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Abstract Updatable timed automata (UTAs) proposed by Bouyer et.al., is an extension of timed automata

(TAs) having the extra ability to update clocks in a more elaborate way than simply reset them to zero.

The reachability of UTAs is generally undecidable, which can be easily gained by regarding a pair of clocks

as updatable counters. This paper investigates a subclass of UTAs by restricting the number of updatable

clocks to be one. We will show that (1) the reachability of general UTAs with one updatable clock (UTA1s)

is still undecidable, and (2) that of UTA1s under diagonal-free constraints is decidable, and the complexity

is Pspace-complete. The former is achieved by encoding Minsky machines to the general UTA1s, where two

counters are simulated by the updatable clock. The latter is gained by regarding a region of a UTA1 to be

an unbounded digiword, and encoding sets of digiwords that are accepted by a one counter automaton where

regions are generated as the value of the counter.
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1 Introduction

Timed automata (TAs), which are introduced by Alur and Dill [1], are one of the most-famous and most-

established models for analyzing complex real-time systems. Quite a lot of researches have been devoted

to extensions of timed automata, with much interest for classes whose emptiness problems are decidable.

Updatable timed automata (UTAs) [2, 3], which are an extension of timed automata, are based on

the allowance to update the value of clocks in an elaborate way such as assignments to arbitrary values,

and increment and decrement operations. Their decidability results have been deeply investigated in [4].

Furthermore, by restricting the behaviours of update clocks, a quite precise way the thin frontier between

decidable and undecidable classes of updatable timed automata has been described. The undecidability

is shown by simulating the Minsky machine [5] in general, while the decidability is shown by the fact

that the number of constructed regions is finite. Recently, a forward analysis of UTAs has been proposed

in [6] for a special subclass of UTAs that do not use comparisons between clocks. A refined algorithm for

a special subclass of UTAs with diagonal constraints has also been proposed in [7].

In this paper, We will investigate an interesting subclass of UTAs which lies between them. We

restrict the number of updatable clocks in a UTA to be one (UTA1s). The updatable clock has the

full behaviours of addition and subtraction. The paper firstly proves that the reachability of general

UTA1s is still undecidable, by encoding a Minsky machine into a UTA1 in a more elaborate way, such
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that two counters of a Minsky machine are encoded by one updatable clock. The technique combines

two traditional methods, the N-wrapping technique [8] and the digital encoding [4] together, which is

quite new. Afterwards, a positive answer for the reachability of UTA1s with diagonal-free constraints is

given by constructing unbounded number of regions on-the-fly over the counter of one counter automata

(OCAs), instead of pushdown systems [9], to gain a finer complexity result. Pspace-complete complexity

for the reachability of the decidable UTA1 subclass is thus proved. Our result expands the thin frontier

between undecidable and decidable subclasses of updatable timed automata. Furthermore, the decidable

model is also useful for soft real-time systems verification and modelling, since the singleton updatable

clock can be used to describe the deadline of a task that may update due to different environments.

Besides their theoretical interests, UTA1s can be effectively used in analysis and modelling of soft real-

time system, where the singleton updatable clock can be used to simulate the relative deadline, which

is flexibly modified depending on different conditions and environments. These applications cannot be

modeled and analyzed by the existing decidable UTA subclasses since each of them is less of some update

abilities to guarantee decidability.

The rest of this paper is organized as follows. Section 2 gives an introduction of UTAs and OCAs.

Section 3 introduces the model UTAs with one updatable clock. Section 4 gives an undecidability proof

of the general UTA1s, and Section 5 gives a decidability proof and complexity result of the UTA1s with

diagonal-free constraints. Section 6 talks about related work and Section 7 concludes the paper.

2 Preliminaries

For finite words w = γ1γ2 . . . γn, we denote γi ∈ w for 0 6 i 6 n. Let R
>0, N and Z denote the sets

of non-negative real numbers, natural numbers and integral numbers, respectively. Let N
ω = N ∪ {ω},

where ω is the first limit ordinal. Let I denote the set of intervals over Nω. An interval can be written as

a pair of a lower limit and an upper limit in the form of (a, b), [a, b), [a, c], (a, c], where a, c ∈ N, b ∈ N
ω,

‘(’ and ‘)’ denote open limits, and ‘[’ and ‘]’ denote closed limits. For a number r ∈ R
>0 and an interval

I ∈ I, we use r ∈ I to denote that r belongs to I. Let I \ I ′ = {r | r ∈ I ∧ r /∈ I ′}.

Let X = {x1, . . . , xn} be a finite set of clocks, and let a clock valuation ν : X → R
>0, assigns a value

to each clock x ∈ X . We define ν0 represents all clocks in X are assigned to zero. Given a clock valuation

ν and a time t ∈ R
>0, (ν + t)(x) = ν(x) + t, for x ∈ X . A clock assignment function ν[y ← b] is defined

by ν[y ← b](x) = b if x = y, and ν(x) otherwise. Val(X) is the set of clock valuations of X .

Definition 1 (Clock constraint). Given a finite set of clocks X , we define diagonal-free constraints

condf and diagonal constraints con, respectively as follows:

condf ::= x ∈ I?

con ::= x ∈ I? | x− y ∈ I?

where x, y ∈ X and I ∈ I.

2.1 Updatable timed automata

Updatable timed automata (UTAs) [2–4], which is an extendention of TAs, provide a more powerful way

to adjust the value of clocks during location switches.

Definition 2 (Updatable timed automata). A UTA is a tuple A = 〈Q, q0, F,X,∆〉, where

• Q is a finite set of control locations, with the initial location q0 ∈ Q,

• F ⊆ Q is the set of final locations,

• X is a finite set of clocks,

• ∆ ⊆ Q ×O ×Q, where O is a set of operations. A transition (q1, φ, q2) ∈ ∆ is written as q1
φ
−→ q2,

in which φ is one of the following:

Local ǫ, an empty operation,

Test x ∈ I? or x− y ∈ I?, where x, y ∈ X and I ∈ I,
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Assignment x← I, where x ∈ X and I ∈ I,

Increment x := x+ 1, where x ∈ X or

Decrement x := x− 1, where x ∈ X .

For a UTA A, we use Q(A), q0(A), F (A), X(A) and ∆(A) to represent its set of control locations,

initial location, set of final locations, set of clocks and set of transitions, respectively. In this paper, we

will use similar notations for other models.

