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Abstract This paper investigates the practical tracking problem of stochastic delayed nonlinear systems. The

powers of the nonlinear terms are relaxed to a certain interval rather than a precisely known point. Based

on the Lyapunov-Krasovskii (L-K) functional method and the modified adding a power integrator technique,

a new controller is constructed to render the solutions of the considered system to be bounded in probability,

and furthermore, the tracking error in sense of the mean square can be made small enough by adjusting some

designed parameters. A simulation example is provided to demonstrate the validity of the method in this paper.
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1 Introduction

Recently, stochastic control has become a popular research issue, and considerable attention has been de-

voted to it. Many results in stochastic control theory have been studied, which can be viewed as extended

versions of deterministic linear systems theory. For instances, in [1], the authors proposed a spectrum

theory and a observability criteria for stochastic system. A similar criterion for exact detectability has

also been proposed in [2]. As for the controller design problems, many researchers concentrated their

attentions on state feedback control [3, 4], output feedback control [5] and so on.

Time-delay is a time interval from a behavior start to its being perceived. It has different meanings

in various contexts. For example, in the process of performing fiscal policy, time-delay produced by the

actions of government mainly includes: recognition lag, implementation lag, time-lag effect and time lag

of monetary policy. Due to the limitation of measurement technology, time-delay phenomenon widely

exists in various physical systems. In a practical system, time-delay may destroy the system stability.

To study some related stabilization problems of delayed systems, in recent years, typical methods have

been raised and employed in [6–8]. Particularly, by establishing a new stability criterion, the robust

control problem for nominal delayed systems was considered in [6]. By deriving new sufficient/necessary
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conditions, the stability of delayed networks was studied [7]. Via a matrix transformation method, the

output control problem of delayed nonlinear system was addressed in [8].

Owing to the practical interest, the practical tracking control has been studied extensively. For ex-

ample, ref. [9] solved the practical tracking control problem of the deterministic systems, which was

extended to stochastic systems by Li et al. [10–12]. To illustrate the strong robustness to uncertainties,

Wu investigated the adaptive tracking problem of stochastic Markovian switching systems and stochastic

Hamiltonian systems in [13, 14], respectively. Although, for delayed stochastic nonlinear system with

disturbances, the stabilization problems have been extensively studied such as the state feedback stabi-

lization [15], the output feedback stabilization [16], robust H∞ stabilization [17, 18] and so on. Up to

date, no method is effective to solve practical tracking problem, especially, to delayed stochastic system

with input-to-state stability-like (SISS-like) inverse dynamics. This paper will make contributions to this

difficult problem. The contributions are as follows:

(i) A new L-K functional for solving the practical tracking problem is constructed. The existing results

for time-delay systems are focused on the stable controller design [15–18]. Hence, the L-K functionals

in those researches are no longer valid for tracking control. Besides, the studied system contains many

complicated nonlinear terms which make the construction of the L-K functional nontrivial.

(ii) For delayed stochastic nonlinear systems, we modify the method of adding a power integrator and

give a delay-independent tracking control scheme.

(iii) The considered system has SISS-like inverse dynamics, nonlinear drift and diffusion terms, and

time-varying delay. So it is more general than the previous literatures [3, 5, 7, 19].

Throughout the paper, we adopt such notations: R, R+ and R
n are refer to a set of real numbers,

nonnegative real numbers and real n-component vectors, respectively; a ∧ b = min{a, b}; Tr{X} is the

trace of matrix X ; Cn is a set of nth differentiable functions; Cn
F0

([−τ, 0];Rn) is a set of F0-measurable

bounded R
n-valued random variables which is Cn on [−τ, 0]; (Ω,F , P ) is a complete probability space;

The component is sometimes omitted, whenever no confusion can arise.

2 Problem statement and preliminary results

2.1 Problem statement

Consider the delayed stochastic nonlinear system:























dζ0 = f0
(

ζ0, x1, x1(t− η(t)), t
)

dt+ g⊤0
(

ζ0, x1, x1(t− η(t)), t
)

dω,

dxi =
(

ai(t)x
pi

i+1 + fi
(

ζ0, x̄i, x̄i(t− η(t)), t
))

dt+ g⊤i
(

ζ0, x̄i, x̄i(t− η(t)), t
)

dω, i = 1, . . . , n− 1,

dxn =
(

an(t)u
pn + fn

(

ζ0, x, x(t− η(t)), t
))

dt+ g⊤n
(

ζ0, x, x(t − η(t)), t
)

dω,

y = x1,

(1)

