
SCIENCE CHINA
Information Sciences

December 2017, Vol. 60 126102:1–126102:3

doi: 10.1007/s11432-017-9226-8

c© Science China Press and Springer-Verlag Berlin Heidelberg 2017 info.scichina.com link.springer.com

. PERSPECTIVE .

Towards dataflow based graph processing

Hai JIN*, Pengcheng YAO & Xiaofei LIAO

Service Computing Technology and System Lab, Cluster and Grid Computing Lab, Big Data Technology and System Lab

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Received May 18, 2017; accepted August 21, 2017; published online November 8, 2017

Citation Jin H, Yao P C, Liao X F, et al. Towards dataflow based graph processing. Sci China Inf Sci, 2017,

60(12): 126102, doi: 10.1007/s11432-017-9226-8

Modern graph processing is widely used for solv-
ing a vast variety of real-world problems, e.g., web
sites ranking [1] and community detection [2]. To
better adapt and express the procedure of graph
iteration, a wide spectrum of research is proposed
with highly concurrent programming models and
smart strategies of graph partition [1, 3].

While existing researches greatly improve the
performance of memory subsystem [4], they are
still subject to the underlying modern processor.
We divide the process of graph applications into
three pieces of slots, which indicates hardware re-
sources needed to process micro-ops (uops), and
present the result in Figure 1(a). Although previ-
ous work has made great progress to significantly
improve the performance of graph applications by
optimizing 41% stalls resulting from the memory
subsystem [5,6], a vast body of inefficiencies (35%
slots wasted) inside the underlying processor is still
unknown and seldom studied in existing work.

In this article, we conduct an in-depth micro-
architectural study on a variety of graph algo-
rithms using four mainstream graph processing
frameworks (GraphChi, Ligra, Galois, GAPBS),
to study potential inefficiencies inside the underly-
ing processor. In addition, four non-graph bench-
marks (433.milc, 445.gobmk, 454.h264ref, 471.om-
netpp) from SPEC CPU2006 are selected to iden-
tify the inherent characteristics unique to the
graph processing. All experiments are conducted

on an Intel Ivy-bridge server with an E5-2680 v2
processor and 64 GB of DDR3-1600 memory.

Inefficient instruction-level-parallelism. Mod-
ern processors run in an Out-of-Order (OOO)
manner to simultaneously execute multiple inde-
pendent instructions. However, our experimental
results in Figure 1(a) show that only about 23%
pipeline slots are eventually retired in graph pro-
cessing. It means only one fourth of the pipeline’s
abilities are used, resulting in an extremely low
instructions per cycle (IPC) of graph processing.

To get a deeper understanding on the inefficien-
cies inside the core, we further evaluate ILP of
graph processing. As shown in Figure 1(b), about
62% execution cycles exhibit low ILP (0 or 1 in a 4-
wide core) in graph processing. Specifically, about
41% execution cycles execute 0 uop in graph pro-
cessing, which means that the core is just idle and
waits for the end of former uops in these cycles. In
contrast, this value in SPEC is about 13%, which
is significantly smaller.

The low ILP is attributed to the heavy depen-
dency in graph processing, where the execution of
an instruction is usually related to the results of
previous instructions. Moreover, when adding an
active vertex to the active list, the operations must
be serialized to avoid data race, which brings in
extra dependency. Another reason of low ILP is
the serial semantic of instruction stream. For in-
stance, if a load instruction causes an L3 miss, the

*Corresponding author (email: hjin@hust.edu.cn)

The authors declare that they have no conflict of interest.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-017-9226-8&domain=pdf&date_stamp=2017-11-8
https://doi.org/10.1007/s11432-017-9226-8
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-017-9226-8

