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Abstract In this paper, Grain-like cascade feedback shift registers (FSRs) are regarded as two Boolean

networks (BNs), and the semi-tensor product (STP) of the matrices is used to convert the Grain-like cascade

FSRs into an equivalent linear equation. Based on the STP, a novel method is proposed herein to investigate

the nonsingularity of Grain-like cascade FSRs. First, we investigate the property of the state transition matrix

of Grain-like cascade FSRs. We then propose their sufficient and necessary nonsingularity condition. Next,

we regard the Grain-like cascade FSRs as Boolean control networks (BCNs) and further provide a sufficient

condition of their nonsingularity. Finally, two examples are provided to illustrate the results obtained in this

paper.
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1 Introduction

Pseudo-random sequences as a signal form with good correlation properties have been widely used for

many applications, such as secure communication, delay measurements and spread spectrum communi-

cation generators. A linear feedback shift register (LFSR) is one of the most popular configurations for

generating pseudo-random sequences [1–3], where its current state is determined through a linear function

with respect to its previous states. The output sequences of LFSR possess good cryptographic properties,

and hence many stream cipher algorithms are composed of an LFSR or nonlinear feedback shift register

(NLFSR). In an NLFSR, its feedback function is nonlinear. Li et al. [4] investigated certain properties

about LFSR. The advantages of an LFSR are its fast speed, easy and simple implementation in hardware

and software, and it’s ability to generate random sequences with the same statistical distribution of 0’s

and 1’s [2]. Nevertheless, An LFSR is not safe to apply in a stream cipher. Inspecting 2n consecutive

bits of the output sequence can allow the structure of a n-bit LFSR to be determined [5].

To solve this problem, NLFSR was proposed in [2], the feedback functions of which are nonlinear

Boolean functions. Owing to the complicated structures of NLFSR, its output sequences are extremely

difficult to deduce through a cryptanalytic method, such as a correlation attack [6]. Many different

methods have been proposed for the design of an NLFSR-based stream ciphers [7–10].
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Owing to the linearity between the output signal of an LFSR, many attack methods based on the

structure of an LFSR have been developed, including fast correlation attacks [6] or an algebraic attack [11].

These attack methods have encouraged the discovery of a new stream cipher structure. The Trivium

algorithm [12], Grain algorithm [13], and Mickey algorithm [14] are the final hardware-oriented stream

ciphers of the eSTREAM project. These three algorithms are all based on NLFSR. At present, the

NLFSR-based algorithm design has gradually developed into an important method of stream cipher

design.

The Grain-like algorithm [15] and Trivium-like algorithm are typical algorithms of a stream cipher

based on NLFSR. Grain-like cascade FSRs contain an LFSR and an NLFSR, where the output of the

LFSR is regarded as the input of the NLFSR which proposed a typically method to design the structure

of stream cipher. Berbain et al. [16] studied algebraic and correlation attacks against Grain-like cascade

FSRs. Hu et al. [17] investigated the period of Grain-like and Trivium-like cascade FSRs.

Recently, a new mathematical tool for a matrix calculation called semi-tensor product (STP) of matrices

was proposed by Cheng and his colleagues [18]. This STP method has been widely used to study

Boolean networks (BNs) [19, 20]. Lu et al. [21] studied the controllability of delayed Boolean control

networks (BCNs) based on STP method. The STP method was used to analyze the controllability of a

BCN with impulsive effects and forbidden states [22]. Using STP, the pinning controllability problem,

synchronization problem, stabilization problem, observability problem, and feedback control and output

tracking control problems of BCNs have been investigated [23–31]. Based on STP method, the stability

of a BN was studied [32]. The controllability problem of a BN was investigated [33,34]. Li and Wang [33]

developed a novel constrained controllability matrix approach, which is very interesting and efficient, to

study the controllability of Boolean networks with constraints. In [35], the STP method was used to study

problems of game theory. In [36], the STP method was applied to the robust control of BCNs. The STP

tool has also been successfully applied to the Fibonacci NLFSR [37–39]. The STP method was applied to

global robust stability and stabilization of BN in [40]. Up to now, some interesting results about Fibonacci

NLFSR have been obtained by using STP. In [41], the STP method was used on the sampled-data state

feedback stabilization of BCNs. Zhong et al. [34] investigated the controllability and synchronization of

identical-hierarchy mixed-valued logical control networks. Motivated by the above discussions, the STP

method was applied in the present study with regard to the nonsingularity of Grain-like cascade FSRs.