Definition 3 (Semantics of UTAs). For a UTA A = 〈Q, q0, F,X,∆〉, a configuration is a pair (q, ν)

of a control location q ∈ Q, and a clock valuation ν on X . The transition relations of the UTA are as

follows:

• Progress transition: (q, ν)
t
−→A (q, ν + t), where t ∈ R

>0.

• Discrete transition: (q1, ν1)
φ
−→A (q2, ν2), if q1

φ
−→ q2 ∈ ∆, and one of the following holds,

Local φ = ǫ, then ν1 = ν2.

Test φ = x ∈ I? or φ = x − x′ ∈ I?, ν1 = ν2 and ν2(x) ∈ I holds or respectively ν2(x) − ν2(x
′) ∈ I

holds.

Assignment φ = x← I, ν2 = ν1[x← r] where r ∈ I.

Increment φ = x := x+ 1, ν2 = ν1[x← ν1(x) + 1].

Decrement φ = x := x− 1, ν2 = ν1[x← ν1(x)− 1] and ν1(x) > 1 holds.

The initial configuration of a UTA is (q0, ν0).

Remark 1 (Sound simulation). The UTA definition in Definition 2 follows the style in [10, 11]. In [4],

a UTA allows a logical connection of several constraint tests, e.g. x 6 15 ∧ y > 20, and several resets

operations of different clocks during one discrete transition. During one discrete transition only one

test or assignment (which is a generalization of the reset) is allowed in this definition. Since a discrete

transition is followed by a progress transition in which time elapses, the main ambiguity of two definitions

is whether a conjunction of two tests can be checked one by one, between which the time elapses. It can

be shown that the TA with our definition simulates the timed traces in the original definition soundly, as

follows:

For > or >, c
x∈[a,+∞)?
−−−−−−−→A c′

t
−→A c′ can be safely converted to c

t
−→A c

[a,+∞)?
−−−−−→A c′, for some

configurations c and c′.

For 6 or <, c
t
−→A c

x∈[0,a]?
−−−−−→A p′ can be safely converted to c

x∈[0,a]?
−−−−−→A c′

t
−→A c′, for some configu-

rations c and c′.

For test transitions, a very general simulation strategy is as follows. Firstly, check the >, and >

one by one. Then check 6 and < later. If there exists a “=” constraint, decompose it into > ∧ 6.

For example, a transition p
x615∧y>20
−−−−−−−−→ q in the original definition can be simulated by two transitions

p
y∈(20,+∞)?
−−−−−−−−→ p′

x∈[0,15]?
−−−−−−→ q under the new definition, in which p′ is a new control location.

For reset transitions, a group of clocks which are reseted simultaneously can be simulated by resetting

those clocks one by one sequentially, with a zero test of the first reset clock on the tail. For example, a

transition p
{x,y}
−−−→ q, resetting x and y simultaneously, in the original definition is simulated by p

x←[0,0]
−−−−−→

p′
y←[0,0]
−−−−−→ p′′

x∈[0,0]?
−−−−−→ q, in which p′, p′′ are fresh control locations.

The arbitrary update, p
x:=x−d
−−−−−→ q, in which d is some fixed positive integer, can be encoded by introduc-

ing an extra clock x′ and locations p1, p2, . . . , pd, pd+1: p
x′←[0,0]
−−−−−→ p1

x:=x−1
−−−−−→ p2

x:=x−1
−−−−−→ p3 · · · pd

x:=x−1
−−−−−→

pd+1
x′∈[0,0]?
−−−−−→ q.

If a transition contains both test and reset operations, we simulate test operations, reset operations

and update operations respectively, following the above rules.

If only diagonal-free constraints appear in test transitions, the corresponding UTAs are called diagonal-

free UTAs. Actually diagonal or diagonal-free constraints affect decidability results of UTAs heavily,

which is different from TAs. We list a few undecidable subclasses of UTAs as follows:

Proposition 1 (Proposition 2 in [2]). UTAs without increment rules under diagonal-free constraints

are undecidable.
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Proposition 2 (Proposition 3 in [2]). UTAs without decrement rules under diagonal constraints are

undecidable.

2.2 One counter automata

Counter automata are a fundamental computational model, known to be Turing-complete [5]. One

counter automata (OCAs) [12, 13], is one interesting model in subclasses of counter automata in which

reachability is decidable.

Definition 4 (One counter automata). A one counter automaton (OCA) is a quadruple C = 〈P, p0,∆〉

where

• P is a finite set of control states,

• p0 ∈ P is the initial control state, and

• ∆ ⊆ P ×Op×P is a finite set of transitions, where Op = {zero, nonzero}∪ {add(z) | z ∈ {1,−1}}.

(p, op, p′) ∈ ∆ is written as p
op
−֒→ p′.

A configuration of the OCA C is a pair (p, n), where p ∈ P is a control state and n ∈ N is the value

of the counter. The transition relation on the locations of C induces an unlabelled transition relation on

configurations as follows:

• An edge p
zero

−֒→ p′ yields a single transition 〈p, 0〉 →֒ 〈p′, 0〉.

• An edge p
nonzero

−֒→ p′ yields a single transition 〈p, n〉 →֒ 〈p′, n〉, where n > 0.

• An edge p
add(z)
−֒→ p′ yields a transition 〈p, n〉 →֒ 〈p′, n + z〉, provided that both n and n + z are both

non-negative.

An OCA can be seen as a special case of a pushdown system [14] which has only one stack symbol. So

the configuration reachability problem is naturally guaranteed.

Fact 1. The configuration reachability problem of OCAs is decidable [13, 15].

Remark 2. We restrict the values to added on the counter as ±1, instead of arbitrary integer number

in Z to gain the complexity for reachability of OCAs as in Nlogspace, as well as to properly encode.

The latter will result in the complexity as NP-completeness [13].

3 General UTAs with one updatable clock

We propose a subclass of UTAs in a different facet by restricting the number of updatable clocks to be

one, instead of by restricting the ability of updates.

Definition 5 (Updatable timed automata with one updatable clock). A UTA with one updatable clock

(UTA1) is a tuple A = 〈Q, q0, F,X, c,∆〉, where

• Q is a finite set of control locations, with the initial location q0 ∈ Q,

• F ⊆ Q is the set of final locations,

• X = {x1, . . . , xk} is a finite set of clocks, c is the singleton updatable clock, and

• ∆ ⊆ Q ×O ×Q, where O is a set of operations. A transition (q1, φ, q2) ∈ ∆ is written as q1
φ
−→ q2,

in which φ is one of the following:

Local ǫ, an empty operation,

Test x ∈ I? or x− x′ ∈ I?, where x, x′ ∈ X ∪ {c} are two clocks and I ∈ I is an interval,

Assignment x← I, where x ∈ X ∪ {c} and I ∈ I, or

Increment c := c+ 1, or

Decrement c := c− 1.

