
SCIENCE CHINA
Information Sciences

January 2018, Vol. 61 012105:1–012105:14

doi: 10.1007/s11432-016-0408-1

c© Science China Press and Springer-Verlag Berlin Heidelberg 2017 info.scichina.com link.springer.com

. RESEARCH PAPER .

Toward multi-programmed workloads with different

memory footprints: a self-adaptive last level cache

scheduling scheme

Jingyu ZHANG, Minyi GUO*, Chentao WU & Yuanyi CHEN

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received 15 June 2016/Accepted 21 September 2016/Published online 14 July 2017

Abstract With the emerging of 3D-stacking technology, the dynamic random-access memory (DRAM)

can be stacked on chips to architect the DRAM last level cache (LLC). Compared with static random-

access memory (SRAM), DRAM is larger but slower. In the existing research papers, a lot of

work has been devoted to improving the workload performance using SRAM and stacked DRAM to-

gether, ranging from SRAM structure improvement, to optimizing cache tag and data access. In-

stead, little attention has been paid to designing an LLC scheduling scheme for multi-programmed

workloads with different memory footprints. Motivated by this, we propose a self-adaptive LLC

scheduling scheme, which allows us to utilize SRAM and 3D-stacked DRAM efficiently, achieving bet-

ter workload performance. This scheduling scheme employs (1) an evaluation unit, which is used

to probe and evaluate the cache information during the process of programs being executed; and

(2) an implementation unit, which is used to self-adaptively choose SRAM or DRAM. To make the scheduling

scheme work correctly, we develop a data migration policy. We conduct extensive experiments to evaluate

the performance of our proposed scheme. Experimental results show that our method can improve the

multi-programmed workload performance by up to 30% compared with the state-of-the-art methods.

Keywords 3D-stacking technology, cache architecture, cache scheduling, multi-programmed workloads,

memory system, performance optimization

Citation Zhang J Y, Guo M Y, Wu C T, et al. Toward multi-programmed workloads with different mem-

ory footprints: a self-adaptive last level cache scheduling scheme. Sci China Inf Sci, 2018, 61(1): 012105, doi:

10.1007/s11432-016-0408-1

1 Introduction

The on-chip capacity of static random-access memory (SRAM) is limited by the chip area and expensive

price. Whereas with the development of 3D integration technology [1–3], the 3D-stacked dynamic random-

access memory (DRAM) can break the above barrier, achieving hundreds of megabytes or more [4].

In general, SRAM is faster but smaller, while DRAM is larger but slower. Since both DRAM and

SRAM have their advantages and disadvantages, a lot of efforts are devoted to improving workload

performance using DRAM and SRAM together, ranging from SRAM structure improvement [5, 6], to

cache tag and data access optimization [7–9]. Most of recent researches on hybrid SRAM and DRAM

caches focus mainly on enhancing the overall performance of SRAM (resp., DRAM) by utilizing the merit

of DRAM (resp., SRAM). There are also many papers devoted to investigating workload performance:

*Corresponding author (email: guo-my@cs.sjtu.edu.cn)

Zhang J Y, et al. Sci China Inf Sci January 2018 Vol. 61 012105:2

Controller

Main memory

SRAM cache

DRAM cache
New L3 system

L1, L2 caches

Hard disk

Control bus
Address bus
Data bus

Figure 1 (Color online) Illustration of the architecture.

(1) For multi-programmed workloads, prior work discussed the issues of relieving memory contention [10,

11], workload balance [12, 13] and power related optimization [14]; (2) To improve the performance of

memory-intensive workloads, many solutions (e.g., architecture design [15–17], OS level method [18–20]

and feedback control [21, 22]) have also been proposed; (3) In the cache system, the improved cache

architectures [4,9,23,24] and 3D-stacked DRAM technologies [25–27] are used to achieve better workload

performance; and so on (a broader overview of related work will be covered in Section 2). Instead, little

attention has been paid to designing a last level cache (LLC) scheduling scheme for multi-programmed

workloads with different memory footprints.

Motivated by this, we attempt to design an LLC scheduling scheme to improve the performance of

workloads with different memory footprints. In the real scenarios, the multi-programmed workloads

should be mixed with different programs (e.g., computational finance applications, computer vision ap-

plications, computer animation programs, data mining applications, or data center server workloads),

and each program has its own features and memory footprint. Our key observations are: (1) if a pro-

gram is with large memory footprint and sensitive to the LLC’s capacity, then using DRAM as the LLC

could bring better performance; (2) otherwise, using SRAM as the LLC could be better (more detailed

explanations will be discussed in Section 3). To determine which LLC module (SRAM or DRAM) ben-

efits specific programs with different memory footprints, we formulate the mathematical models which

provide us a basic intuition. Then, we introduce a self-adaptive LLC scheduling scheme that integrates

both SRAM and DRAM. Figure 1 shows the architecture integrating our scheduling scheme (the system

marked by the dashed line is the new L3 system). The core of our scheduling scheme is to selectively use

SRAM or DRAM, based on specific workloads.

In a nutshell, our main contributions can be summarized as follows:

• We formulate the mathematical models which provide us a basic intuition for determining which

LLC module could be better for the program with a specific memory footprint.

• For multi-programmed workloads, we present a self-adaptive LLC scheduling scheme selectively using

SRAM or DRAM as the LLC.

• We conduct extensive experiments based on the widely used benchmarks. The experimental results

validate the effectiveness and efficiency of our proposed LLC scheduling scheme.