The nonsingularity of an NLFSR is the basic requirement for the design of a stream cipher. If an

NLFSR is singular, then there must exist two different states producing the same subsequence state, and

hence, equivalent secret keys probably exist. If the NFSR is singular, it might encounter a differential

attack [42]. Hence, when we design a stream cipher algorithm, to avoid potential security problems, we

should ensure the nonsingularity of an NLFSR. The FSRs are said to be nonsingular if its state transition

graph contains only cycles [43]. In [43, 44], the nonsingularity of Grain-like cascade FSRs is investigated

by an algebraic method, but the author only gave some certain conditions to determine whether FSR

are nonsingular. It is necessary to investigate how to find a control input such that an NLFSR with

input is nonsingular. In this paper, we regard Grain-like cascade FSRs as BNs. We then investigate

the properties of the state transition matrix of Grain-like cascade FSRs by using the STP of matrices.

We found that the nonsingularity of Grain-like cascade FSRs is equivalent with the nonsingularity of the

state transition matrix. We thus regard Grain-like cascade FSRs as an NLFSR with an input. We thus

propose an algorithm to find an input sequence which can make the NLFSR with an input be nonsingular.

Finally, the sufficient and necessary condition to judge the nonsingularity of Grain-like cascade FSRs is

provided. The contributions of this paper is listed in the following.

(1) A sufficient and neccessary condition is given to judge the nonsingularity of Grain-like cascade

FSRs.

(2) The Grain-like cascade FSRs is generalized into BCN, then propose an algorithm to find an input

sequence such that the BCN is nonsingular.

(3) Some useful properties of state transition matrix of Grain-like cascade FSRs are given.

The remainder of this paper is organized as follows. Section 2 provides some preliminaries on STP and

Grain-like cascade FSRs. In Section 3, Grain-like cascade FSRs are firstly turned into a linear equation.
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The properties of the state transition matrix of the linear equation are investigated. Finally, a sufficient

and necessary condition is proposed for the nonsingularity. In Section 4, two examples are given to

illustrate our theoretical results. Finally, our conclusion is given.

2 Preliminaries

In this section, some knowledge regarding an STP is first reviewed for reference. We then describe

obtained the algebraic expressions of Grain-like cascade FSRs. Using STP, multi-linear form of Grain-

like cascade FSRs are yield. We provide some of the notations used in this paper.

• D = {0, 1}.

• In : identity matrix of dimension n.

• δi2n : i-th column of identity matrix In.

• ∆2n = {δi2n |i = 1, 2, 3, . . . , 2n}.

• Ln×m : set of n × m matrices, whose columns belong to ∆n. For the matrix L ∈ (L)n×m, where

L = [δi1n δi2n · · · δimn ], we write L = δ2n [i1 i2 · · · im] for simplicity.

• coli(L) : i-th column of matrix L.

• col(L) : set of all columns of matrix L.

• R : set of all real number.

• |S| : base of set S.

• N : the set of all integers.

• ⊕ : modulo 2 addition.

• GF(q) : Galois field of q elements.

• mod : modulo 2 division.

• A\B : the set of {x|x ∈ A, x /∈ B}.

2.1 Semi-tensor product of matrices

In this subsection, we provide the definition of the STP of the matrices and some STP properties.

Definition 1 ([18]). Let A ∈ R
n×m, B ∈ R

p×q. The semi-tensor product of A and B is defined as

A⋉B = (A⊗ I l
m
)(B ⊗ I l

p
), (1)

where l is the least common multiple of m and p.