Definition 6 (Semantics of UTA1s). Given a UTA1 A = 〈Q, q0, F,X, c,∆〉, a configuration (state) is a

pair (q, ν) of a control location q ∈ Q, and a clock valuation ν on X ∪ {c}. The transition relation of the

UTA1 is represented as follows:

• Progress transition: (q, ν)
t
−→ (q, ν + t), where t ∈ R

>0.
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q0 q1 q2 qf
x1∈(2, +∞)? c:=c−1 x2←(1, 6)

Figure 1 An Example for UTA1s.

• Discrete transition: (q1, ν1)
φ
−→ (q2, ν2), if q1

φ
−→ q2 ∈ ∆, and one of the following holds,

Local φ = ǫ, then ν1 = ν2.

Test φ = x ∈ I? or φ = x − x′ ∈ I?, ν1 = ν2 and ν2(x) ∈ I holds or respectively ν2(x) − ν2(x
′) ∈ I

holds.

Assignment φ = x← I, ν2 = ν1[x← r] where r ∈ I.

Increment φ = c := c+ 1, ν2 = ν1[c← ν1(c) + 1].

Decrement φ = c := c− 1, ν2 = ν1[c← ν1(c)− 1] and ν1(c) > 1 holds.

The initial configuration is (q0, ν0). The transition relation is → and we define →=
t
−→A ∪

φ
−→A , and

define →∗ to be the reflexive and transitive closure of →.

Example 1. The UTA1 illustrated in Figure 1 has three clocks, c, x1 and x2, among which c is the

special singleton updatable clock allowed to be updated in a different way.

One run of the UTA1 is as follows: (q0, ν0)
2.5
−−→ (q0, ν1)

x1∈(2,+∞)?
−−−−−−−−→ (q1, ν2)

c:=c−1
−−−−→ (q2, ν3)

x2←(1,6)
−−−−−−→

(qf , ν4)
5
−→ (qf , ν5), where

• ν0 = {ν0(c) = ν0(x1) = ν0(x2) = 0},

• ν1 = ν2 = {ν1(c) = ν1(x1) = ν1(x2) = 2.5},

• ν3 = {ν3(c) = 1.5, ν3(x1) = ν3(x2) = 2.5},

• ν4 = {ν4(c) = 1.5, ν4(x1) = 2.5, ν4(x2) = 5.7},

• ν5 = {ν5(c) = 6.5, ν5(x1) = 7.5, ν5(x2) = 10.7}.

The first transition is a progress transition in which time elapses 2.5 units, and each clock are increased

by 2.5. The second transition tests whether the value of clock x1 is greater than 2, and since it is true, it

moves from location q0 to location q1. The third transition updates the updatable clock c by decreasing

one time unit and make a move from location q1 to location q2. The last but one transition picks a value

(here 5.7 is picked) from the range (1, 6) randomly and assigns it to the clock x2. The last transition is

a progress transition in which time elapses 5 units.

Definition 7 (Reachability problem). Given a UTA1 A = 〈Q, q0, F,X, c,∆〉 and a state q, decide

whether there exists a path from the initial configuration such as (q0, ν0)→∗ (q, ν), for some ν.

4 UTA1 with diagonal constraints is undecidable

Generally, to prove the undecidable result on reachability problems of a timed model, there are two meth-

ods including the N-wrapping technique [8], and the digital encoding [4], both of which encode Minsky

machine into the target timed model. The former includes, Hybrid automata [8], task automata [16],

NeTA-F [11], etc., while the latter includes updatable time automata [2,3], etc.. For general undecidable

result of the UTA1, we need to combine the two methods together.

4.1 Value passing

Fact 2. The reachability problem of a UTA1 with value passing between the updatable clock and normal

clocks is undecidable.

The fact is quite trivial if value passing is allowed. All normal clocks are essentially updatable via

value passing through the special updatable clock.

Firstly, we will show that we can implement value passing between the updatable clock and normal

clocks, although the operation is imperfect. That is, when value passing happens, values of other clocks

will change.
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z←[0, 0] c←[0, 0] x−c∈[0, 0]? z∈[0, 0]?

c:=c+1

Figure 2 Value passing from a normal clock to the updatable clock.

w←[0, 0] x←[0, 0] z←[0, 0]

w←[0, 0]

w∈[1, 1]?

z∈
[0

, 
0

]?

c−x∈[0, 0]? z∈[0, 0]?

c:
=
c−

1

Figure 3 Value passing from the updatable clock to a normal clock.

Value passing from a normal clock to the updatable clock: Given a normal clock x and an

updatable clock c, the value passing from x to c is simple, which in shown in Figure 2, where z is a

normal clock used to prevent time passage through transition. During the value passing, the value of

other clocks will not change. We use ValuePassingXC(x) to represent the function while x is parameter

of normal clock.

Value passing from the updatable clock to a normal clock: Given the updatable clock c, and

a normal clock x, the value passing from c to x is shown in Figure 3, which firstly resets the x , and then

every 1 time unit (captured by the clock of w) judges whether value of x is equal to c. If not, the value of

c will be decreased 1 time unit and repeatedly check after 1 time unit time passage (which means, value of

c will be remain unchanged). Similarly, z is a normal clock to prevent time passage through transitions.

Note that after value passing from c to x, the value of other clocks will change, which makes our encoding

difficult. We use ValuePassingCX(x) to represent the function while x is parameter of normal clock.

4.2 Undecidability proof

For showing the undecidability, we encode the halting problem of a Minsky machine [5] to that of a

UTA1. A Minsky machineM is a tuple (L,C,D) where,

• L is a finite set of states, and lf ∈ L is the terminal state,

• C = {ct1, ct2} is the set of two counters,

• D is the finite set of transition rules of the following types,

Increment counter di : ct := ct+ 1, goto lk,

Test-and-decrement counter di : if (ct > 0) then (ct := ct − 1, gotolk) else goto lm, where ct ∈ C,

di ∈ D and lk, lm ∈ L.

Since the value passing encoding is imperfect, we will use another way to encode two counters, bor-

rowing some ideas from N-wrapping techniques.

A Minsky machine can be encoded into a UTA1 with two normal clocks z and w, where z is used

to prevent time passage during transitions and w is adopted to capture exact 1 time unit. The value

of unique updatable clock is used to represent the value of two counters. That is, µ(c) = 2ct1 · 3ct2.

