definition of branch number, $\mathcal{B}(P) = 4$, which ends our proof.

References

 Koo B, Jang H, Song J. On Constructing of a 32 × 32 Binary Matrix as a Diffusion Layer for a 256-Bit Block Cipher. In: Proceedings of ICISC 2006, LNCS 4296, pp. 51–64, Springer–Verlag, 2006.