Clearly, if m = p in Definition 1, then the STP of A and B is reduced to the conventional matrix

product AB.

We identify ∆2 ∼ D, i.e. (δ12 ∼ 1, δ22 ∼ 0), and δ12(δ
2
2) is called the vector form of the logical value 1(0).

Lemma 1 ([18]). Any Boolean function f(x1, x2, . . . , xn) with variables x1, x2, . . . , xn ∈ ∆2 can be

expressed as a multi-linear form:

f(x1, x2, . . . , xn) = Fx1 ⋉ x2 ⋉ · · ·⋉ xn, (2)

where F ∈ L2×2n is called the structure matrix of f , and F can be uniquely expressed as

F =

[

s1 s2 · · · s2n

1− s1 1− s2 · · · 1− s2n

]

(3)

with [s1, s2, . . . , s2n ] being the truth table of f , arranged in reverse alphabetical order.

In the following, we omit the ⋉ symbol for simplicity.
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f1(s1(t),s2(t),...,sn(t))

h(s(t), B(t))

s2(t) s1(t)sn(t)

f2(b1(t),b2(t),...,bm(t))

b2(t) b1(t)bm(t)

Figure 1 Grain-like cascade FSRs.

2.2 Grain-like cascade feedback shift register

In Grain-like cascade FSRs, one LFSR is used to control another NLFSR (see Figure 1). In this paper,

we only investigate the Grain-like cascade FSRs on GF(2). The results can be generalized to the case for

GF(q).

Suppose that the content of the LFSR in Figure 1 contains n bits denoted by s1(t), s2(t), . . . , sn(t) at

time t, and that the content of the NLFSR in Figure 1 contains m bits denoted by b1(t), b2(t), . . . , bm(t)

at time t. The feedback function of the LFSR is f1(s1(t), s2(t), . . . , sn(t)), and the feedback func-

tion of NLFSR is f2(b1(t), b2(t), . . . , bm(t)). The state of the LFSR at time t is denoted by s(t) =

(s1(t), s2(t), . . . , sn(t)), and the state of the NLFSR at time t is denoted by b(t) = (b1(t), b2(t), . . . , bm(t)).

Then (s(t), b(t)) is the state of Grain-like cascade FSRs at time t. The update process from (s(t), b(t))

to (s(t+ 1), b(t+ 1)) is called state transition.

Here are two types of status transition modes. If the box bordered by dashed line in Figure 1 were to

be removed, then the status transition mode would be as follows:











































































s1(t+ 1) = s2(t),

s2(t+ 1) = s3(t),

...

sn(t+ 1) = f1(s1(t), s2(t), . . . , sn(t)),

b1(t+ 1) = b2(t),

b2(t+ 1) = b3(t),

...

bm(t+ 1) = f2(b1(t), b2(t), . . . , bm(t)) ⊕ s1(t),

(4)

where si(t), bi(t) ∈ D, and f1(s1(t), s2(t), . . . , sn(t)) is a linear logic function, and f2(b1(t), b2(t), . . . , bm(t))

is a nonlinear logic function.

Remark 1. The linear logic function is the function only contains operations (⊕,&). The nonlinear

function is not linear function [45].

Using Lemma 1, we obtain the multi-linear form of (4) as follows:

{

s(t+ 1) = L1s(t),

b(t+ 1) = L2s1(t)b(t),
(5)

where s(t) = ⋉
n
i=1si(t), and b(t) = ⋉

m
j=1bj(t), L1 ∈ L2×2n , and L2 ∈ L2×2m+1 . We call L1 and L2 state

transition matrices.

If the box bordered by dashed line in Figure 1 exists, then the status update mode is different from (4).