The remaining paper is organized as follows. Section 2 reviews the previous work. The preliminaries

are given in Section 3. We describe the details of our proposed method in Section 4. We experimentally

validate the effectiveness and efficiency of our proposed method in Section 5. Finally, Section 6 concludes

this paper.

Zhang J Y, et al. Sci China Inf Sci January 2018 Vol. 61 012105:3

2 Related work

In this section, we review previous work most related to ours. Specifically, Subsection 2.1 reviews hybrid

SRAM and DRAM caches. Subsection 2.2 discusses the solutions for multi-programmed workloads. More-

over, we cover memory-intensive workloads, 3D-stacked DRAM, cache architecture design in Subsections

2.3–2.5, respectively.

2.1 Hybrid SRAM and DRAM caches

A lot of efforts have been devoted to employing both SRAM and stacked DRAM for various goals,

including SRAM structure improvement [5,6], and optimization for cache tag and data access [7–9], etc.

For example, Hameed et al. [5] proposed a DRAM placement policy to increase the workload performance.

In this work, after a cache miss in the primary SRAM L3 cache, a stacked DRAM module will be accessed.

Hundal et al. [6] presented an SRAM-DRAM combination memory which is used as the on-chip cache. A

stacked DRAM secondary cache is used to improve the SRAM cache performance in this work. In [28,29],

via compound-access scheduling, Loh and Hill made hits faster than just storing tags in stacked DRAM

caches, where SRAM is used as a hardware to track the presence or absence of cache blocks. Ref. [30]

proposed a heterogeneous stacked DRAM chip design that can better exploit spatial locality by tightly

integrating a small SRAM cache. Huang et al. [8] proposed a small SRAM tag cache to reduce DRAM

cache latency. Hameed et al. [7] introduced a novel concept of small and low latency tag-cache structures

that can quickly determine whether an access to the large L3 SRAM/L4 DRAM caches will be a hit

or a miss. These papers always use SRAM or DRAM as the primary LLC to improve the workload

performance, while our work adaptively employs SRAM and DRAM LLCs.

2.2 Multi-programmed workloads

For multi-programmed workloads, there are numerous papers studied the performance optimization.

The prior work covers relieving memory contention [10, 11], workload balance [12, 13], power related

optimization [14]. In [11], a memory scheduling algorithm called time-based least memory intensive

scheduling was proposed according to the memory contention situation. Based on the previous work,

Ref. [10] proposed the adaptive time-based least memory intensive scheduling. Chen et al. [12] proposed

a demand-aware work-stealing task scheduler, with which a work-stealing program uses cores according to

its realtime demand, then they presented the adaptive version in [13]. In [31], a fast, automated technique

was proposed for accurate on-line estimation of the performance and power consumption of interacting

processes in a multi-programmed, multi-core environment. Suo et al. [32] investigated system level

speedup oriented cache partitioning for multi-programmed workloads, according to current performance

status and misses of all the possible partitions. In [14], authors presented a method that extends auto-

tuning for multi-programmed workload to reduce the energy-delay product. These designs mainly care

about the workload scheduling for multi-programmed workloads to improve the performance or energy

consumption, however our work cares about the last level cache scheduling.

2.3 Memory-intensive workloads

Memory-intensive workloads are also known as the workloads with large memory footprints. To improve

the performance of memory-intensive workloads, researchers have paid a lot of attention. The directions

in this field include architecture design [15–17], OS level method [18–20], and feedback control [21, 22].

Huang et al. [16] proposed a novel high-level synthesis methodology for designing multi-partitioned

architectures for memory-intensive workloads. In this work, authors employed an iterative improvement

strategy to determine the best way of distributing array data into physical memory. Huang et al. [17]

also presented the techniques for memory-intensive applications considering various factors including

data access locality, balanced workloads, inter-partition communication. Castellana and Ferrandi [15]

proposed an adaptive architecture to exploit the available parallelism for memory-intensive workloads. Yi

et al. [20] presented optimization methods including matrix transposition and kernel fusion to improve the

Zhang J Y, et al. Sci China Inf Sci January 2018 Vol. 61 012105:4

memory-intensive workload’s performance on GPGPU. Athanasaki et al. [18] explored the performance

limits by evaluating the tradeoffs between instruction level parallelism and thread-level parallelism for

memory-intensive workloads. Chun et al. [19] presented a task mapping scheme for memory-intensive

software-pipelined workloads. Kirovski et al. [33] developed a new approach for area optimization for

memory-intensive workloads. This approach uses basic block relocation in order to reduce the number

of cache misses. Qin et al. [22] proposed a feedback control mechanism to enhance the performance

of memory-intensive workloads. In [21], another feedback control mechanism was proposed to improve

overall performance of a cluster for memory-intensive workloads.

Unlike these papers which mainly focus on the memory-intensive workloads, our work pay the attention

for multi-programmed workloads with different memory footprints.

2.4 3D-stacked DRAM

There are many papers investigating the emerging 3D-stacked DRAM. Jevdjic et al. [26] introduced

footprint cache, an efficient die-stacked DRAM cache design for server processors. Ref. [34] detailed how

to provide reliability, availability, and serviceability support for stacked DRAM cache architectures in a

practical and cost-effective manner. Akin et al. [25] presented a two pronged approach for efficient data

reorganization using 3D-stacked DRAM. Oskin and Loh [27] analyzed the performance bottlenecks in

OS page caches, and proposed two techniques that make the OS approach viable using stacked DRAM.