Incrementing and decrementing the counter ct1 are simulated by doubling and halving of the value of

the clock c, respectively, while those for ct2 are simulated by tripling and thirding the value of clock c,

respectively. These operations are shown in Figure 4, respectively, and described below formally.

Doubling. Firstly reset x to zero. Then repeatedly decrease one time units of c after two time units

time passage. When the value of c is equal to the value of x, it will be 2d.

Halving. Firstly rese x to zero. Then repeatedly decrease two time units of c after one time unit time

passage. When value of c is equal to value of x, then the value of c will be d/2. If after these operations,

value of c is smaller than that of x, it means that the value of the first counter is zero (zero-test).
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c

x

d

2d c

x

d

d/2

c

x

d

d 2d 3d

3d

c

x

d

d/3

(a) (b)

(c)
(d)

Figure 4 (a) Doubling d to 2d; (b) halving d to d/2; (c) tripling d to 3d; (d) thirding d to d/3.

Tripling. Firstly rese x to zero. Then repeatedly decrease one time unit of c after three time units

time passage. When value of c is equal to the value of x, it will be 3d.

Thirding. Firstly rese x to zero. Then repeatedly decrease three time units of c after one time unit

time passage. When value of c is equal to value of x, then the value of c will be d/3. If after these

operations, value of c is smaller than that of x, it means that the value of the second counter is zero

(zero-test).

For the zero-test, we will apply halving (and thirding) repeatedly until x − c ∈ (0, ω), then the value

of ct1 (and ct2) is zero. After that the value of c should be recovered, which can be done as follows. For

ct1, we keep decreasing two time units of c after one time unit time passage until c is zero. At that time,

the value of x is the same as the original value of c. ValuePassingXC(y) will be applied to restore value

of c. Similar procedure can be applied to ct2.

By the above encoding, the reachability problem of Minsky machine can be encoded to the reachability

problem of general UTA1, and thus we know that the latter is undecidable.

5 UTA1 with diagonal-free constraints is decidable

In this section, the reachability problem of UTA1s with diagonal-free constraint (UTA1df) is shown to

be decidable. The main idea is to encode UTA1sdf to OCAs, whose configuration reachability is nicely

decidable. The key simulation is that when the particular clock’s value is greater than the the maximum

integer n and meanwhile its value changes between integer and non-integer with time elapsing, we add

the counter to some certain value to record the time interval.

5.1 Digiword and its operations

The powerset of D is denoted by P(D). Let A = (Q, q0, F,X, c,∆) be a UTA1df , and n be the maximum

integer appearing in ∆. For v ∈ R
>0, proj(v) = ri if v ∈ ri ∈ Intv(n), where

Intv(n) = {r2i = [i, i] | 0 6 i 6 n} ∪ {r2i+1 = (i, i+ 1) | 0 6 i < n} ∪ {r2n+1 = (n, ω)}.

The following idea of digitization is inspired by [11, 17–20].
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r1 r3 r5 r7 r9 r11 r13

r0 r2 r4 r6 r8 r10 r12

Figure 5 The intervals when n = 6.

Definition 8. For (x, t) ∈ ((X∪{c})×R>0), where t is the value of clock x, let frac(x, t) = t−floor(t). A

digitization digi : Val({c}∪X)→ (P(({c}∪X)×Intv(n)))∗ is defined as follows. For ν ∈ Val(X∪{c}), let

Y0, Y1, . . . , Ym be sets that collect (x, proj(t))’s having the identical frac(x, t) for (x, t) ∈ ({c}∪X)×R
>0.

Among them, Y0 (which is likely to be empty) is reserved to collect all (x, proj(t)) with frac(t) = 0. Let

us assume that Yi’s except for Y0 is not empty, and Yi’s are arranged by the ascending order of frac(x, t)

(i.e., for (x, proj(t)) ∈ Yi and (x′, proj(t′)) ∈ Yj , frac(x, t) < frac(x′, t′), where m > j > i > 0.

Example 2. For example 1, we have n = 6 and 14 intervals. These intervals are illustrated as Figure 5.

For the clock valuation ν4 in Example 1, digi(ν4) is {(c, r3), (x1, r5)}{(x2, r11)}. For convenience we

do not explicitly show the empty set Y0 of digi(ν4).

Digiword is a word in (P(({c} ∪ X) × Intv(n)))∗. For a digiword Ȳ , If there has an clock valuation

ν ∈ Val({c} ∪X) such that digi(ν) = Ȳ , the word is called well-formed digiword.

Remark 3. The set of well-formed digiword is obviously finite, for a finite set of clocks {c} ∪X . This

is trivial, since there are a constant number of clocks, which implies that there are a constant number

of combinations of digiword. In our following encoding this plays a key role, ensuring the fact that the

OCA has bounded states.

Definition 9. Let Ȳ = Y0 · · ·Ym ∈ (P(({c}∪X)×Intv(n)))∗. Digiword operations is defined as follows.

• InsertI insert(Ȳ , (x, ri)) for x ∈ X ∪ {c} inserts (x, ri) to Ȳ at














put into Y0, if i is even;

either put into Yj for j > 0,

or put the singleton set {(x, ri)} at any place after Y0, if i is odd.

• Delete delete(Ȳ , x) for x ∈ X ∪ {c} is obtained from Ȳ by deleting the element (x, r) indexed by

x.

• Increase increase(Ȳ , c) is obtained from Ȳ by replacing the element (c, ri) indexed by c with

element (c, rmin{i+2,2n+1}).

• Decrease decrease(Ȳ , c, d) where d ∈ N is obtained from Ȳ by replacing the element (c, ri) indexed

by c with element (c, rmax{i−d,0}).

• Shift Let j ∈ [0..m] and 0 6 i 6 2n+ 1. A shift Ȳ = Y0Y1 · · ·Ym ⇒ Ȳ ′ = Y ′0Y
′
1 · · ·Y

′
m′ is defined

as follows.






















Ȳ ′ = Y ′0 , Y
′
1 , . . . , Y

′
m+1, if Y0 6= ∅, Y ′0 = ∅, Y ′1 = {(x, rmin{i+1,2n+1}) | (x, ri) ∈ Y0},

and Y ′j = Yj−1 for j ∈ [2..m+ 1],

Ȳ ′ = Y ′0 , Y
′
1 , . . . , Y

′
m−1, if Y ′0 = {(x, rmin{i+1,2n+1}) | (x, ri) ∈ Ym},

and Y ′j = Yj for j ∈ [1..m− 1].