Here, the states of the last registers are updated through different feedback functions which are shown
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as follows:

sn(t+ 1) = f1(s1(t), s2(t), . . . , sn(t))⊕H(s(t), b(t)),

bm(t+ 1) = f2(b1(t), b2(t), . . . , bm(t))⊕ s1(t)⊕H(s(t), b(t)),

where H(s(t), b(t)) are logical functions with respect to s(t) and b(t). Then, using STP, we obtain the

following algebraic form:

{

s(t+ 1) = L̃1s(t)b(t),

b(t+ 1) = L̃2s(t)b(t),
(6)

where L̃1 ∈ L2n×2n , L̃2 ∈ L2m×2m+1 .

Next, we give the definition of nonsingularity of Grain-like cascade connection FSRs.

Definition 2 ([43]). A NLFSR is said to be nonsingular if its state transition diagram contains only

cycles.

From Definition 2, we have following definition for FSRs.

Definition 3. FSRs are called nonsingular if their state transition is a bijection. In the contrast, if the

state transition of FSRs is not a bijection, then they are singular.

3 Main results

In this section, some interesting properties of Grain-like cascade FSRs are investigated. We also provide

some sufficient and necessary conditions about nonsingularity.

Lemma 2 ([44]). Supposing that an LFSR is nonsingular in the Grain-like cascade FSRs (4), then the

following conditions are equivalent:

• The Gain-like cascade FSRs (4) are nonsingular;

• The NLFSR is nonsingular in Grain-like cascade FSRs (4);

• For any (b2(t), b3(t), . . . , bm(t)), the function f2(b1(t), b2(t), . . . , bm(t)) is a bijection concerning the

variable b1(t).

From Lemma 2, if LFSR in Grain-like cascade FSRs (4) is nonsingular, the nonsingular problem of

Grain-like cascade FSRs (4) can be regarded as the NLFSR in Grain-like cascade FSRs (4) with the

input s1(t). In the following analysis, we use u(t) to replace s1(t). Hence, the nonsingular problem of

Grain-like cascade FSRs (4) is reduced to a nonsingular problem of the following system:

s(t+ 1) = Fu(t)s(t), (7)

where F = L2 in (5), and u(t) ∈ D. We then have following result.

Remark 2. For general investigation, we reduce the Grain-like cascade FSRs to be (7). The reason

why we use matrix F instead of matrix L2 is that u(t) is not decided by equation L1s(t) in (6).

Definition 4 ([43]). An NLFSR is said to be nonsingular if its state transition diagram contains only

cycles.

From Definition 4, we have the definition of nonsingularity for system (7).

Definition 5. System (7) is said nonsingular if the state transition graph of system (7) has a sub-graph

that contains all states, and for this sub-graph the in-degree and out-degree of every point are both 1,

and the subgraph only contains cycle.

From Definition 5, we get Theorem 1.

Theorem 1. System (7) is said to be nonsingular if F = [F1, F2], with F1 ∈ L2m×2m and matrices F1

and F2 are both nonsingular.
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Proof. We want to prove that system (7) is nonsingular. This means that we need to prove that there

exists a sub-graph in the state transition graph of system (7), and the sub-graph contains all states of

system (7), but the in-degree and the out-degree of every point in the sub-graph are 1, and this sub-graph

contains only cycle.

Hence, we need to find a control sequence u(0), u(1), . . . such that the state transition graph based on

this control sequence only contains the cycle.

Apparently, if the control is always be 0, and hence system (7) becomes F2x(t), then the state transition

graph only contains cycle due to the nonsingularity of matrix F2. If the control is always 1, and hence

system (7) becomes F1x(t), then the state transition graph only contains cycle due to nonsingularity of

matrix F1. Hence, we prove that if F1, F2 are nonsingular, then system (7) is nonsingular.

Through Theorem 1, we know that if the matrices F1, F2 are nonsingular, we can always find a control

sequence u(0), u(1), . . . such that there is no cycle in the state transition graph of system (7). This means

the system is nonsingular based on Definition 5.

Remark 3. From above analysis, we can know that the nonsingularity of NLFSR is equivalent to the

nonsingularity of the matrix.