Jin H, et al. Sci China Inf Sci December 2017 Vol. 60 126102:2
B

F
S

_
L

ig
ra

_
L

J
B

F
S

_
L

ig
ra

_
T

w
B

F
S

_
L

ig
ra

_
R

m
at

B
F

S
_

L
ig

ra
_

R
o

ad
P

R
_

L
ig

ra
_

L
J

P
R

_
L

ig
ra

_
T

w
P

R
_

L
ig

ra
_

R
m

at
P

R
_

L
ig

ra
_

R
o

ad
C

C
_

L
ig

ra
_

L
J

C
C

_
L

ig
ra

_
T

w
C

C
_

L
ig

ra
_

R
m

at
C

C
_

L
ig

ra
_

R
o

ad
T

C
_

L
ig

ra
_

L
J

T
C

_
L

ig
ra

_
T

w
T

C
_

L
ig

ra
_

R
m

at
T

C
_

L
ig

ra
_

R
o

ad

B
F

S
_

G
A

P
B

S
_

L
J

B
F

S
_

G
A

P
B

S
_

T
w

B
F

S
_

G
A

P
B

S
_

R
m

at
B

F
S

_
G

A
P

B
S

_
R

o
ad

P
R

_
G

A
P

B
S

_
L

J
P

R
_

G
A

P
B

S
_

T
w

P
R

_
G

A
P

B
S

_
R

m
at

P
R

_
G

A
P

B
S

_
R

o
ad

C
C

_
G

A
P

B
S

_
L

J
C

C
_

G
A

P
B

S
_

T
w

C
C

_
G

A
P

B
S

_
R

m
at

C
C

_
G

A
P

B
S

_
R

o
ad

T
C

_
G

A
P

B
S

_
L

J
T

C
_

G
A

P
B

S
_

T
w

T
C

_
G

A
P

B
S

_
R

m
at

T
C

_
G

A
P

B
S

_
R

o
ad

B

F
S

_
G

al
o

is
_

L
J

B
F

S
_

G
al

o
is

_
T

w
B

F
S

_
G

al
o

is
_

R
m

at
B

F
S

_
G

al
o

is
_

R
o

ad
P

R
_

G
al

o
is

_
L

J
P

R
_

G
al

o
is

_
T

w
P

R
_

G
al

o
is

_
R

m
at

P
R

_
G

al
o

is
_

R
o

ad
C

C
_

G
al

o
is

_
L

J
C

C
_

G
al

o
is

_
T

w
C

C
_

G
al

o
is

_
R

m
at

C
C

_
G

al
o

is
_

R
o

ad

B
F

S
_

G
ra

p
h

C
h

i_
L

J
B

F
S

_
G

ra
p

h
C

h
i_

R
m

at
B

F
S

_
G

ra
p

h
C

h
i_

R
o

ad
P

R
_

G
ra

p
h

C
h

i_
L

J
P

R
_

G
ra

p
h

C
h

i_
R

m
at

P
R

_
G

ra
p

h
C

h
i_

R
o

ad
C

C
_

G
ra

p
h

C
h

i_
L

J
C

C
_

G
ra

p
h

C
h

i_
R

m
at

C
C

_
G

ra
p

h
C

h
i_

R
o

ad
T

C
_

G
ra

p
h

C
h

i_
L

J
T

C
_

G
ra

p
h

C
h

i_
R

m
at

T
C

_
G

ra
p

h
C

h
i_

R
o

ad

4
3

3
.m

il
c

4
4

5
.g

o
b

m
k

4
6

4
.h

2
6

4
re

f
4

7
1

.o
m

n
et

p
p

0

20

40

60

80

C
y

cl
es

 t
h

at
 e

x
h

ib
it

 l
o

w
 I

L
P

 (
%

)

