Development of Electric Cart for Improving Walking Ability

---Application of Control Theory to Assistive Technology---

Jinhua SHE1), 2), 3), Yasuhiro OHYAMA1), Min WU2), 3)\textsuperscript{), Hiroshi HASHIMOTO4)}

1) Tokyo University of Technology, Japan
2) China University of Geosciences (Wuhan), China
3) Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, China
4) Advanced Institute of Industrial Technology, Japan
Outline

- Background
- Measures for Aging Society from Japanese Government
- Configuration of Electric Cart Control System
- Design of Cart Control System
 - Step 1: Design of Controllers for Three Different Loads
 - Step 2: Design of Controller for a Selected Load
 - Step 3: Automatic Selection of a Load Based on Driver’s Physical Condition
- Experimental Results
Aging in Japan

Percentage of old people (≥ 65 yrs old) in the population

1950 55 60 65 70 75 80 85 90 95 00 05 10 14 15 20 25 30 35 40

~ 21% super-aged society
2015: 26.7%
14 ~ 21% aged society
7 ~ 14% aging society

Oct. 10, 2017
Sci China Inf Sci
Demography of Japan

From: Statistics Bureau, Ministry of Internal Affairs and Communications, Japan

Oct. 10, 2017

1/2.5: ≥ 65 yrs old
1/4: ≥ 75 yrs old
Population ~ 87 million
Aging rate $\sim 40\%$
Measures for Aging Society from Japanese Government

<table>
<thead>
<tr>
<th>技術分野別</th>
<th>サブカテゴリー</th>
</tr>
</thead>
<tbody>
<tr>
<td>■エネルギー・環境技術</td>
<td></td>
</tr>
<tr>
<td>・エネルギー</td>
<td>太陽光</td>
</tr>
<tr>
<td></td>
<td>燃料電池・水素</td>
</tr>
<tr>
<td></td>
<td>スマートコミュニティ</td>
</tr>
<tr>
<td>・環境</td>
<td>3R・循環</td>
</tr>
<tr>
<td></td>
<td>環境化学</td>
</tr>
<tr>
<td>■産業技術</td>
<td>Robot & AI</td>
</tr>
<tr>
<td>・機械システム</td>
<td>ロボット・AI</td>
</tr>
<tr>
<td></td>
<td>装備</td>
</tr>
<tr>
<td>・電子・情報通信</td>
<td>電子デバイス</td>
</tr>
<tr>
<td></td>
<td>ネットワーク/コンピューティング</td>
</tr>
<tr>
<td>・材料・ナノテクノロジー</td>
<td>材料・部材</td>
</tr>
<tr>
<td>・バイオテクノロジー</td>
<td>バイオシステム</td>
</tr>
</tbody>
</table>

Oct. 10, 2017

Sci China Inf Sci
Priority Research Areas

Ministry of Economy, Trade, and Industry and Ministry of Health, Labour, and Welfare

Priority areas for robotic technology in nursing care:

- Lifting aids
- Mobility aids
- Toilets
- Monitoring systems for people with senile dementia
- Bathing

Oct. 10, 2017
Motivation

Electric carts for the elderly

- Designed solely as a means of transportation
- No consideration was given to an elderly person's need for physical exercise
Muscular Degeneration Due to Aging

Volume of brachial-flexor muscles
- Men: 200 ~ 300 cm³ Women: 150 ~ 200 cm³

Upper limbs are litter affected by aging.

Volume of femoral-flexor muscles
- Maximum during 20s ~ 30s:
 - Men: 1700 cm³ Women: 1200 cm³
- In 70s:
 - 60% of the maximum

Lower limbs become markedly weaker in later life!
Walking Muscles

Weaker in later life:
Loin, front thigh, shin, calf.

Loin + Front thigh: too weak
Leg cannot be lifted

Shin: too weak
Toes cannot be raised

Calf: too weak
Heel cannot be raised
Prevention Measures

Walking muscles need exercise.

Cycling is the ideal exercise to work the muscles.