Next, we provide a property about the structure matrix of the function g(b1(t), b2(t), . . . , bm(t), s1(t)) =

f2(b1(t), b2(t), . . . , bm(t))⊕s1(t). Suppose that the structure matrix of the function g(b1(t), b2(t), . . . , bm(t),

s1(t)) = Mgs1(t)b(t) is Mg ∈ L2×2m+1 , and the structure matrix of the function f2(b1(t), b2(t), . . . , bm(t))

= Mfb(t) is Mf ∈ L2×2m with b(t) = ⋉
m
i=1bi(t) ∈ ∆2m .

Property 1. The structure matrix Mg has the following property:

Mg = [Mf , δ2[2 1]Mf ].

Proof. Using the vector form of states, i.e. 1 ∼ δ12 and 0 ∼ δ22 , by Lemma 1, we have

g(b1(t), b2(t), . . . , bm(t), s1(t)) = Mgs1(t)b(t),

where bi(t) ∈ ∆. Hence, Mg can be expressed as

Mg = M⊕(I2 ⊗Mf)

= δ2[2 1 1 2]

(

Mf 0

0 Mf

)

= [δ2[2 1]Mf δ2[1 2]Mf ],

where M⊕ is the structural matrix of mod 2 addition. Hence, Mg = [Mf , δ2[2 1]Mf ].

Lemma 3 ( [2]). A binary FSR is nonsingular if and only if its function f(x1, x2, . . . , xn) can be

represented as f(x1, x2, . . . , xn) = x1 ⊕ f0(x2, . . . , xn) where xi ∈ D.

From Theorem 1, Property 1 and Lemma 3, we can easily obtain the following corollary.

Corollary 1. NLFSR in Grain-like cascade FSRs (7) is nonsingular, if system (7) has following property:

F11 = δ2[2 1]F12,

F21 = δ2[2 1]F22,

where F11, F12, F21, F22 ∈ L2m−1×2m−1 are four blocks of matrix F = [F11 F12 F21 F22] .

After the analysis of the matrix F in (7), we now provide a sufficient condition to the singularity of

system (7).

Theorem 2. If in system (7) col(F ) 6= ∆2m , then system (7) is singular.

Proof. By Definition 5, suppose that system (7) is nonsingular, we can then find a subgraph containing

all states, where the in-degree and out-degree of every point are 1, and the subgraph only contains the

cycle. Hence, we can conclude that every point can be reached, which means that col(F ) = ∆2m . Thus

if col(F ) 6= ∆2m , then system (7) is singular.
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Theorem 3. In Grain-like cascade FSRs (5), supposing that coli(L21) = δj2m , the matrix of L2 has

following properties:

• If j%2 = 0, then coli(L22) = δj−1
2m ;

• If j%2 = 1, then coli(L22) = δj+1
2m ,

where L2 = [L21 L22], and L21, L22 ∈ L2m×2m .

Proof. From the definition of the state transition matrix, for a given state (b1, b2, . . . , bm) δi2m , assume

that

L2uδ
i
2m = δj2m = δk1

2m−1δ
k2

2 . (8)

Because the state of the Grain-like cascade FSRs is shifted over time, we can deduce the next state

through shifting. The next state of (b1, b2, . . . , bm) is (b2, . . . , bm, f2(b1, b2, . . . , bm) + u).

2m−1b1 + 2m−2b2 + · · ·+ bm = 2m − i.

Suppose that the structure matrix of the function f2 is

F =

(

s1 s2 · · · s2m

1− s1 1− s2 · · · 1− s2m

)

, (9)

then the next state can be expressed as

(f2(b1, b2, . . . , bm) + u) + · · ·+ 2m−2b3 + 2m−1b2 = (2m − i− b1)2 + (si ⊕ u).

If u = 0, then L2uδ
i
2m = L22δ

i
2m = δj12m , and thus (2m−i−b1)2+(si⊕u) = (2m−i−b1)2+si = 2m−j1.

If u = 1, then L2uδ
i
2m = L21δ

i
2m = δj22m , and thus (2m− i− b1)2+ (si⊕ u) = (2m− i− b1)2+ (si⊕ 1) =

2m − j2.

