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In recent years, researchers have been developing
tools to allow human operators to work with mul-
tiple robots. To this end, results for autonomous
systems can be helpful, e.g. controllability analy-
sis [1], null-space approach [2], containment con-
trol [3]. On the other hand, results from teleopera-
tion systems show that the shared control method
is helpful in producing safe and efficient human-
robot-interaction systems [4].

Among existing studies on shared control [5, 6],
most approaches can be seen as variants under the
policy blending framework (1),

u(t) = (1− λ(t))uT(t) + λ(t)PS(uH(t)), (1)

in which human input uH(t) is first projected onto
a safe/permissible space by PS, then blended with
an autonomous control signal uT(t) by a weighting
function λ(t). However, this kind of methods does
not explicitly address the control objectives of uH

and uT, and a blend of actions as in (1) may be un-
satisfactory for both sides. With such a potential
defect, this method may not always be suitable
for multi-agent systems, since control objectives
for such systems, like formation adjustments and
group separations, can be complex.

To solve this problem, the method in [7] is ex-
tended and an optimization based shared-control
framework is proposed. In this framework, control
objectives are expressed as cost functions and ac-
tions are computed by minimizing a blended cost.
The framework is formulated using the model pre-

dictive control (MPC) method, which allows the-
oretical analysis on the stability of the closed-loop
system. An experiment of one human operator
controlling a four-robot system is also presented.

The shared control framework. In general, a
shared control system tries to balance between a
local task and a collaboration task. The local task
considered here is to stabilize the system around
the origin and the collaboration task is to comply
with human control intentions.

For a system described by

x(k + 1) = f(x(k), u(k)), (2)

the proposed controller framework consists of three
components, a task model, a human model, and a
task balancing algorithm, as shown in Figure 1.
These components are formulated as follows.

First, the task model captures the local task for
the autonomous controller. It consists of a pair
of cost functions lT(x, u) and gT(x), a set of state
and control constraint sets X, Xf and U, and a
prediction window N , such that the local task is
defined by the following optimization problem PT:

PT : min
z∈Z(x(k))

VT(z) =

N−1
∑

j=0

lT(zj) + gT(xN ),

where In = {0, . . . , n}, z = {zj = (xj , uj)}j∈IN

is a sequence of virtual control inputs and states,
lT(zj) is a shorthand for lT(xj , uj), and Z(ξ) =
{z|x0 = ξ;xj+1 = f(xj , uj), xj ∈ X, uj ∈ U, ∀j ∈
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Figure 1 Structure of a shared control system.

IN ;xN ∈ Xf} is the set of feasible solutions. The
optimal cost min

z∈Z(x) VT(z) is denoted as V ∗
T(x).

The MPC controller induced from PT is denoted
as the nominal controller, and is assumed to be a
stabilizing controller to the system in (2).

Second, the human model is designed to cap-
ture the collaboration task. It contains some algo-
rithms to interpret human inputs such that at each
time k, a reference signal rk = {rj|k}j∈IN

is gener-
ated for the shared control system. Furthermore,
it contains a pair of collaboration costs lH(x, u, r)
and gH(x, r) that penalizes deviation from such
reference signals. The collaboration task is thus
to minimize the following cost function:

VH(z|r) =
N−1
∑

j=0

lH(zj , rj|k) + gH(xN , rN |k).

Third, the task balancing algorithm is an algo-
rithm that at each time k, generates a weighting
sequence λk = {λj|k}j∈IN

with λj|k ∈ [0, 1] to help
balance the local task and the collaboration task.

Given these components, an MPC controller is
constructed which, at each time k, solves the fol-
lowing optimization problem P:

P : min
z∈Z(x(k))

V (z|rk,λk) =

N−1
∑

j=0

lj(zj) + gN (xN ),

where the stage and terminal costs are defined
as lj(z) = (1 − λj|k)lT(z) + λj|klH(z, rj|k) and
gN (x) = (1 − λN |k)gT(x) + λj|kgH(x, rN |k).