If {c, ri} ∈ Y0 or, Y0 = ∅ and {c, ri} ∈ Ym for a shift ⇒, we call it a critical shift and denote it as ⇒↑,

otherwise call it non-critical shift and denote it as ⇒→. Define ⇒∗ as reflexive transitive closure of ⇒ as

convention.

Example 3. Take the digiword in Example 1 into consideration, digi(ν0) = {(c, r0), (x1, r0), (x2, r0)}.

• After finite times shifts, digi(ν1) = digi(ν2) = {(c, r5), (x1, r5), (x2, r5)}.

• After decrease(digi(ν2), c, 2), digi(ν3) = {(c, r3), (x1, r5), (x2, r5)}.

• After insert(delete(digi(ν3), x2), (x2, r11)), digi(ν4) = {(c, r3), (x1, r5)}{(x2, r11)}.

• After finite times shifts, digi(ν5) = {(c, r13), (x1, r13)}{(x2, r13)}.
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Similar to the regions [1], well formed digiwords are bisimilar to the clock valuations:

Ȳ1 ⇒
∗ Ȳ2 if and only if for any ν ∈ [Ȳ1], exists t ∈ R

>0 such that ν + t ∈ [Ȳ2],

where [Ȳ ] = {ν | Ȳ = digi(ν)}.

5.2 Decidability proof

Definition 10. For a UTA1df A = 〈Q, q0, F,X, c,∆〉, there is an OCA C = 〈P × (P((X ∪ {c}) ×

Intv(n)))∗, p0,∆d〉, where the set of states P = Q ∪ {p′, p′′, p′′′ | p ∈ Q ∧ p′, p′′, p′′′ /∈ Q} and p0 =

(q0, {(x, r0)|x ∈ X ∪ {c}}). ∆d consists of the following:

• Time progress

(1) (p, Ȳ )
add(1)
−֒→ (p, Z̄), where Ȳ ⇒↑ Z̄, for (c, ri) ∈ Yj ∈ Ȳ and i > 2n.

(2) (p, Ȳ )
nonzero

−֒→ (p, Z̄), where Ȳ ⇒→ Z̄, for (c, ri) ∈ Yj ∈ Ȳ and i > 2n.

(3) (p, Ȳ )
zero

−֒→ (p, Z̄), where Ȳ ⇒ Z̄, for (c, ri) ∈ Yj ∈ Ȳ and i < 2n.

• Local (p
ǫ
−→ q ∈ ∆)

(1) (p, Ȳ )
zero

−֒→ (q, Ȳ ), (p, Ȳ )
nonzero

−֒→ (q, Ȳ ).

• Test (p
x∈I?
−−−→ q ∈ ∆)

(1) (p, Ȳ )
zero

−֒→ (q, Ȳ ), (p, Ȳ )
nonzero

−֒→ (q, Ȳ ), if ri ⊆ I for (x, ri) ∈ Yj ∈ Ȳ .

• Assignmentc (p
c←I
−−−→ q ∈ ∆)

(1) (p, Ȳ )
add(−1)
−֒→ (p, Ȳ ).

(2) (p, Ȳ )
zero

−֒→ (p′, Ȳ ).

(3) ∀ri ⊆ I \ r2n+1, (p
′, Ȳ )

zero

−֒→ (q, insert(delete(Ȳ , c), (c, ri))).

(4) (p′, Ȳ )
add(1)
−֒→ (p′, Ȳ ), if r2n+1 ⊆ I.

(5) (p′, Ȳ )
nonzero

−֒→ (q, insert(delete(Ȳ , c), (c, r2n+1))), if r2n+1 ⊆ I.

• Assignmentx (p
x←I
−−−→ q ∈ ∆, where x ∈ X)

(1) ∀ri ⊆ I, (p, Ȳ )
zero

−֒→ (q, insert(delete(Ȳ , x), (x, ri))).

• Increment (p
c:=c+1
−−−−→ q ∈ ∆)

(1) (p, Ȳ )
zero

−֒→ (q, increase(Ȳ , c)), for (c, ri) ∈ Yj ∈ Ȳ and i 6 2n− 2.

(2) (p, Ȳ )
add(1)
−֒→ (q, increase(Ȳ , c)), for (c, r2n−1) ∈ Yj ∈ Ȳ .

(3) (p, Ȳ )
add(1)
−֒→ (p′′, Ȳ ), for (c, ri) ∈ Yj ∈ Ȳ and i > 2n.

(4) (p′′, Ȳ )
add(1)
−֒→ (q, increase(Ȳ , c)).

• Decrement (p
c:=c−1
−−−−→ q ∈ ∆)

(1) (p, Ȳ )
add(−1)
−֒→ (p′′′, Ȳ ).

(2) (p′′′, Ȳ )
add(−1)
−֒→ (q′′′, Ȳ ).

(3) (q′′′, Ȳ )
nonzero

−֒→ (q, Ȳ ).

(4) (q′′′, Ȳ )
zero

−֒→ (q, decrease(Ȳ , c, 1)).

(5) (p′′′, Ȳ )
zero

−֒→ (q, decrease(Ȳ , c, 2)).

(6) (p, Ȳ )
zero

−֒→ (q, decrease(Ȳ , c, 2)) for (c, ri) ∈ Yj ∈ Ȳ and i > 2.

Given a UTA1df A, for all kinds of transitions, we have their corresponding rules in the ∆d(C). Some

transitions of C seem hard to understand. The following gives a simple explanation for how to simulate

assignment and decrement.

For an assignment in the form of x← I, the OCA C proceeds with two different subcases: 1) x is the

updatable clock; 2) x is a normal clock. For the former case, ⌋ firstly needs to decrease the counter to

zero, then add some value whenever needed, and finally perform delete and insert operations. It is much

simpler for the latter case, merely performing delete and insert operations.

For a decrement in the form of c := c − 1, the OCA C proceeds with four different subcases:

1) ν(c) > n + 1; 2) ν(c) = n + 1; 3) n < ν(c) < n + 1; 4) 1 6 ν(c) 6 n. For the first case, the
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counter in C only performs add(−1) twice. For the second and third cases, the counter in ⌋ performs

add(−1) twice and once, respectively, and further performs decrease operation. The difference between

them is the unit it decreases. For the last case, the value of the counter in C is zero. The system only

performs decrease operation.

The following example illustrates the simulation of assignment transitions and decrement transitions.

Example 4. Take the run in the Example 1 into consideration.