Hence, there are two possible situations:

• si = 0, j1 = j2 + 1;

• si = 1, j1 = j2 − 1.

si = 0 indicates that δj2m = δk2mδ22n , which is equivalent to j%2 = 0, and si = 0 is equivalent to j%2 = 1.

Hence, we can conclude if j%2 = 0, then coli(L22) = δj−1
2m , whereas if j%2 = 1, then coli(L22) = δj+1

2m .

Hence, the proof is ended.

From Theorem 3, we obtain that |col(L21)| = |col(L22)|, and thus the following corollary can be

obtained.

Corollary 2. In Grain-like cascade FSRs (5), the matrix L21 is nonsingular if and only if L22 is

nonsingular.

Proof. Because L22 is nonsingular, then col(L22) = ∆2n . From Theorem 3, we know that col(L22) =

∆2n . Hence, we have the result.

Lemma 4 ([44]). If the LFSR and NLFSR in Grain-like cascade FSRs (6) are nonsingular, and s1(t)

and b1(t) are irrelevant to the function H(s(t), b(t)), then Grain-like cascade FSRs (6) are nonsingular.

By using STP, the function H(s(t), b(t)) can be expressed as follows:

H(s(t), b(t)) = MHs(t)b(t)

= MHs1(t)s2(t) · · · sn(t)b1(t) · · · bm(t)

= MHs1(t)W[2n−1,2]b1(t)s2(t) · · · sn(t)b2(t) · · · bm(t)

= MH(I2 ⊗W[2n−1,2])s1(t)b1(t)s2(t) · · · sn(t)b2(t) · · · bm(t)

= M̃Hs1(t)b1(t)s2(t) · · · sn(t)b2(t) · · · bm(t)

= M̃Hs1(t)b1(t)s2,...,n(t)b2,...,m(t),

where MH , M̃H ∈ L2×2m+n . Matrix M̃H can be divided into four parts, M̃H = [MH1 MH2 MH3 MH4],

where MHi, i = 1, 2, 3, 4 ∈ L2×2m+n−4 .

Form Lemma 4, we obtain the following corollary.
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Corollary 3. If the LFSR and NLFSR in the Grain-like cascade FSRs (6) are nonsingular, and futher

if MH1 = MH2 = MH3 = MH4, then the Grain-like cascade FSRs (6) are nonsingular.

Proof. Considering the fact that H(s(t), b(t)) = M̃Hs1(t)b1(t)s2(t) · · · sn(t)b2(t) · · · bm(t), and the vari-

ables s1(t) and b1(t) are irrelevant to the function H(s(t), b(t)), then for arbitrary s1(t) and b1(t), if

s2,...,n(t) and b2,...,m(t) are given, s1(t)b1(t) = δi4,

H(s(t), b(t)) = M̃Hδi4s2,...,n(t)b2,...,m(t)

= MHis2,...,n(t)b2,...,m(t).

Because the variables s1(t) and b1(t) are irrelevant to the function H(s(t), b(t)), MH1 = MH2 = MH3 =

MH4.

For a binary FSR with m registers, assume that the structure matrix of the feedback function is

Mf = [M1 M2] ∈ L2×2m . If the binary FSR is nonsingular, then the matrix Mf has the following

property.

Lemma 5 ([46]). A binary FSR is nonsingular if and only if

M1 = δ2[2 1]M2,

where M1 and M2 ∈ L2×2m−1 .

In the following theorem, we investigate the state transition matrix of system (5). By using STP, we

can turn system (5) into the following linear equation:

s(t+ 1)b(t+ 1) = L̃s(t)b(t), (10)

where L̃ ∈ L2m+n×2m+n .

Next, we want to investigate the relationship between the truth tables of f1, f2 in system (5) and

matrix L̃ in system (10). Suppose that the truth table of f1 is [ζ1 ζ2 · · · ζ2m ], and the truth table of f2
is [ξ1 ξ2 · · · ξ2n ]. We then have the following result.