Most of work in these papers did not cover the combination with SRAM and different types of programs,

which motivates our work.

2.5 Cache architecture design

A lot of efforts also have been made in the literature to improve cache architecture design. Qureshi

and Loh [9] proposed Alloy cache which can eliminate the delay due to tag serialization by streaming

tag and data together in a single burst. A tagless cache architecture for large in-package DRAM caches

was introduced in [4]. Xiao et al. [24] presented a dual queues cache replacement algorithm based on

sequentiality detection to improve the cache design. Jaleel et al. [23] presented directions for further

research to maximize performance of exclusive cache hierarchies. Chou et al. [35] proposed CAMEO

which not only makes stacked DRAM visible as part of the memory address space but also exploits data

locality. Ou et al. [36] proposed a penalty aware memory allocation scheme, which uses impacts on service

time to determine where a unit of memory space should be (de)allocated. These papers focus on the

cache inherent design, while our work focuses on SRAM/DRAM hybrid LLC scheduling.

3 Preliminaries

3.1 Typical cache hierarchy

As we know, in a typical computer system, the caches (L1, L2 and L3 caches) are mainly used to alleviate

the access latency gap between CPU and main memory, since they can provide the requested data to CPU

instantly [37] (see Figure 2). The early system used 2 level caches [6,37]. In the recent literature [5,7,29],

3 level and/or 4 level cache hierarchies are widely used. From level 1 to last level, the cache capacity is

increasing, and the last level connects the main memory via system bus interface. In this paper, we focus

on the last level cache (LLC). For the convenience of discussion, we assume the 3 level cache hierarchy is

the default setting, although our scheduling scheme can be applied to the 4 level cache hierarchy.

To measure the cache system performance (note that, cache system performance reflects the workload

performance, we may use them interchangeably later), we use the average memory access time to quantify

it. Denote by Tama, HLx, MLx, MpLLC the average memory access time, the level x cache hit time and

miss rate, the miss penalty of LLC, respectively. For a classical 3 level cache hierarchy system, we have

Tama =HL1 +ML1 × (HL2 +ML2 × (HLLC +MLLC ×MpLLC)). (1)

Zhang J Y, et al. Sci China Inf Sci January 2018 Vol. 61 012105:5

L
1
 c

ac
h
e

.
.
.

Registers

I /O

bridge
System bus Memory bus

Control
unit

L
2
 c

ac
h
e

Bus interface

SRAM /DRAM L3 cache

ALU

Main

memory

CPU chip

Figure 2 (Color online) Cache system in current computer architecture.

Next we develop our mathematical models based on the expression above.

3.2 Mathematical models

Considering a workload containing n programs with different memory footprints, we next formulate the

mathematical models that can provide us some insights. Let f(xi), A(xi), HS, MS, HD, MD be the

total memory access time of ith processed program, the number of memory access requests, hit time and

miss rate of SRAM LLC, hit time and miss rate of DRAM LLC, separately. Txi
denotes the average

memory access time of the ith program. Let HL1(xi), ML1(xi) be the L1 cache hit time, miss rate

of program i. HL2(xi), ML2(xi), HLLC(xi) and MLLC(xi) have the similar meanings as HL1(xi) and

ML1(xi). MpLLC(xi) is the LLC miss penalty. By Formula (1), we have














min
∑n

i=1 f(xi) = min
∑n

i=1

∑A(xi)
j=1 Txi

,

s.t. HS 6 HiLLC(xi) 6 HD,

MD 6 MiLLC(xi) 6 MS, i = 1, 2, . . . , n,

(2)

Txi
= HL1(xi) +ML1(xi)× (HL2(xi) +ML2(xi)

× (HLLC(xi) +MLLC(xi)×MpLLC(xi))).
(3)

By Formulas (2) and (3), we can get the following:

min
n
∑

i=1

f(xi) = min
n
∑

i=1

A(xi)
∑

j=1

Txi

= min

n
∑

i=1

A(xi)
∑

j=1

(HL1(xi) +ML1(xi)×HL2(xi)

+ML1(xi)×ML2(xi)×HLLC(xi)

+ML1(xi)×ML2(xi)×MLLC(xi)×MpLLC(xi)). (4)

The values HL1(xi), ML1(xi), HL2(xi) and ML2(xi) are constant (as they are related to the L1 and

L2 caches). The total number of memory access requests A(xi) is also a constant value. For Eq. (4),

we replace those parts with constant values using A, B, C, and D, respectively. It can be rewritten as

follows:

min
n
∑

i=1

f(xi) =
n
∑

i=1

A
∑

j=1

(B + C ×HLLC(xi) +D ×MLLC(xi)). (5)

For the 3D-stacked DRAM cache, it will significantly improve the LLC capacity, so MLLC will be

decreased. However, the DRAM cache hurts the HLLC. The SRAM cache has the fast LLC hit time

HLLC, while it will increase the MLLC. Eq. (5) gives us a basic intuition, i.e., it is a trade-off between

the LLC hit time HLLC and the LLC miss rate MLLC.