 ILP=1 ILP=0

B
F

S
_

L
ig

ra
_

L
J

B
F

S
_

L
ig

ra
_

T
w

B
F

S
_

L
ig

ra
_

R
m

at
B

F
S

_
L

ig
ra

_
R

o
ad

P
R

_
L

ig
ra

_
L

J
P

R
_

L
ig

ra
_

T
w

P
R

_
L

ig
ra

_
R

m
at

P
R

_
L

ig
ra

_
R

o
ad

C
C

_
L

ig
ra

_
L

J
C

C
_

L
ig

ra
_

T
w

C
C

_
L

ig
ra

_
R

m
at

C
C

_
L

ig
ra

_
R

o
ad

T
C

_
L

ig
ra

_
L

J
T

C
_

L
ig

ra
_

T
w

T
C

_
L

ig
ra

_
R

m
at

T
C

_
L

ig
ra

_
R

o
ad

B

F
S

_
G

A
P

B
S

_
L

J
B

F
S

_
G

A
P

B
S

_
T

w
B

F
S

_
G

A
P

B
S

_
R

m
at

B
F

S
_

G
A

P
B

S
_

R
o

ad
P

R
_

G
A

P
B

S
_

L
J

P
R

_
G

A
P

B
S

_
T

w
P

R
_

G
A

P
B

S
_

R
m

at
P

R
_

G
A

P
B

S
_

R
o

ad
C

C
_

G
A

P
B

S
_

L
J

C
C

_
G

A
P

B
S

_
T

w
C

C
_

G
A

P
B

S
_

R
m

at
C

C
_

G
A

P
B

S
_

R
o

ad
T

C
_

G
A

P
B

S
_

L
J

T
C

_
G

A
P

B
S

_
T

w
T

C
_

G
A

P
B

S
_

R
m

at
T

C
_

G
A

P
B

S
_

R
o

ad

B
F

S
_

G
al

o
is

_
L

J
B

F
S

_
G

al
o

is
_

T
w

B
F

S
_

G
al

o
is

_
R

m
at

B
F

S
_

G
al

o
is

_
R

o
ad

P
R

_
G

al
o

is
_

L
J

P
R

_
G

al
o

is
_

T
w

P
R

_
G

al
o

is
_

R
m

at
P

R
_

G
al

o
is

_
R

o
ad

C
C

_
G

al
o

is
_

L
J

C
C

_
G

al
o

is
_

T
w

C
C

_
G

al
o

is
_

R
m

at
C

C
_

G
al

o
is

_
R

o
ad

B

F
S

_
G

ra
p

h
C

h
i_

L
J

B
F

S
_

G
ra

p
h

C
h

i_
R

m
at

B
F

S
_

G
ra

p
h

C
h

i_
R

o
ad

P
R

_
G

ra
p

h
C

h
i_

L
J

P
R

_
G

ra
p

h
C

h
i_

R
m

at
P

R
_

G
ra

p
h

C
h

i_
R

o
ad

C
C

_
G

ra
p

h
C

h
i_

L
J

C
C

_
G

ra
p

h
C

h
i_

R
m

at
C

C
_

G
ra

p
h

C
h

i_
R

o
ad

T
C

_
G

ra
p

h
C

h
i_

L
J

T
C

_
G

ra
p

h
C

h
i_

R
m

at
T

C
_

G
ra

p
h

C
h

i_
R

o
ad

4

3
3

.m
il

c
4

4
5

.g
o

b
m

k
4

6
4

.h
2

6
4

re
f

4
7

1
.o

m
n

et
p

p

0

20

40

60

80

100

P
ip

el
in

e
sl

o
ts

 b
re

ak
d

o
w

n
 (

%
)

 Retiring Back-end bound Bad speculation Front-end bound

a s m s c i

Previous work

(a)

(b) (c)

Our work

Figure 1 (Color online) (a) Breakdown of experiment on pipeline slots; (b) cycles of ILP of different graph applications;
(c) time breakdown of pipeline slots

OOO buffers might soon be clogged by succeeding
instructions that are already executed. For gen-
eral applications, the influence of serial semantic
could be ignored since the cache miss rates are
low. However, the high cache miss rates of graph
processing make serial semantic a severe problem.

Inefficient branch prediction. While the core
could issue and execute several uops per cycle, not
all these uops could eventually retire. If a pre-
dicted instruction is incorrect, the corresponding
slot would be flushed and wasted.

To have a better understanding of inefficient
branch prediction, we evaluate the time break-
down of pipeline slots. Specifically, bad specu-
lation denotes the slots wasted due to incorrect
speculations. As shown in Figure 1(c), branch mis-
prediction leads to almost 15% of total pipeline
slot waste, which means that the predictors can
hardly provide satisfied performance for graph ap-
plications. In graph applications, the branches are
more frequent and complex than traditional appli-
cations, thus stressing more on predict units.

Introduction of dataflow model. To cope with
the significant inefficiencies of modern proces-
sor in graph processing, we propose to leverage
the dataflow model to mitigate and even break
through the underlying limitation, particularly in
terms of ILP and branch prediction.

Unlike the traditional control flow based
paradigm that enforces sequential retirement, the
dataflow model provides a relax and powerful
paradigm for describing parallel computation. In
dataflow model, a program is generally described
by a directed graph. During the process of
dataflow graph, a given node can be active if and
only if all inputs are available.

Highlight of dataflow in ILP. As discussed
above, complex dependencies and serial semantics
severely limit the ILP for graph processing. Specif-
ically, the traditional control flow model might en-
force a number of false dependencies that limit the
potential parallelism. This phenomenon is partic-
ularly serious in graph processing.

Fortunately, dataflow only focuses on the data
dependency, which is the unique indicator used to
determine the scheduling order of instructions. As
a consequence, it can be leveraged to totally elim-
inate false dependencies in graph processing and
further provide a substantial amount of optimized
parallelism. More importantly, since there is no
implicit restrictions between independent instruc-
tions, the sequential operations of instruction re-
tirement in traditional control flow model can be
greatly relaxed in parallel with only the availability
of operands taken into consideration. The instruc-
tions would not be interrupted by the execution of
other independent instructions.

Highlight of dataflow in branch prediction. High
rate of branch misprediction would lead to a mass
number of stalls, which is particularly severe for
the graph algorithms. Improving the performance
of branch prediction is another important factor
for performance enhancement of graph process-
ing. The conditions in graph processing can be
divided into two broad categories: loop conditions
and computation conditions.

Loop conditions represent conditional instruc-
tions that controls the loop, e.g., the while/for loop
that controls the traversal of vertex list. In con-
trol flow model, although the results of loop con-
ditions are easy to be predicted, the frequent pre-
dictions might largely increase the fetch latency in

Jin H, et al. Sci China Inf Sci December 2017 Vol. 60 126102:3

graph processing. In contrast, in dataflow graph,
the logic of loop controlling is generally hidden be-
hind the flow of data, which indicates that loop
conditions do not have to be performed actually.