Theorem 4. In (10), we have coli(L̃) = s12
m+n + b12

n + i − (s1 ⊕ ξi) − ζi2
n − 2m+n = δj2m+n , where

s1 = k1 mod 2, b1 = k2 mod 2, δi2m+n = δk1

2 δi2m−1δ
k2

2 δj2n−1 .

Proof. Suppose the state at time t is (s1, . . . , sm, b1, b2, . . . , bn) ∼ δi2m+n , then we know that the next

state is (s2, . . . , sn, f1(s1, . . . , sm), b2, . . . , bn, s1 ⊕ f2(b1, . . . , bn)) ∼ δj2m+n . Hence, we have

s12
m+n−1 + s22

m+n−2 + · · ·+ sm2n + b12
n−1 + · · ·+ bn = 2m+n − i,

s22
m+n−1 + · · ·+ ζi2

n + b22
n−1 + · · ·+ (s1 ⊕ ξi) = 2m+n − j.

Then we have s22
m+n−1 + · · · + sm2n+1 + b22

n−1 + · · · + bn2 = (2m+n − i − s12
m+n−1 − b12

n−1)2.

Hence, we have

(2m+n − i− s12
m+n−1 − b12

n−1)2 + (s1 ⊕ ξi) + ζi2
n = 2m+n − j,

where b1 = k1 mod 2, s1 = k2 mod 2, δi2m+n = δk1

2 δi2m−1δ
k2

2 δj2n−1 . Therefore, we have coli(L̃) =

s12
m+n + b12

n + i− (s1 ⊕ ξi)− ζi2
n − 2m+n = δj2m+n .

In the above theorem, we obtain the property of the state matrix L̃ of Grain-like cascade FSRs. Next,

we will provide a sufficient and necessary condition for its nonsingularity.

Theorem 5. System (10) is nonsingular if and only if state transition matrix L̃ is nonsingular.

Proof. (necessity). If L̃ is nonsingular, for the given states x1, x2, if L̃x1 = L̃x2, then x1 = x2. Hence,

system (10) is nonsingular.

(sufficiency). For given states x1, x2, their next states are assumed to be y1 and y2. Suppose that

y1 6= y2, by the definition of nonsingular, we know that x1 6= x2. Hence, matrix L̃ is nonsingular.

However if F1, F2 are not singular in Theorem 1, is there any probability such that there exists a

subgraph described in Definition 5 which contains only the cycle? In the next theorem, we give the

answer.
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Theorem 6. If the feedback function of system (7) is given as xn(t + 1) = u(t) + f(x1(t), . . . , xn(t)),

where u(t) ∈ D, then system (7) is nonsingular.

Proof. Because the feedback function is xn(t + 1) = u(t) + f(x1(t), . . . , xn(t)), we can conclude that

matrix F has the following properties:

• F has the property in Theorem 3,

• F = [F1, F2], where F1, F2 ∈ L2m×2m , |col(F1)| = |col(F2)| > 2m−1 − 1.

An arbitrary state in system (7) has at most two previous status, and thus we have |col(F1)| =

|col(F2)| > 2m−1 − 1.

Consider the worst situation such that |col(F1)| = |col(F2)| = 2m−1, then it must be true that in the

matrix Fi, i = 1, 2 for arbitrary δj2m ∈ col(Fi), there exist j1 6= j2, such that colj1(Fi) = colj2(Fi) = δi2m .

Because F has the property of Theorem 3, then ∆2m \ col(F1) ⊆ col(F2), and col(F1) ∪ col(F2) = ∆2m .

Hence, we obtain that |col(F )| = 2m, and we can find a subgraph with 2m points containing only cycles,

and the in-degree and out-degree of every point are 1. Hence, system (7) is nonsingular.

Based on Theorem 6, we develope an algorithm to find the subgraph mentioned in Theorem 6.

Algorithm 1

1: Require: Set Index1 = ∅, set Index2 = ∅, S = {1, 2, . . . , 2m}.