Zhang J Y, et al. Sci China Inf Sci January 2018 Vol. 61 012105:6

SRAM capacity limit

SRAM

P
er

fo
rm

an
ce

P
er

fo
rm

an
ce

Capacity

Maximum DRAM
performance

Maximum SRAM

performanceDRAM

SRAM capacity limit Capacity

Maximum DRAM

performance

Maximum SRAM
performance

SRAM
DRAM

(a) (b)

Figure 3 Performance comparison for different L3 caches. (a) and (b) illustrate the performance characteristics for a

program with large memory footprint and a program with a small memory footprint, respectively.

Data
Collector

Hit phase
judger

Cache
prober

Evaluation unit

Detect cache

information

Exchange
L3 caches

Enable cache
data migration

Evaluator

Control program

execution

Program
controller

Module
activator

Module
deactivator

Cache data
migrator

Implementation unit

Cache
controller

SRAM
cache

DRAM
cache

LLC

Connect bus

interface

Hybrid self -adaptive LLC
scheduling prototype

Figure 4 (Color online) Prototype framework.

3.3 Preliminary observations

To help us make an appropriate trade-off, we study some basic characteristics of workloads with different

memory footprints. Figure 3 illustrates the general map (extracted from our preliminary experimental

results). Specifically, we observe that, for a program (e.g., mcf1)) with large memory footprint, the large

DRAM LLC outperforms SRAM LLC in terms of program performance. See Figure 3(a). This is mainly

because larger 3D-stacked DRAM LLC can reduce dramatically the number of the main memory access,

which has significantly impact on the performance of programs with large memory footprints. On the

other hand, we observe that, a program with small memory footprint (e.g., cactusADM) achieves higher

performance when the small and fast SRAM LLC is used. See Figure 3(b).

The above observations imply that, if one wants to improve the workload performance, it is needed

to identify which LLC module (SRAM or DRAM) is appropriate for specific programs with different

memory footprints. In the next section, we shall design a last level cache scheduling scheme based on the

key observations.

4 Proposed scheme

Our proposed LLC scheduling scheme can be applied to modern computer system seamlessly. Figure 4

illustrates the integrated framework of our prototype based on the scheduling scheme. In brief, this

prototype uses both SRAM and DRAM at the last level of cache hierarchy. To coordinate the LLC

scheduling, we employ (1) an evaluation unit and (2) an implementation unit. These two units coopera-

1) SPEC CPU 2006. https://www.spec.org/cpu2006/.

Zhang J Y, et al. Sci China Inf Sci January 2018 Vol. 61 012105:7

Cache information probing

Hit phase ?

Exchange LLC?

Inform cache controller to

switch LLC modules

Suspend program

execution

Activate DRAM

cache

Restore program

execution

Keep current cache

module, ready for

next detection

Statistics collecting

Cache performance

evaluation

DRAM cache ?

Activate SRAM

cache

Data migration Data migration

Deactivate

DRAM cache

Deactivate

SRAM cache

Y

N

Y

N Y
N

Figure 5 LLC scheduling work flow.

tively contribute to appropriately choosing the LLC module (SRAM or DRAM) through interacting with

L1, L2 caches and main memory.

4.1 Overview

The general running process of the LLC scheduling prototype is shown in Figure 5. Evaluation unit and

implementation unit work together to implement the LLC scheduling scheme in the computer system.

• Evaluation unit. This unit is used to probe caches and collect the cache statistics. It analyzes

the cache statistics to decide which LLC module should be selected. It contains four components (see

Figure 4): (1) cache prober; (2) data collector; (3) hit phase judger; and (4) evaluator.

• Implementation unit. This unit is used to switch the accessible LLC modules according to the

messages from evaluation unit. For the function of LLC switching, it employs five parts (see Figure 4): (1)

cache controller; (2) program controller; (3) cache data migrator; module (4) activator and (5) deactivator.

Each component in evaluation and implementation units takes less than 1 KB storage space. In total,

the storage cost of the evaluation and implementation units can be controlled in 10 KB. In other words,

the total storage cost will be less than 10 KB. Next, we detail the function of each component in these

two units.

4.2 LLC scheduling

In the proposed prototype, the LLC scheduling includes two processes: (1) LLC estimation and

(2) LLC switching. The main scheduling scheme is shown in Algorithm 1 (The major symbols used

in this algorithm are listed in Table 1). We discuss these two processes afterwards.

4.2.1 LLC estimation

The LLC estimation is the first step of self-adaptive LLC scheduling. To deep understand the LLC

estimation policy, it is needed to explain some preliminaries. The execution duration of programs could

be divided into two phases: the miss phase and the hit phase. In the miss phase, the cache is warming up

Zhang J Y, et al. Sci China Inf Sci January 2018 Vol. 61 012105:8

Algorithm 1 LLC scheduling

1: Initialize detection environment, clear states;

2: // Cache statistics analysis

3: Retrieve Mc,Ml during the evaluation cycle;

4: while |Mc −Ml| 6 ∆p do

5: // LLC modules scheduling

6: Map MS, MD,ML1,ML2,MpLLC, retrieve TS, TD;

7: if CD = 1 then

8: if TS < TD then

9: Activate Cc,DM, CS, suspend Pc;

10: Dd ⇒ DS;

11: Deactivate CD, DM, Cc, restore Pc;

12: end if

13: else

14: if TS > TD then

15: Activate Cc, CD,DM, suspend Pc;

16: DS ⇒ DD;

17: Deactivate CS,DM, Cc, restore Pc;

18: end if

19: end if

20: end while

Table 1 Symbolic table

Item Description

Mc,Ml LLC miss rate during current and last cache evaluation cycle

∆p The predefined percentage change threshold

ML1,ML2 L1, L2 cache miss rates

MS, MD SRAM and DRAM LLC miss rates

MpLLC LLC miss penalty

TS, TD Average memory access time for SRAM and DRAM LLCs

CS, CD Indicators for SRAM and DRAM LLCs

Cc Cache controller indicator

DM Cache data migrator indicator

DS,DD Data resided in SRAM and DRAM LLCs

Dd Dirty data in current cache module

Pc Current running program

and the hit rate is pretty low but is increasing quickly; in hit phase, hit rate will retain at a stable level

and it can reflects the actual program characteristics. Our prototype only uses hit phase information to

estimate whether need to exchange LLC modules.

