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Videos can be contaminated by noise even when
captured by high-quality cameras. Because video
data has both spatial and temporal redundancies,
low rank factorization has been developed. Orig-
inally, most denoising methods relied on a sin-
gle statistical distribution to model noise, such as
Gaussian distribution [1, 2]. Ji et al. [3] proposed
a low rank matrix completion (LRMC) relying on
a minimal assumption. Meng and Cao et al. [4, 5]
proposed a low rank matrix factorization problem
with the Mixture of Gaussian (MoG) noise model.
These algorithms are optimal for noises with con-
tinuous distributions. More recently, another type
of noise has received growing attention. This type
of noise follows discrete distributions such as out-
liers. Wright et al. [6] used a robust Principal
Component Analysis (PCA) method to recover a
latent low rank matrix. Okutomi et al. [7] adopted
the robust l1 norm as the measurement to video
denoising. Therefore, the noise appears as a com-
bination of continuous and sparse forms.

To make the denoising algorithm more robust to
varied situations, the main approach of this study
is to use both the MoG and l1 norm to model
mixed noises, where MoG is adopted for model-
ing dense noises and the l1 norm is adopted to
model sparse noises. The proposed algorithm can
therefore remove noise without the need for any
assumptions on the statistical properties of noise.

It is an extension to the research presented in our
previous conference paper [8]. The main differ-
ences are the inclusion of the additional l1 norm,
and a thorough experimental evaluation.

Preprocessing. Movements often happen in the
foreground or the background, so the simple align-
ment of video frames does not have a good low
rank structure. We adopt the patch-based method
for preprocessing to address this problem.

In the first step, we simultaneously search for
the most similar patch block of pixels in the cur-
rent and the consecutive frames. Considering the
current ith patch block pi,j,k in the kth frame,
which is centered on pixel j, we take MAD as the
similarity criterion, which is described as

MADx0,y0
(x, y) =

1

WL

W−1
∑

i=0

L−1
∑

j=0

|pk(x0 + i,

y0 + j)− pk+1 (x0 + x+ i, y0 + y + j)|, (1)

(x0, y0) denotes the current block and (x0+x, y0+
y) is the block to be compared with. The patch
block size is W × L (The influence of the varia-
tions of W and L on performance is discussed in
Appendix B. For all the experiments reported in
this article, they were both chosen to be 8.). The
sample interval was set to 4×4 pixels and the max-
imum displacement was 6 pixels. In the second
step, we placed each similar patch into a column
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of a matrix Pj,k. The video denoising problem is
written in a matrix form as

Pj,k = Qj,k +Nj,k, (2)

where Qj,k denotes the underlying clear patch ma-
trix, and Nj,k is the noise of the corresponding
block.

Noise modeling. Many existing denoising algo-
rithms perform well on either dense ones or sparse
ones. We propose a mixed noise model to simulta-
neously deal with these two types of noise distribu-
tions. By using UV-decomposition Qj,k = U(V )T

in (2), each element pr,d in Pj,k can be written as

pr,d = ur(vd)T + εr,d, (3)

where ur denotes the rth row of U , vd is the dth
row of V , and εr,d is the video noise at pr,d. The
unknown video noise distribution εr,d is divided
into two parts: dense distribution cr,d and sparse
distribution sr,d, i.e.,

εr,d = cr,d + sr,d. (4)

We use the MoG distribution to fit each dense com-
ponent cr,d in (4). The probability of pr,d can be
expressed as

p
(

pr,d
∣

∣ur, vd ,Π,∆
)

=
N
∑

n=1

πnp(pr,d|n), (5)

where p(pr,d|n) = N(pr,d|u
r(vd)T + sr,d, σ

2
n) is

the Gaussian distribution, and the mixing pro-
portion is πn with πn > 0 and

∑N

n=1 πn = 1,
Π = {π1, π2, . . . , πn}, ∆ = {σ1, σ2, . . . , σn}.