• (q1, ν2)
c:=c−1
−−−−→ (q2, ν3), where ν2 = {ν2(c) = ν2(x1) = ν2(x2) = 2.5} and ν3 = {ν3(c) = 1.5, ν3(x1) =

ν3(x2) = 2.5}. Corresponding simulation: (q1, digi(ν2))
zero

−֒→ (q2, decrease(digi(ν2), c, 2)).

• (q2, ν3)
x2←(1,6)
−−−−−−→ (qf , ν4), where ν3 is defined above and ν4 = {ν4(c) = 1.5, ν4(x1) = 2.5, ν4(x2) =

5.7}. Corresponding simulation: (q2, digi(ν3))
zero

−֒→ (qf , insert(delete(digi(ν3), x2), (x2, r11))).

Definition 11. Let ̺ be any configuration of a UTA1df such that ̺0 = (q0, ν0) →֒∗ ̺ = (q, ν). Define

J̺K to be 〈(q, digi(ν)), k〉, where k = 2× floor(ν(c)− n) + ceiling(frac(ν(c))) if ν(c) > n; otherwise k = 0.

A configuration κ of OCA C with some ̺ and κ = J̺K is named an encoded configuration.

Example 5. Consider the configuration (qf , ν5) in Example 1, where ν5 = {c = 6.5, x1 = 7.5, x2 =

10.7}. By Definition 11, J(qf , ν5)K = 〈(qf , digi(ν5)), 1〉, where digi(ν5) = {(c, r13), (x1, r13)}{(x2, r13)}.

Remark 4. For a time progress transition (p, ν)
t
−→ (q, ν′) of UTA1df , where t ∈ R

>0, there exists

a transition sequence of J(p, ν)K →֒ 〈(p, Z̄1), k1〉 →֒ 〈(p, Z̄2), k2〉 · · · →֒ J(q, ν′)K to faithfully simulate it,

including finite time progress transitions of OCA.

Lemma 1. Given a UTA1df A, its associated OCA C, and any configuration ̺, ̺′ of A.

(Preservation) If ̺→ ̺′ then J̺K →֒∗ J̺′K.

(Reflection) If J̺K →֒∗ κ,

(1) there exists ̺′ such that κ = J̺′K and ̺→∗ ̺′, or

(2) κ is not an encoded configuration, and there exists ̺′ such that κ →֒∗ J̺′K by transitions (of C)

and ̺→∗ ̺′.

Proof. Let ̺ = (q, ν). We assume J̺K = 〈(q, digi(ν)), k〉.

For preservation part, we discuss by case analysis of ̺→ ̺′.

(1) Time progress ̺
t
−→ ̺′. We have digi(ν) ⇒∗ digi(ν + t), by the digiword’s region-like property.

Discuss with two different subcases:

(a) If ν(c) + t 6 n, by applying the third transition rule of time progress rules finite times we have

J̺K = 〈(q, digi(ν)), 0〉 →֒∗ J̺′K = 〈(q, digi(ν + t)), 0〉.

(b) If ν(c) + t > n, we get J̺K = 〈(q, digi(ν)), k〉 →֒∗ J̺′K = 〈(q, digi(ν + t)), k + k
′〉 by applying the

third time progress rule finitely many times (zero times if ν(c) > n) and then iteratively applying the

first time progress rule one time, the second time progress rule finitely many times, and another first

time progress rule one time. Note that it is possible that fist time progress rule is applied zero times at

the first iteration.

(2) Local ̺ = (p, ν)
ǫ
−→ ̺′ = (q, ν). Then we have J̺K = 〈(p, digi(ν)), k〉 →֒ J̺′K = 〈(q, digi(ν)), k〉 with

the local transition of OCA.

(3) Test ̺ = (p, ν)
x∈I?
−−−→ ̺′ = (q, ν). Then J̺K = 〈(p, digi(ν)), k〉 →֒ J̺′K = 〈(q, digi(ν)), k〉 with

the test transition of OCA, since there exists (x, ri) ∈ Yj ∈ digi(ν) such that ri ⊆ I, where digi(ν) =

Y1Y2 · · ·Yj · · ·Ym.

(4) Assignmentc ̺ = (p, ν)
c←I
−−−→ ̺′ = (q, ν[c ← d]), where d ∈ I. We discuss with two different

subcases, d 6 n and d > n.

(a) d 6 n: We first need to substract the counter to zero, by repeatedly applying add(−1) from the

first assignmentc rule, which has J̺K = 〈(p, digi(ν)), k〉 →֒∗ κ = 〈(p, digi(ν)), 0〉. Then we have κ →֒ κ′ =

〈(p′, digi(ν)), 0〉 →֒ J̺′K = 〈(q, digi(ν[x← d])), 0〉, by applying the second and third assignment rules.

(b) d > n: Similar to the above subcase, We firstly need to substract the counter to zero, by repeatedly

applying add(−1) from the first assignmentc rule, having J̺K = 〈(p, digi(ν)), k〉 →֒∗ κ = 〈(p, digi(ν)), 0〉.

Secondly, by the second assignmentc rule we have κ →֒ κ′ = 〈(p′, digi(ν)), 0〉. Then, we have κ′ →֒∗

κ′′ = 〈(p′, digi(ν)), k〉 by repeatedly applying the fourth rule of C until the counter k = 2× floor(d− n) +
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ceiling(frac(d)). Finally, we have κ′′ →֒ J̺′K = 〈(q, digi(ν[c ← d])), k〉, by applying the last assignment

rule.

(5) Assignmentx ̺ = (p, ν)
x←I
−−−→ ̺′ = (q, ν[x ← d]), where x ∈ X , and d ∈ I. By applying the first

assignment rule of OCA, (p, Ȳ ), ǫ〉 →֒ 〈(q, insert(delete(Ȳ , x), (x, ri))), ǫ〉, where Ȳ = digi(ν) and d ∈ ri

We have J̺K = 〈(p, digi(ν)), k〉 →֒ J̺′K = 〈(q, digi(ν[x← d])), k〉.

(6) Increment ̺ = (p, ν)
c:=c+1
−−−−→ ̺′ = (q, ν[c← ν(c) + 1]). Discuss with three different subcases:

(a) If ν(c) 6 n−1, then by applying the first transition increment rule of C we have J̺K = 〈(p, digi(ν)), 0〉

→֒ J̺′K = 〈(q, increase(digi(ν), c)), 0〉 = 〈(q, digi(ν[c← ν(c) + 1])), 0〉.

(b) If n − 1 < ν(c) < n, then by applying the second increment transition rule of C we have J̺K =

〈(p, digi(ν)), k〉 →֒ J̺′K = 〈(q, increase(digi(ν), c)), k + 1〉 = 〈(q, digi(ν[c← ν(c) + 1])), k+ 1〉.