Computation conditions represent the condi-
tions inside the process of an original graph edge.
Since these conditions in graph processing are not
relevant to history branch results but dependent
on the graph structure, the common prediction
strategies based on history states might cause large
number of mispredictions. In contrast, because
of the strong determinacy in dataflow model, we
could process every branch of a conditional in-
struction in parallel for only once, therefore greatly
reducing the cost of branch misprediction.

Challenges. Despite that dataflow has a great
opportunity in improving the performance of
graph processing, it is still a tedious task to lever-
age it into solving graph processing problems.
Generally, dataflow suffers from low instruction
efficiency. For instance, detecting enable instruc-
tions and constructing result tokens would bring in
additional costs. Consistent with the above con-
clusion, we find that the number of instruction of
graph algorithms in recent dataflow systems is tens
of that of specially-designed systems. Moreover,
the dataflow graphs are huge and highly related
to graph algorithms, making it hard to design a
general graph processing accelerator architecture.

Design philosophy. To cope with these chal-
lenges, we make an attempt to present some poten-
tial methodologies for designing graph processing
accelerator based on dataflow model. The prelim-
inary method is to use Field-Programmable-Gate
Array (FPGA) to increase instruction efficiency
and flexibly adapt accelerator to different algo-
rithms. We could map every operation in dataflow
graph to a hardware module, and connect them by
a wire if there exists data dependency. The over-
head of fetching and scheduling instructions could
be reduced since all instructions are connected by
wire and triggered by the arrival of data.

The widely used spatial dataflow architecture [7]
(e.g., systolic array) could also be applied to fur-
ther reduce scheduling overheads. Although orig-
inally designed for dense matrix multiplication,
it is also a good match for graph algorithms ex-
pressed by Gather-Scatter model. The similarities
between their execution flows make it possible to
map vertices in original graphs to nodes in spatial
dataflow architecture. Moreover, scheduling over-
heads are extremely low since all nodes regularly
exchange data with their spatial neighbors.

While dataflow graphs are huge, we could sim-
plify the graph processing abstraction to make it
easier to map dataflow graphs to hardware mod-
ules. We abstract the common vertex-centric
model into some key operations (e.g., Read Active
Source List) and reconstruct the dataflow graph
based on these common operations. Since graph
algorithms could always be expressed by iterative
models, the newly constructed dataflow graph only
includes operations in one iteration. To further
deal with the hardware resources limitation, we
just map the operations that are shared by the
process of every vertex, instead of mapping the
whole dataflow graph.

Conclusion. It is observed in our study that the
performance of graph processing is still limited to
the underlying modern processors, leading to the
significant inefficiencies of ILP and branch predic-
tion. In order to cope with these inefficiencies, we
propose to leverage the dataflow paradigm, which
can provide a considerable parallelism and reduce
the cost of branch misprediction.

Acknowledgements This work was supported by

National High Technology Research and Develop-

ment Program of China (863 Program) (Grant No.

2015AA015303).

References

1 Malewicz G, Austern M H, Bik A J, et al. Pregel: a
system for large-scale graph processing. In: Proceed-
ings of ACM SIGMOD International Conference on
Management of Data. Indiana: ACM, 2010. 135–146

2 Zhang Z Y. Community structure detection in social
networks based on dictionary learning. Sci China Inf
Sci, 2013, 56: 078103

3 Gonzalez J E, Low Y, Gu H, et al. Powergraph:
distributed graph-parallel computation on natural
graphs. In: Proceedings of USENIX Symposium on
Operating Systems Design and Implementation. Hol-
lywood: USENIX, 2012. 17–30

4 Beamer S, Asanovic K, Patterson D. Locality exists in
graph processing: workload characterization on an Ivy
bridge server. In: Proceedings of IEEE International
Symposium on Workload Characterization, Atlanta,
2015. 56–65

5 Ham T J, Wu L, Sundaram N, et al. Graphicionado: a
high-performance and energy-efficient accelerator for
graph analytics. In: Proceedings of International
Symposium on Microarchitecture, Taipei, 2016. 1–13

6 Ozdal M M, Yesil S, Kim T, et al. Energy efficient
architecture for graph analytics accelerators. In: Pro-
ceedings of Annual International Symposium on Com-
puter Architecture, Seoul, 2016. 166–177

7 Jouppi N P, Young C, Patil N, et al. In-datacenter
performance analysis of a tensor processing unit. In:
Proceedings of Annual International Symposium on
Computer Architecture. Toronto: ACM, 2017. 1–12