The l0 norm is introduced for sparse expression,
but it is an NP-hard problem. Here, the sparse
noise sr,d is measured with the l1 norm, which is
the optimal convex approximation of the l0 norm.

Denoising model. The video denoising model
is a low rank matrix decomposition. It can be ex-
pressed as the minimization optimization problem:

minQ‖Q‖∗ s.t ‖P −Q‖
2
Lp

6 ε, (6)

where ‖ · ‖∗ denotes the nuclear norm, ‖ · ‖Lp
de-

notes the Lp norm, and ε is the default of allow-
able error. The aim of video denoising is to get
the latent matrix Q by optimizing (6). Continu-
ous noise C is modeled with mixed Gaussians and
sparse noise S is with l1 norm modeling. Hence,
the video denoising problem can be formulated as

min ||Q||∗ + ||S||1 s.t. ‖P−Q−S−C‖ 6 σ. (7)

After adding the regularization items, it is equiv-
alent to minimizing the following equation:

L(Q,S,C, µ) = ||Q||∗ + ||S||1

+
N
∑

n=1

πnp (C|n) + µ ‖P −Q− S − C‖2F .
(8)

Algorithm. The proposed algorithm iterates
through three steps until reaching convergence.
The parameters of sparse part are updated in the
first step and the parameters of the mixed Gaus-
sians are updated simultaneously by the following
two steps of the EM algorithm.

The parameters U, V,Π,∆ are alternatively up-
dated in a closed form as

πn =
Sq
n

D
q
n

, (9)
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The dimension of {qr,d,n} is Dq
n and Sq

n =
∑

r,d∈Ω qr,d,n. The posterior responsibility of
mixed Gaussians qr,d,n is calculated as

qr,d,n = p(zr,d,n |pr,d;U, V,Π,∆)

=
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(
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2
n

)
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n=1 πnN (pr,d |ur(vd)T+sr,d, σ2
n )

. (11)

The number of Gaussian components (denoted by
N) needs to be adjusted according to the variance
of the Gaussian distribution, which can refer to
our previous paper [8]. The low rank matrix com-
ponents U and V are formulated using
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, (12)

where W is a weighting indicator matrix. Sev-
eral existing algorithms can be adopted to opti-
mize (12), such as the Augmented Lagrange algo-
rithm.

The matching blocks obtained in the preprocess-
ing step exhibit some overlap. In order to avoid an
artificial factor at each boundary between patches,
the value of each pixel is calculated by the average
of overlapping pixels at the same location.

More details of the algorithm can be found in
Appendix A.

Experiments and conclusion. The competitive
methods include cVBM3D [1], MoG [8], LRMC [3]
and WNNM [9]. We synthesized mixed noises with
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Figure 1 (Color online) Experiments on videos with mixed noise: Gaussian noise variance (δ1 = 20), Poisson noise pa-
rameter (p = 10), salt and pepper(10%). In each group, the upper line and the lower line correspond to global and detailed
(zoomed-in) results, respectively.

two categories: continuous and sparse. The con-
tinuous noise was generated from Gaussian distri-
butions and Poisson distributions, and the sparse
noise from salt & pepper noise. Figure 1 shows
the qualitative results in which the comparisons of
some detailed sections are provided in the zoomed-
in image in the red box. As shown, our method
gives the best visual effect on both the global view
and the detailed view. More experiments and
quantitative results are provided in Appendix B.
For better visual effects, we show the results of
applying our proposed algorithm to videos1).

In this article, we proposed a new method for
video denoising. By using the spatial and tempo-
ral redundancies of videos, the new model is based
on a low-rank matrix decomposition technique. To
make the model more robust to various noises, we
introduced MoG for modeling dense noises and the
l1 norm for sparse noises. The algorithm there-
fore shows the advantage of dealing with a wide
range of noise types without requiring prior statis-
tical knowledge of the video noise. Compared with
other competitive video denoising algorithms, the
proposed algorithm performs more effectively and
robustly, and excels in preserving the local struc-
ture of video frames.
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