(c) If ν(c) > n, then by applying the third and the fourth increment transition rules of C we have

J̺K = 〈(p, digi(ν)), k〉 →֒ J̺′K = 〈(q, increase(digi(ν), c)), k + 2〉 = 〈(q, digi(ν[c← ν(c) + 1])), k+ 2〉.

(7) Decrement ̺ = (p, ν)
c:=c−1
−−−−→ ̺′ = (q, ν[c ← ν(c) − 1]). Note that only when ν(c) > 1, can this

transition happen. We proceed with 4 subcases:

(a) If ν(c) > n+ 1, then we have J̺K = 〈(p, digi(ν)), k〉 →֒∗ J̺′K = 〈(q, digi(ν)), k− 2〉 = 〈(q, digi(ν[c←

ν(c)− 1])), k− 2〉 by applying the 1–3 decrement transition rules of C.

(b) If ν(c) = n + 1, then we have J̺K = 〈(p, digi(ν)), 2〉 →֒∗ J̺′K = 〈(q, decrease(digi(ν), c, 1)), 0〉 =

〈(q, digi(ν[c← ν(c)− 1])), 0〉 by applying the 1,2,4 decrement transition rules of C.

(c) If n < ν(c) < n+ 1, then we have J̺K = 〈(p, digi(ν)), 1〉 →֒∗ J̺′K = 〈(q, increase(digi(ν), c, 2)), 0〉 =

〈(q, digi(ν[c← ν(c)− 1])), 0〉 by applying the 1,5 decrement transition rules of C.

(d) If 1 6 ν(c) 6 n, then we have J̺K = 〈(p, digi(ν)), 0〉 →֒ J̺′K = 〈(q, increase(digi(ν), c, 2)), 0〉 =

〈(q, digi(ν[c← ν(c)− 1])), 0〉 by applying the 6 decrement transition rule of C.

For reflection part, the proof is shown by induction on the steps of →֒∗.

Base step. Consider the case of J̺K →֒ κ,

(1) Time progress Apparently, we have J̺K →֒ κ by one of three time progress rules of OCA C.

digi(ν)⇒ Ȳ means that there exists a clock valuation ν′ ∈ Val({c}∪X) such that ν′ = ν+ t and ν′ ∈ [Ȳ ]

for a real number t ( 0 < t < 1). Now discuss with three cases:

(a) If ν(c) < n, J̺K →֒ κ by using the third time progress rule of OCA C. We get that κ = 〈(p, Ȳ ), 0〉 =

J̺′K, where ̺ = (p, ν)
t
−→ ̺′ = (p, ν′).

(b) If ν(c) > n and 2× floor(ν(c)) + ceiling(frac(ν(c))) = 2× floor(ν′(c)) + ceiling(frac(ν′(c))),then by

using the second time progress rule we get J̺K →֒ κ. We have κ = 〈(p, Ȳ ), k〉 = J̺′K, where ̺ = (p, ν)
t
−→

̺′ = (p, ν′).

(c) If ν(c) > n and 2 × floor(ν(c)) + ceiling(frac(ν(c))) + 1 = 2 × floor(ν′(c)) + ceiling(frac(ν′(c))),

then by using the first time progress rule we have J̺K →֒ κ. We get κ = 〈(p, Ȳ ), k + 1〉 = J̺′K, where

̺ = (p, ν)
t
−→ ̺′ = (p, ν′).

(2) Local If J̺K →֒ κ for p
ǫ
−→ q being a transition in A, then κ = 〈(q, digi(ν)), k〉 = J̺′K, where

̺′ = (q, ν).

(3) Test Similar with the case for Local.

(4) Assignmentx If J̺K →֒ κ, κ is an encoded configuration. Then J̺K = 〈(p, digi(ν)), k〉 →֒ κ =

J̺′K = 〈(q, insert(delete(digi(ν), x), (x, ri))), k〉, where for d ∈ ri ∈ I, ̺ = (p, ν)
x←I
−−−→ ̺′ = (q, ν[x← d]).

(5) Assignmentc We only need to consider the first two rules since the configurations are encoded

configurations (i.e. J̺K).

(a) If by applying the first assignment transition rule of C J̺K →֒ κ, the clock involved is c and κ may

not be an encoded configuration. However, by applying the same rules finitely many times and then

the third assignment rule, κ →֒∗ κ1 = 〈(p, digi(ν)), 0〉 →֒ κ2 = 〈(p′, digi(ν)), 0〉, and then if ri ∈ I for

i 6 2n, we have κ2 →֒ J̺′K = 〈(q, insert(delete(digi(ν), c), (c, ri)), 0〉, by applying the third assignment

rule; Otherwise, we have κ2 →֒∗ κ3 = 〈(p′, digi(ν)), k〉 →֒ J̺′K = 〈(q, insert(delete(digi(ν), c), (c, ri)), k〉 by

applying finitely many times of the fourth assignment rule firstly and then the last assignment rule.

(b) If by applying the first assignment transition rule of C we have J̺K →֒ κ, then the proof is similar

to the above case.
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(6) Increment Discuss with three different cases:

(a) If the first increment transition rule is taken, then ν(c) <= n − 1 can be inferred. Hence we get

J̺K →֒ κ = 〈(q, increase(digi(ν), c)), 0〉 = J̺′K, where ̺
c:=c+1
−−−−→ ̺′.

(b) If the second increment transition rule is taken, then n − 1 < ν(c) < n can be inferred. Then

J̺K →֒ κ = 〈(q, increase(digi(ν), c)), k〉 = J̺′K for k > 0, where ̺
c:=c+1
−−−−→ ̺′.

(c) If the third increment transition rule is taken, then κ is not an encoded confirguration, then by the

fourth rule κ →֒ κ′, ν(c) > n can be inferred. Then we have J̺K →֒∗ κ′ = 〈(q, increase(digi(ν), c)), k〉 = J̺′K

for k > 2, where ̺
c:=c+1
−−−−→ ̺′.

(7) Decrement In order to get an encoded configuration, we only have to discuss with four cases:

(a) If the 1-3 decrement transition rules are taken sequentially, ν(c) > n + 1 can be inferred. Then

J̺K = 〈(q, digi(ν)), k〉 →֒∗ κ = 〈(q, digi(ν)), k− 2〉 = J̺′K for k > 2, where ̺
c:=c−1
−−−−→ ̺′. since ν(c) > n+1,

we have digi(ν) = digi(ν[ν(c)← ν(c) − 1]).