With the above concepts in mind, we now explain how the self-adaptive LLC scheduling scheme of

our prototype works. During the program execution, the cache prober probes frequently the current

working cache system. The obtained cache information will be stored in data collector. Data collector

periodically sends the cache statistic messages to hit phase judger. Hit phase judger uses the cache

statistics to judge whether the testing program is in hit phase. For a new program to the prototype,

when it reaches the hit phase, the cache information will be stored in the data collector. And then the

current LLC module will be changed. In the changed environment, after the program enters hit phase,

the evaluator will estimate the current LLC performance and choose the corresponding cache scheduling

policy. The evaluator makes our self-adaptive LLC scheduling system be able to switch the LLC modules

according to current situation. If the LLC needs to be changed, the implementation unit will finish the

LLC switching. Otherwise, program will be ready for the next cache evaluation cycle.

4.2.2 LLC switching

If cache controller receives the scheduling message, it will inform program controller to suspend the

program execution. Then the module activator will enable the target cache module (which is deactivated

Zhang J Y, et al. Sci China Inf Sci January 2018 Vol. 61 012105:9

now). Then the cache data migrator should migrate cache data from current cache module to the target.

For the correctness of switching, We propose a migration policy, which contains two cache data migration

modes: (1) switching SRAM to DRAM and (2) switching DRAM to SRAM. The migration operation of

the policy are presented as follows.

• Switching SRAM to DRAM: If the current working LLC is the SRAM cache, cache data migrator

will directly transmit the data in SRAM cache to the DRAM cache (since the capacity of SRAM cache

is smaller than that of DRAM cache);

• Switching DRAM to SRAM: When DRAM cache is current LLC, the cache data transmitter will

only write the dirty data in DRAM cache to SRAM cache (for a short transmission time). Since the

capacity of DRAM is larger than that of SRAM cache, the data overflow may occur when this migration

mode is working. If data overflow happens, the cache data overflow will be written back to main memory.

Depending on different real transmission data bus and the migration data, the program suspending

time may vary. After the cache data migration, module deactivator disables current LLC module. Finally,

program controller restores the program execution to finish the LLC switching.

5 Experiments

In this section, we first describe the experimental settings (Subsection 5.1), and then report the experi-

mental results (Subsection 5.2).

5.1 Experimental settings

Our experimental platform is a Pin-based system-level architecture simulator, MACSIM2). In our exper-

iments, we use 20000 instructions as the cache evaluation cycle, and ∆p is conservatively set to 1%. The

simulation trace files are generated by Pin3). This work simulates five computer system architectures as

follows.

• SRAM LLC architecture: In this architecture, there is only one SRAM cache used as LLC. This is

a classical computer architecture.

• DRAM LLC architecture: In this computer system, there is only one DRAM cache used as LLC.

• HMP architecture: This is an improved DRAM LLC architecture introduced in [38]. In this archi-

tecture, a low-cost hit-miss predictor (HMP) is proposed. For brevity, we call it HMP architecture.

• Self-adaptive LLC scheduling (SLS) architecture: This architecture is based on our self-adaptive

LLC scheduling scheme, including both the SRAM and DRAM caches.

• SLS+HMP architecture: This is an improved SLS architecture, using HMP technique for the DRAM

cache.

The rough configurations of these five architectures are shown in Table 2. Note that, the DRAM

cache doubles both the clock frequency and the number of channels of the main memory [9, 38]. Eight

benchmarks from SPEC CPU2006 suite are chosen for our tests, these benchmarks are widely used in

the literature [9,38,39]. To achieve diverse simulations, all those benchmarks we selected are mixed into

10 multi-programmed workloads. Table 3 shows some details about our workloads. The mixing rule of

this table is: each workload should contain both the benchmarks with small memory footprints and the

benchmarks with large memory footprints.

5.2 Experimental results

We analyze experimental results from three aspects: (1) the total number of cache write-back, (2) the

average memory access time, and finally (3) the system performance. The cache write-back means writing

the cache data back to main memory. The cache write-back operation happens when the main memory

2) MACSIM. https://code.google.com/p/macsim/.
3) Pin. https://software.intel.com.