2: for x ∈ col(F1)

3: If coli(F1) = x then

4: Index1 ⇐ Index1 ∪ i;

5: else

6: Index2 ⇐ Index2 ∪ i.

7: end if

8: end for

Remark: For δi2m , if i ∈ Index1, then the next state of δi2m is Fδ12δ
i
2m = F1δ

i
2m , which means that the

control input is δ12 for δi2m . If i ∈ Index2, then the next state of δi2m is Fδ22δ
i
2m = F2δ

i
2m , which means

that the control input is δ22 for δi2m .

Hence, through the above four steps, we find a control input for every state in ∆2m , such that the

subgraph in Theorem 6 can be found.

4 Examples

In this section, we provide two examples to illustrate the effectiveness of the algorithm and our theoretical

results obtained through this paper.

Example 1. Consider the following Grain-like cascade FSRs:

b1(t+ 1) = b2(t),

b2(t+ 1) = b1(t)⊕ b2(t),

s1(t+ 1) = s2(t),

s2(t+ 1) = ¬s1(t)⊕ b1(t),

where si(t), bi(t) ∈ D, i = 1, 2.

By using STP, we can turn system (11) into the following:

b(t+ 1) = L1b(t), (11)

s(t+ 1) = L2b1(t)s(t), (12)

where L1 = δ4[2 3 1 4], L2 = δ4[1 3 2 4 2 4 1 3]. The state transition graph of LFSR and NLFSR are

shown in Figures 2 and 3 respectively.

We know that L1 is nonsingular, and thus the LFSR is nonsingular. From Theorem 1, L2 = [L21 L22],

and matrices L21, L22 are nonsingular. In addition, L21 and L22 satisfy Theorem 3.
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Figure 2 Transition graph of LFSR in Example 1. Figure 3 Transition graph of NLFSR in Example 1.

Figure 4 Transition graph of cascade NLFSR in Example 1.

u=0

u=0

u=0 u=0

u=1

u=1

u=1

u=1

Figure 5 (Color online) Subgraph of NLFSR in Example 2.

Multiplying equations in (11), we obtain the following:

b(t+ 1)s(t+ 1) = L̃b(t)s(t), (13)

where L̃ = [5 7 6 8 10 12 9 11 1 3 2 4 14 16 13 15], it is clear that matrix L̃ is nonsingular, which is

consistent with Theorem 4. The state transition graph of system (11) is shown in Figure 4.

Example 2. Consider NLFSR with an input

x1(t+ 1) = x2(t), (14)

x2(t+ 1) = x3(t), (15)

x3(t+ 1) = ¬x3(t)⊕ u(t), (16)

where xi(t) ∈ D, i = 1, 2, 3, u(t) ∈ D.

By using STP, we obtain the following equation:

x(t+ 1) = Lu(t)x(t), (17)

where L = [1 4 5 8 1 4 5 8 2 3 6 7 2 3 6 7]. By using Algorithm 1, let Index1 = {1, 2, 3, 4},

Index2 = {5, 6, 7, 8}, we yield the input of states δ18 , δ28 , δ38 , δ48 is δ12 , the input of states δ58 , δ68 , δ78 , δ88
is δ22 . We find a subgraph satisfying the conditions in Theorem 6 as shown in Figure 5.
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5 Conclusion

In this paper, We investigated the nonsingularity of Grain-like cascade FSRs using STP method and the

nonsingularity of BCN. First, we treated Grain-like cascade FSRs as BN. Then, Grain-like cascade FSRs

were converted into a linear form. Based on the linear form of Grain-like cascade FSRs, we investigated

the properties of the state transition graph of Grain-like cascade FSRs. We then provided a sufficient

and necessary condition for the nonsingularity of Grain-like cascade FSRs. At last, if the first LFSR is

nonsingular, we treated Grain-like cascade FSRs as BCNs, and generalize the Grain-like cascade FSRs into

a general form. An algorithm was provided to find a subgraph satisfying the conditions in Definition 5.

Finally, two examples were given to illustrate our theoretical results.
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