(b) If the 1,2,4 decrement transition rules are taken sequentially, ν(c) = n + 1 can be inferred. Then

J̺K = 〈(q, digi(ν)), 2〉 →֒∗ κ = 〈(q, decrease(digi(ν), c, 1)), 0〉 = J̺′K, where ν′(c) = n and ̺
c:=c−1
−−−−→ ̺′ =

(q, ν′).

(c) If the 1,5 decrement transition rules are taken, n < ν(c) < n + 1 can be inferred. Then J̺K =

〈(q, digi(ν)), 1〉 →֒∗ κ = 〈(q, decrease(digi(ν), c, 2)), 0〉 = J̺′K, where n− 1 < ν′(c) < n and ̺
c:=c−1
−−−−→ ̺′ =

(q, ν′).

(d) If the last decrement transition rule is taken, 1 <= ν(c) <= n can be inferred. Then J̺K =

〈(q, digi(ν)), 0〉 →֒ κ = 〈(q, decrease(digi(ν), c, 2)), 0〉 = J̺′K, where ̺
c:=c−1
−−−−→ ̺′ = (q, ν′).

Induction step. We assume J̺K →֒∗ κ′ →֒ κ. Proceed with two different cases:

(1) κ′ is an encoded configuration, and we have J̺K →֒∗ κ′ = J̺′K by induction hypothesis. The

remaining proof is similar to the base step.

(2) κ′ is not an encoded configuration. The the rule is one of the first second and the fourth rules

of assignmentc, the third rule of increment, and the first and second rules of the decrement. A proof

for the fourth assignmentc rule is given here. The other cases are similar. We assume κ′ = 〈(p′, Ȳ ), k〉

is obtained by applying the fourth assignment rule, then by applying the last assignment rule, we have

κ′ →֒ κ = 〈(q, digi(ν′)), k〉 = J̺′K = J(q, ν′)K, where ∃ν ∈ [Ȳ ] such that ν′ = ν[c ← d] for d ∈ r2n+1.

Finally, put together we have ̺→∗ ̺′.

With Lemma 1, we have the following main results.

Theorem 1. The reachability problem of a UTA1df is decidable.

5.3 Complexity discussion

Similar to TAs, the complexity of the algorithm for checking the reachability of UTA1sdf is exponential

in the number of clocks and the length of the constants in the timing constraints. This blow-up in

complexity is unavoidable. Since UTA1sdf is a superclass of TAs, which is Pspace lower bound [1].

The reachability of OCAs is in Nlogspace, if we bounds the value that added to the counter as

±1 [15]. Let now A be a UTA1 and D be a set of digiwords. As explained, the reachability of A can be

checked by the reachability problem of digiword OCAs C. If we apply the algorithm recalled above and if

we want to compute its complexity, we have to compute the space needed to encode a state of C. Such a

state is a pair (q, Ȳ ) where q is a control location of A and Ȳ ∈ D a digiword. For encoding a digiword,

it is sufficient to store a word with each of elements a pair, and with the length of the number of clocks,

|X(A)|. Therefore, a control state of C can be encoded in polynomial space and reachability of UTA1s is

in Pspace, and hence the Pspace-completeness.

6 Related work

Timed automata(TAs) [1] was proposed by Alur and Dill, after which lots of researchers had devoted

to extensions of TAs. One of the extension that allowed to compare a constant with the sum of two
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clocks, had also been investigated in [1]. This leaded to an undecidable class of automata. Periodic clock

constraints defined in [21] can express properties like “the value of a clock is of the form 0.5 + 3n where

n is some integer” or “the value of a clock is even”.

Controlled real-time automata was proposed in [22]. It is a parameterized family of TAs with some extra

features like variable clock velocities, clock stopping and periodic tests. Controlled real-time automata is

still decidable thanks to carefully chosen restrictions.

Timed Counter Systems [23], was proposed by introducing counters into TAs. The reachability problem

was generally undecidable, while three subclasses were deidable: timed VASS, bounded timed counter

systems, and reversal-bounded timed counter systems. Priced timed automata [24] or weighted timed

automata [25] extend timed automata with costs on both edges and locations. These costs increase while

time elapses, but are never tested in one automaton. An interesting problem is then to compute the

optimal cost for reaching a given state, which is proven decidable.

Updatable timed automata (UTAs) [2–4] failed remain some important theoretical properties of clas-

sical TAs. For instance, TAs with diagonal constraints are not more expressive, yet exponentially more

concise than diagonal-free TAs [1,26]. Howver, as mentioned in [4], and in this paper, diagonal constraints

affected expressiveness of UTAs quite a lot. In suspension automata [16], only bounded substraction clock

updates were allowed. Such restriction guaranteed the decidability on both the reachability problem and

the language inclusion problem. Integer reset TAs [27, 28] was a subclass of classical TAs since it can

reset a clock only when it has integer value. Integer reset TAs were less expressive than classical TAs. It

was decidable to check whether a timed regular language contains an integer reset timed regular language

and integer reset TAs are closed under complementation.

An extension of TAs with recursive structure was recursive timed automata(RTAs) [29]. Clocks were

divided by the mechanism of “pass-by-value”. The reachability was proved to be decidable, when the

condition of “glitch-freeness”, that is all clocks of components were uniformly either by “pass-by-reference”

or by “pass-by-value”. Nested timed automata (NeTAs) [11,20,30] extended TAs with recursive structure

in a different way. It allowed the current running clocks elapse simultaneously with clocks of some TAs

in the stack during time passage. Those clocks of some TAs in the stack were called local clocks, while

clocks of other TAs in the stack kept unaltered during time passage were called frozen clocks. It was

shown that the reachability of NeTAs with a singleton global clock that can be observed by all TAs and

both two types of clocks was decidable, while the reachability of NeTAs with two or more global clocks

was proved to be undecidable [11].

7 Conclusion

The reachability of UTA1s, UTAs with one updatable clock, is investigated in this paper. Setting the

number of updatable clocks to one, we shows a finer frontier between the UTA group: the reachability

of general UTA1s is undecidable, while that of UTA1s with diagonal-constraints are decidable. The

undecidability result is given by encoding Minsky machine to a general UTA1, whose the technique

combines digital encoding and N-wrapping technique together. The decidability is proved by encoding

the reachability problem of UTA1sdf to that of OCAs with the notion of digiword. The essential idea is

to utilize a counter to record the time interval, which roughly measures how much the value of updatable

clock exceeds the maximum integer.
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