Zhang J Y, et al. Sci China Inf Sci January 2018 Vol. 61 012105:10

Table 2 Experimental settings

Type Intel’s Sandy Bridge, x86, Out-of-Order

CPU Frequency 4 GHz

Other parameters Round Robin fetch policy, 3-level cache hierarchy

L1 cache 64 KB, 64 sets, 8 associates, 3 cycle latency

Caches
L2 cache 256 KB, 256 sets, 8 associates, 8 cycle latency

SRAM cache 4 MB, 64 Bytes cacheline size, 30 cycles latency

DRAM cache 64 MB, 1.6 GHz, 16 channels, tCAS-tRCD-tRP 7-7-9

Frequency 0.8 GHz

Main memory Scheduling FRFCFS policy

Other parameters 4 Bytes bus width, 16 banks, 8 channels, 2 KB row-buffer

Table 3 Multi-programmed workloads

Workload Benchmark

Mix-1 zeusmp, bzip2, mcf, lbm

Mix-2 cactusADM, zeusmp, mcf, lbm

Mix-3 bzip2, mcf, 2×lbm

Mix-4 mcf, lbm, bwaves, zeusmp

Mix-5 mcf, bwaves, GemsFDTD, cactusADM

Mix-6 lbm, bwaves, mcf, bzip2

Mix-7 mcf, soplex, cactusADM, bzip2

Mix-8 lbm, cactusADM, mcf, zeusmp

Mix-9 zeusmp, cactusADM, mcf, bzip2

Mix-10 2×bzip2, zeusmp, mcf

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

zeusmp cactusADM soplex bzip2 bwaves lbm GemsFDTD mcf

S
p
ee

d
u
p
 o

v
er

 S
R

A
M

 L
L

C

SRAM DRAM HMP

Figure 6 (Color online) Normalized benchmark performance comparison. The baseline is the performance of the SRAM

LLC architecture.

data need to be written into cache after a cache miss. The number of cache write-back can indicate the

access frequency of main memory. The less number means the less main memory accesses.

5.2.1 Benchmark impacts

From Figure 6, we can notice the DRAM LLC-based architectures (DRAM and HMP) improve the

performance for benchmarks lbm and mcf which have large memory footprints. On the other hand, the

DRAM LLC will slow down some benchmarks with small memory footprints, especially for the bzip2.

Next we discuss the reasons from two other aspects.

Figure 7 indicates the DRAM LLC-based architectures decrease the number of cache write-back for

all benchmarks. Since DRAM and HMP architectures have the same LLC capacity, their numbers of

memory write-back are the same. The DRAM LLC has larger capacity, so more data could reside in it and

main memory will be accessed less. Compared with other benchmarks, memory-intensive benchmarks

Zhang J Y, et al. Sci China Inf Sci January 2018 Vol. 61 012105:11

0

0.2

0.4

0.6

0.8

1.0

1.2

zeusmp cactusADM soplex bzip2 bwaves lbm GemsFDTD mcf

SRAM DRAM HMP

Figure 7 (Color online) Normalized cache write-back comparison. For all benchmarks no matter whether they are

memory-intensive ones, the number of cache write-back reduced via using DRAM LLC. The baseline is the number of cache

write-back with the SRAM LLC.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

zeusmp cactusADM soplex bzip2 bwaves lbm GemsFDTD mcf

SRAM DRAM HMP

Figure 8 (Color online) Normalized average memory access time comparison. This figure indicates DRAM LLC impacts

average cache latency differently. The baseline is the average cache latency of benchmarks with the SRAM LLC.

could achieve a greater reduction in the number of cache write-back. For either lbm or mcf, DRAM LLC

can reduce the number of cache write-back by more than 85%. That is why DRAM LLC can greatly

improve the performance of these two benchmarks. Therefore, for some benchmarks with small memory

footprints, the reduction may be inconspicuous.

According to experimental results in Figure 8, we notice that the DRAM LLC-based architectures

decrease the average memory access time for benchmarks lbm and mcf which have large memory foot-

prints. However, for some benchmarks with small memory footprints, the average cache latency could be

increased by using DRAM LLC. This is because, these benchmarks do not need a large LLC. The LLC

access latency impacts these benchmarks greatly, and large LLC capacity makes no sense for benchmarks

with small memory footprints. Meanwhile with the increased LLC access latency, memory requests should

take considerable long time to access data resided in the DRAM LLC. It indicates cache access latency

plays a relatively important role in computer systems for some programs with small memory footprints.

5.2.2 Multi-programmed workload performance

In this section, we first show the impacts on (1) cache write-back and (2) average memory access time.

Finally, the workload performance results and analysis are presented.

Figure 9 shows the averagememory access time and cache write-back comparisons impacted by different

architectures. Sometimes SRAM LLC architecture has lower averagememory access time than the DRAM

LLC-based architectures, sometimes not. While the SLS-based architectures always achieve the lower

average memory access time than the other two relative architectures (e.g., SLS+HMP has lower average

memory access time than SRAM and HMP). Since the DRAM LLC-based architectures always use the

Zhang J Y, et al. Sci China Inf Sci January 2018 Vol. 61 012105:12

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Mix-1 Mix-2 Mix-3 Mix-4 Mix-5 Mix-6 Mix-7 Mix-8 Mix-9 Mix-10

SRAM DRAM HMP SLS SLS+HMP

0

0.2

0.4

0.6

0.8

1.0

1.2

Mix-1 Mix-2 Mix-3 Mix-4 Mix-5 Mix-6 Mix-7 Mix-8 Mix-9 Mix-10

SRAM DRAM HMP SLS SLS+HMP

(a)

(b)

Figure 9 (Color online) Workload impacts. Both (a) and (b) are drawn by normalized experimental data. (a) Average

memory access time comparison; (b) cache write-back comparison.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Mix-1 Mix-2 Mix-3 Mix-4 Mix-5 Mix-6 Mix-7 Mix-8 Mix-9 Mix-10

SRAM DRAM HMP SLS SLS+HMP

S
p
ee

d
u
p
 o

v
er

 S
R

A
M

 L
L

C

Figure 10 (Color online) Workload performance comparison.

large DRAM LLC, they have least number of cache write-back. The total numbers of cache write-back

of the SLS-based architectures are between those of the other two relative architectures, since they can

self-adaptively use the different L3 caches.