Let κz(z) be a function that extracts u0 from
z. The control law is then u(k) = κz(z

∗
k) with

z
∗
k = argmin

z∈Z(x(k)) V (z|rk,λk).
Given a stable nominal controller for the task

model, it is desired that system designers can
choose from a wide range of human models and
task balancing algorithms without destabilizing
the closed-loop system. In the following, a class
of such models and algorithms is characterized.

Theoretical analysis. The stability of the shared
control system is investigated under the following
assumptions.

Assumption 1. V ∗
T(x) is continuous, and there

exists γ, α ∈ K∞ and an auxiliary controller κf ,
such that ∀x ∈ XN : γ(‖x‖) 6 V ∗

T(x) 6 α(‖x‖)
and ∀z ∈ Z(x), ∃z′ ∈ Z(f(x, κz(z)) satisfying
that VT(z

′)− VT(z) 6 −γ(‖x‖) [8].

Assumption 2. There exists a σ ∈ K such that
∀x ∈ X , u ∈ U : 0 6 lH(x, u, r) 6 lT(x, u) + σ(‖r‖)
and 0 6 gH(x, r) 6 gT(x) + σ(‖r‖).

Assumption 3. The weighting function satis-
fies that ∃δ > 0, ∃σM ∈ K such that ∀k, ‖λk‖∞ 6

1−δ and
√

µ(‖λk‖∞)α(‖xk‖) 6 σM(‖rk‖∞), with
µ(s) = s/(1− s) and α from Assumption 1.

We note that Assumption 1 is well-adopted in
literature to design stable MPC systems; Assump-
tion 2 in essence requires that lH, gH be in the
same scale as lT and gT does; and Assumption 3
can be interpreted as that the local task should
have more priority if the state error is large and
the human reference signal is small.

The main result is as follows.

Theorem 1. If Assumptions 1 – 3 hold, the
MPC controller that optimizes problem P renders
the closed-loop system input-to-state stable (ISS).

Proof. At time k, denoting z
∗, z∗

T respectively
as the minimizer to V (·|rk), VT(·), let z

′ be the
extended solution of z∗ at time k + 1 as in As-
sumption 1. Let V∆(z|rk) = V (z|rk) − VT(z),
λ̄ = maxj∈IN

{λj|k} and r̄ = maxj∈IN
{‖rj|k‖}.

Along the state trajectory, from optimality
and Assumption 1, we obtain that V ∗

T(xk+1) −
V ∗
T(xk) = V ∗

T(xk+1)− VT(z
′) + VT(z

′)− VT(z
∗) +

VT(z
∗)− VT(z

∗
T) 6 −γ(‖xk‖) + VT(z

∗)− VT(z
∗
T).

Furthermore, from Assumption 2, we obtain
that VT(z

∗) − VT(z
∗
T) = V (z∗|rk) − VT(z

∗
T) +

VT(z
∗) − V (z∗|rk) 6 V∆(z

∗
T|rk) − V∆(z

∗|rk) 6

(N + 1)λ̄σ(r̄) + λ̄VT(z
∗
k).

Then, from Assumption 3, with σr(s) = (σM +
(N+1)σ)(s) and σλ(s) =

√

µ(s)+µ(s), we obtain
that V ∗

T(xk+1)−V ∗
T (xk) 6 −γ(‖xk‖)+σλ(λ̄)σr(r̄).

V ∗
T is thus a continuous ISS-Lyapunov function

and the closed-loop system is ISS according to [9].

Experiment. An experiment was conducted



Fang H, et al. Sci China Inf Sci January 2018 Vol. 61 014201:3

where a human operator controlled the scaling and
rotation of the formation of a four-robot system
through a gamepad device. Details of the experi-
ment are in the video attachments.

Conclusion. In this article, an optimization-
based shared control framework was proposed. A
class of collaboration cost functions was found, and
they will not destabilize the shared control sys-
tem. Experimental results demonstrated how this
method can be used in facilitating interactions be-
tween human and multi-robot systems.
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