Pedal down: front thigh, calf, and hamstring
Pedal up: loin, front thigh, and shin

Mount two foot pedals on an electric cart to exercise the walking muscles
New Electrical Cart

Everyday Type-S (Araco Corp., Japan)

Two pedals.
- The load generated by the pedal motor is responsive to the road conditions.
- Electrical connection between pedals and drive wheels.
Pedal Unit

- Pedal load:
 Responsive to road conditions:
 More realistic driving experience

- Installation:
 Optimal pedaling region

Ergonomic mounting of seat and pedal unit
A Photo of New Electrical Cart

Everyday Type-S (Araco Corp., Japan)
Interface Board

Controller (Computer) → Parallel port

Voltage to pedal motor

Voltage to cart motor

Rotational angle of pedal motor

Rotational angle of cart motor

Motor driver

D/A Converter (8 bits)

D/A Converter (8 bits)

Counter (8 bits)

Counter (8 bits)

From pedal optical encoder

To pedal motor

From cart optical encoder

To cart motor

Sci China Inf Sci
Configuration of Bilateral Master-Slave Cart System (1)

First-order plant is easy for humans to operate.

Controlled output: Speed

Reference input for cart: Speed of pedal motor

Speed of cart motor motor tracks speed of pedal motor
Configuration of Bilateral Master-Slave Cart System (2)
Modeling of Pedal and Cart

Pedal system:
\[
\frac{dv_m(t)}{dt} = A_m v_m(t) + B_m u_m(t) + B_f f(t),
\]
\[
A_m = \frac{c_m}{J_m}, \quad B_m = \frac{k_m}{J_m}, \quad B_f = \frac{1}{J_m}.
\]

Cart system:
(Wt. of driver: 45 ~ 100 kg)
\[
\frac{dv_s(t)}{dt} = A_s v_s(t) + B_s u_s(t),
\]
\[
A_s(t) := A_s + \Phi \Gamma \% A, \quad B_s := B_s + \Phi \Gamma \% B, \quad \Gamma^2 \leq 1.
\]
Controller Design

Step 1
Design of controllers for three different loads
Determination of Max. Pedal Load (1)

Rating of perceived exertion: \(r_{PE} = 20\% \) (Level of exertion for walking)

Maximum heart rate: \(r_{Hm} = 220 - \text{age} \)

Target heart rate (Karvonen formula):
\[
r_{Ht} = r_{Hr} + r_{PE} (r_{Hm} - r_{Hr})
\]

\(r_{Hr} \): Heart rate at rest
Determination of Max. Pedal Load (2)

Pushing force test:
Adjust the load of the ergometer so that the heart rate stabilizes at the target heart rate.

Based on the test results and considering aging effect:
Max. pedal load: \[f_{\text{max}} = 40 \text{ N} \]
Introduction of an Impedance Model

Impedance Model:

Describes feeling of pushing pedals.

\[
\frac{dv_p(t)}{dt} = A_p v_p(t) + B_p f(t)
\]

<table>
<thead>
<tr>
<th>Mode</th>
<th>(A_p)</th>
<th>(B_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strenuous</td>
<td>–1.49</td>
<td>2.00</td>
</tr>
<tr>
<td>Neutral</td>
<td>–1.49</td>
<td>3.49</td>
</tr>
<tr>
<td>Assisted</td>
<td>–1.49</td>
<td>3.90</td>
</tr>
</tbody>
</table>
Formulation of Control Problem

Find a controller $K(s)$ such that

- the cart control system is internally stable.
- $\|G_{zw}\|_\infty < 1$.

$f_w(t)$: Relaxes the solvable condition

$$w(t) = \begin{bmatrix} f(t) & f_{\Gamma}(t) & f_w(t) \end{bmatrix}^T$$

$$z(t) = \begin{bmatrix} z_m(t) & z_{ve}(t) & z_{\Gamma}(t) & z_{as}(t) & z_{us}(t) & z_{um}(t) \end{bmatrix}^T$$
Weighting Functions

$W_{em}(s)$: To suppress the tracking error between $v_p(t)$ and $v_m(t)$.

$W_e(s)$: To suppress the tracking error between $v_m(t)$ and $v_s(t)$.

$W_{um}(s)$: To suppress the control voltage $u_m(t)$.

$W_{us}(s)$: To suppress the control voltage $u_s(t)$.