The SLS-based architectures always achieve better workload performance than SRAM LLC or DRAM

LLC-based architectures, as shown in Figure 10. When the multi-programmed workload is mixed with

benchmarks with different memory footprints, both SRAM LLC and DRAM LLC-based architectures

could not gain better performance than the SLS-based architectures. This is because SRAM LLC archi-

tecture could not improve the performance of memory-intensive benchmarks, and the same thing happens

to DRAM LLC-based architectures when they deal with benchmarks with small memory footprints. For

the multi-programmed workloads, the SLS-based architectures always can find the better way to execute

them. Experimental results show that our self-adaptive LLC scheduling scheme can improve the workload

performance by up to 30% compared with the state-of-the-art methods.

6 Conclusion

In this paper, we propose the mathematical evaluation models which provide us a basic intuition for

determining which LLCmodule could be better for the programwith a specific memory footprint. We then

Zhang J Y, et al. Sci China Inf Sci January 2018 Vol. 61 012105:13

introduce a self-adaptive LLC scheduling scheme, which allows the LLC module to switch between the

SRAM and DRAM caches, according to the specific cache information for multi-programmed workloads.

Our experimental results show that the self-adaptive LLC scheduling scheme outperforms than the state-

of-the-art methods in terms of the multi-programmed workload performance.

Acknowledgements This work was supported by National Basic Research Program of China (973 Program)

(Grant No. 2015CB352403), National Natural Science Foundation of China (Grant Nos. 61261160502, 61272099,

61303012, 61572323, 61628208), Scientific Innovation Act of STCSM (Grant No. 13511504200), EU FP7 CLIMBER

Project (Grant No. PIRSES-GA-2012-318939), and CCF-Tencent Open Fund. We would like to acknowledge the

anonymous reviewers for their careful work and instructive suggestions. Also, we thank Dr. Zhi-Jie Wang for his

warm help and advices.

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Chou C, Jaleel A, Qureshi M K. BEAR: techniques for mitigating bandwidth bloat in gigascale DRAM caches. ACM

SIGARCH Comput Arch News, 2016, 43: 198–210

2 Hudec B, Hsu C W, Wang I T, et al. 3D resistive ram cell design for high-density storage class memory—a review.

Sci China Inf Sci, 2016, 59: 061403

3 Lun Z Y, Du G, Zhao K, et al. A two-dimensional simulation method for investigating charge transport behavior in

3-D charge trapping memory. Sci China Inf Sci, 2016, 59: 122403

4 Lee Y, Kim J, Jang H, et al. A fully associative, tagless DRAM cache. In: Proceedings of ACM/IEEE International

Symposium on Computer Architecture, Portland, 2015. 211–222

5 Hameed F, Bauer L, Henkel J. Adaptive cache management for a combined SRAM and DRAM cache hierarchy for

multi-cores. In: Proceedings of Design, Automation and Test in Europe, Grenoble, 2013. 77–82

6 Hundal R, Oklobdzija V G. Determination of optimal sizes for a first and second level SRAM-DRAM on-chip cache

combination. In: Proceedings of IEEE International Conference on Computer Design: VLSI in Computers and

Processors, Cambridge, 1994. 60–64

7 Hameed F, Bauer L, Henkel J. Reducing latency in an SRAM/DRAM cache hierarchy via a novel tag-cache architecture.

In: Proceedings of Design Automation Conference, San Francisco, 2014. 1–6

8 Huang C C, Nagarajan V. ATCache: reducing DRAM cache latency via a small SRAM tag cache. In: Proceedings of

International Conference on Parallel Architectures and Compilation, Edmonton, 2014. 51–60

9 Qureshi M K, Loh G H. Fundamental latency trade-off in architecting DRAM caches: outperforming impractical

SRAM-tags with a simple and practical design. In: Proceedings of IEEE/ACM International Symposium on Microar-

chitecture, Vancouver, 2012. 235–246

10 Elhelw A S, El-Moursy A, Fahmy H A H. Adaptive time-based least memory intensive scheduling. In: Proceedings of

IEEE 9th International Symposium on Embedded Multicore/Manycore Systems-on-Chip, Turin, 2015. 167–174

11 Elhelw A S, Moursy A E, Fahmy H A H. Time-based least memory intensive scheduling. In: Proceedings of IEEE 8th

International Symposium on Embedded Multicore/Manycore Systems-on-Chip, Aizu-Wakamatsu, 2014. 311–318

12 Chen Q, Zheng L, Guo M. DWS: demand-aware work-stealing in multi-programmed multi-core architectures. In: Pro-

ceedings of International Workshop on Programming Models and Applications on Multicores and Manycores, Orlando,

2014. 131

13 Chen Q, Zheng L, Guo M. Adaptive demand-aware work-stealing in multi-programmed multi-core architectures. J

Concurr Comput Prac Exp, 2016, 28: 455–471

14 Roscoe B, Herlev M, Liu C. Auto-tuning multi-programmed workload on the SCC. In: Proceedings of International

Green Computing Conference, Arlington VA, 2013. 1–5

15 Castellana V G, Ferrandi F. Abstract: speeding-up memory intensive applications through adaptive hardware acceler-

ators. In: Proceedings of SC Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake

City, 2012. 1415–1416

16 Huang C, Ravi S, Raghunathan A, et al. Synthesis of heterogeneous distributed architectures for memory-intensive

applications. In: Proceedings of International Conference on Computer Aided Design, San Jose, 2003. 46–53

17 Huang C, Ravi S, Raghunathan A, et al. Generation of heterogeneous distributed architectures for memory-intensive

applications through high-level synthesis. IEEE Trans Very Large Scale Int Syst, 2007, 15: 1191–1204

18 Athanasaki E, Anastopoulos N, Kourtis K, et al. Exploring the performance limits of simultaneous multithreading for

memory intensive applications. J Supercomp, 2008, 44: 64–97

19 Chun K C, Jain P, Kim C H. Logic-compatible embedded DRAM design for memory intensive low power systems.

In: Proceedings of IEEE International Symposium on Circuits and Systems, Paris, 2010. 277–280

20 Yi W, Tang Y, Wang G, et al. A case study of SWIM: optimization of memory intensive application on GPGPU.

In: Proceedings of International Symposium on Parallel Architectures, Algorithms and Programming, Dalian, 2010.

123–129

Zhang J Y, et al. Sci China Inf Sci January 2018 Vol. 61 012105:14

21 Qin X, Jiang H, Zhu Y, et al. A Feedback control mechanism for balancing I/O-and memory-intensive applications on

clusters. Scal Comput Prac Exp, 2005, 6: 95–107

22 Qin X, Jiang H, Zhu Y, et al. Dynamic load balancing for I/O- and memory-intensive workload in clusters using a

feedback control mechanism. In: Proceedings of International Euro-Par Conference, Klagenfurt, 2003. 224–229

23 Jaleel A, Nuzman J, Moga A, et al. High performing cache hierarchies for server workloads: relaxing inclusion

to capture the latency benefits of exclusive caches. In: Proceedings of IEEE International Symposium on High

Performance Computer Architecture, Burlingame, 2015. 343–353

24 Xiao N, Zhao Y J, Liu F, et al. Dual queues cache replacement algorithm based on sequentiality detection. Sci China

Inf Sci, 2012, 55: 191–199

25 Akin B, Franchetti F, Hoe J C. Data reorganization in memory using 3D-stacked DRAM. In: Proceedings of

ACM/IEEE International Symposium on Computer Architecture, Portland, 2015. 131–143

26 Jevdjic D, Volos S, Falsafi B. Die-stacked DRAM caches for servers: hit ratio, latency, or bandwidth? have it all with

footprint cache. In: Proceedings of ACM/IEEE International Symposium on Computer Architecture, Tel-Aviv, 2013.

404–415

27 Oskin M, Loh G H. A software-managed approach to die-stacked DRAM. In: Proceedings of International Conference

on Parallel Architecture and Compilation, San Francisco, 2015. 188–200

28 Loh G H, Hill M D. Supporting very large DRAM caches with compound-access scheduling and MissMap. IEEE Micro,

2012, 32: 70–78

29 Loh G H, Hill M D. Efficiently enabling conventional block sizes for very large die-stacked DRAM caches. In: Pro-

ceedings of IEEE/ACM International Symposium on Microarchitecture, Porto Alegre, 2011. 454–464

30 Dong H W, Seong N H, Lee H H S. Pragmatic integration of an SRAM row cache in heterogeneous 3-D DRAM

architecture Using TSV. IEEE Trans Very Large Scale Int Syst, 2013, 21: 1–13

31 Chen X, Xu C, Dick R P, et al. Performance and power modeling in a multi-programmed multi-core environment.

In: Proceedings of Design Automation Conference, Anaheim, 2010. 813–818

32 Suo G, Yang X. System level speedup oriented cache partitioning for multi-programmed systems. In: Proceedings of

IFIP International Conference on Network and Parallel Computing, Gold Coast, 2009. 204–210

33 Kirovski D, Lee C, Potkonjak M, et al. Application-driven synthesis of memory-intensive systems-on-chip. IEEE Trans

Comp-Aided Des Int Circ Syst, 1999, 18: 1316–1326

34 Sim J, Loh G H, Sridharan V, et al. A configurable and strong RAS solution for die-stacked DRAM caches. IEEE

Micro, 2014, 34: 80–90

35 Chou C, Jaleel A, Qureshi M K. CAMEO: a two-level memory organization with capacity of main memory and

flexibility of hardware-managed cache. In: Proceedings of IEEE/ACM International Symposium on Microarchitecture,

Cambridge, 2014. 1–12

36 Ou J, Patton M, Moore M D, et al. A penalty aware memory allocation scheme for key-value cach. In: Proceedings

of International Conference on Parallel Processing, Beijing, 2015. 530–539

37 Hennessy J L, Patterson D A. Computer Architecture: a Quantitative Approach. 5th ed. Waltham: Morgan Kaufmann,

2012. 72–96

38 Sim J, Loh G H, Kim H, et al. A mostly-clean DRAM cache for effective hit speculation and self-balancing dispatch.

In: Proceedings of IEEE/ACM International Symposium on Microarchitecture, Vancouver, 2012. 247–257

39 Begum R, Hempstead M. Power-agility metrics: measuring dynamic characteristics of energy proportionality. In: Pro-

ceedings of IEEE International Conference on Computer Design, New York, 2015. 643–650