$W_s(s)$: Riding comfort.
Experimental Conditions

Impedance models:
- Strenuous Mode
- Neutral Mode
- Assisted Mode

Road conditions:
- flat road
- 5° uphill slope
- 5° downhill slope

Weight of driver:
- 47 ~ 70 kg
Exp. Results 1: Flat Road

Strenuous Mode

\[u_m \ \text{avg}(15–25) = -0.462 \ \text{V} \]

Neutral Mode

\[u_m \ \text{avg}(15–25) = -0.047 \ \text{V} \]

Assisted Mode

\[u_m \ \text{avg}(15–25) = 0.377 \ \text{V} \]

Weight of driver: 63 kg

Oct. 10, 2017
Exp. Results 2: Uphill Slope

\[u_m \; \text{avg}(15-25) = -0.993 \; \text{V} \]

\[u_m \; \text{avg}(15-25) = -0.088 \; \text{V} \]

\[u_m \; \text{avg}(15-25) = 0.866 \; \text{V} \]

Weight of driver: 63 kg
Exp. Results 3: Downhill Slope

Weight of driver: 63 kg

Oct. 10, 2017
Controller Design

Step 2
Design of controller for a selected load
Load Adjusting Function

Neutral (Mode N)

Strenuous (Mode S)

Assisted (Mode A)
Gain-Scheduling Control System for Any Level of Load/Assistance (1)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Controller</th>
<th>Control input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strenuous</td>
<td>C_S</td>
<td>u_S</td>
</tr>
<tr>
<td>Neutral</td>
<td>C_N</td>
<td>u_N</td>
</tr>
<tr>
<td>Assisted</td>
<td>C_A</td>
<td>u_A</td>
</tr>
</tbody>
</table>

Designed controllers: C_S, C_N, C_A

Dynamic parallel distributed compensation

Automatic generation of controller for any level of load/assistance
Gain-Scheduling Control System for Any Level of Load/Assistance (2)

Control input:

\[u(t) = \lambda_S u_S(t) + \lambda_N u_N(t) + \lambda_A u_A(t) \]

\(\lambda_S, \lambda_N, \lambda_A \) : Coefficients

\(\lambda_S + \lambda_N + \lambda_A = 1 \)

The above control law guarantees the stability of the closed-loop cart control system if there exists a common symmetric positive definite matrix \(P \) such that the following hold:

\[P \tilde{A}_S(\Gamma) + \tilde{A}_S^T(\Gamma)P < 0, \]

\[P \tilde{A}_N(\Gamma) + \tilde{A}_N^T(\Gamma)P < 0, \]

\[P \tilde{A}_A(\Gamma) + \tilde{A}_A^T(\Gamma)P < 0. \]

\(\tilde{A}_i(\Gamma) \) \((i = S, N, A) \) : System matrix of the closed-loop system.
Experimental Results (Flat Road)

Average input voltage of pedal motor

- Applied voltage (V)
- Strenuous
- Neutral
- Assisted

Average pushing force on pedals

- Pushing force (N)
- Load
- Assisted

Oct. 10, 2017
Controller Design

Step 3

Automatic selection of a load
Automatic Selection of Pedal Load

Pedal load

Mode

Natural

Strenuous

0% 20% 40% 70%

Rating of perceived exertion

R_{PE}

Oct. 10, 2017

Sci China Inf Sci
Exp. Results: B_p vs. r_{PE}

- **Natural**
 - B_p
 - r_{PE}

- **Strenuous**
 - B_p
 - r_{PE}

- **Subject 1 (21 years old)**
- **Subject 2 (83 years old)**

Oct. 10, 2017
Exp. Results: Avg. u_m vs. r_{PE}, Avg. f vs. r_{PE} (Flat Road)
Exp. Results: Steady-state speed for $r_{PE} = 20\%$ (Flat Road)
Summary

New Three-Wheeled Electric Cart

Target: The elderly and people undergoing rehabilitation

Features: Vehicle + Provides physical exercise

Pedal unit: Ergonomic design & mounting

Load selection: 3 loads/Automatic selection

Controller design: H_∞ control theory + Dynamic parallel distributed compensation

Exp. results: The system configuration and the controller are useful for providing an appropriate level of physical exercise.
Acknowledgement

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grants 18560259 and 26350673, and partially by JSPS KAKENHI Grant 16H02883.

This work was also supported by the National Natural Science Foundation of China under Grants 61473313 and 61210011, by the Hubei Provincial Natural Science Foundation of China under Grant 2015CFA010, and by the 111 Project, China under Grant B17040.
Corresponding Authors

Jinhua She: she@stf.teu.ac.jp
Yasuhiro OHYAMA: ohyama@stf.teu.ac.jp
Min WU: wumin@cug.edu.cn
Hiroshi HASHIMOTO: hashimoto@aiit.ac.jp

Thank you