where x̄j , [x1, . . . , xj ]
⊤ ∈ R

j , j = 1, . . . , n, x , x̄n; η(t) denotes the time delay satisfying 0 6 η(t) 6 τ

with τ being a constant; ζ0(t) ∈ R
m denotes the state of stochastic inverse dynamics; u(t), y(t) ∈ R

are system input and output; {x(θ) : −τ 6 θ 6 0} = φ ∈ Cn
F0

([−τ, 0];Rn) is the initial condition; the

coefficient aj(t) satisfies 0 < ǫ 6 aj(t) 6 ǭ with ǫ and ǭ being positive constants; suppose that pj > 1

satisfies pj ∈ R
+
odd , {m

n
|m and n are positive odd integers} and 1+

∑n−1
k=1

1
pk···pn−1

−
∑j−1

k=1
2

pk···pj−1
> 0.

fk, gk, k = 0, . . . , n satisfy locally Lipschitz condition with fk(0, 0, 0, t), gk(0, 0, 0, t) being bounded; ω ∈ R
r

stands for a Wiener process on (Ω,F , P ).

For a given reference signal yr(t), a practical tracking controller

u = Φ(yr, x1, . . . , xn) (2)

will be constructed such that

(H1) System (1) and (2) have a unique strong solution on [−τ,∞);

(H2) ζ0, x1, . . . , xn are bounded in probability;
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(H3) The expectation of z0 = y − yr satisfies

lim
t→∞

E|z0|
2 6 ρ,

where ρ can be made small enough.

We introduce some assumptions as follows.

Assumption 1. yr(t) and its derivative ẏr are bounded, that is, |yr(t)|+ |ẏr(t)| 6 M, with M > 0 being

a constant.

Assumption 2. The derivative of η(t) satisfies η̇(t) 6 τ̄ < 1 with τ̄ > 0 being a constant.

Assumption 3. Define ̟ as a ratio of an even integer to an odd integer, satisfying ̟ > dM , dM =

max16k6n{dk}, d1 =
2− 1

p1···pn−1

1+
∑n−1

k=1
1

pk···pn−1

, dj =
2

p1···pj−1
− 1

p1···pn−1

1+
∑n−1

k=1
1

pk···pn−1
−
∑j−1

k=1
2

pk···pj−1

, j = 2, . . . , n. For each i =

1, . . . , n, there exist nonnegative constants C, li1 and li2, such that



















|fi| 6 C

(

|ζ0|
ri+̟ +

∑i
j=1

(

|xj |
ri+̟

rj + |xj(t− η(t))|
ri+̟

rj

))

+ li1,

|gi| 6 C

(

|ζ0|
2ri+̟

2 +
∑i

j=1

(

|xj |
2ri+̟

2rj + |xj(t− η(t))|
2ri+̟

2rj

))

+ li2,

where r1 = 1, ri+1 = ri+̟
pi

.

Assumption 4. For ζ0-subsystem, there exists a function V0(ζ0) ∈ C2 such that

l1|ζ0|
4λ 6 V0(ζ0) 6 l2|ζ0|

4λ,

LV0(ζ0) 6 −l3|ζ0|
4λ + l4

(

x4λ
1 + x4λ

1 (t− η(t))
)

,

where l1, . . . , l4 are positive constants and λ > max16i6n{ri +̟}.

Remark 1. These assumptions are reasonable. Assumption 1 is similar to those in [9,19,20] for delay-

free systems. Assumption 2 is often used for systems with time-varying delay [6–8,15,16]. Assumption 3

enlarges the scope of nonlinear terms. Compared with [21], we can see that the powers of nonlinear terms

in this work can change on a certain interval instead of a point. Furthermore, the time-delay here is

time varying rather than a constant [22]. Assumption 4 shows that the stochastic dynamics satisfies an

ISS-type property, and it is similar to those in [3, 5].

Remark 2. Inverse dynamics as one of the inverse problems usually exists in mechanical systems.

It generally means inverse rigid body dynamics or inverse structural dynamics. The previous one is

often used to compute forces and moments by using the kinematics or the inertial properties of a body.

The latter one is sometimes applied to calculate the inertia forces that result from a structure. From

Assumption 4 and the sufficient condition proposed in Theorem A.1 of [23], we obtain that the inverse

dynamics of ζ0-subsystem satisfies this property of SISS.

Remark 3. The existing results only consider stabilization problem. The practical tracking control

problem of system (1) remains unsolved.

2.2 Preliminary results

The considered stochastic system is described by

dx = f
(

x, x(t− η(t)), t
)

dt+ g
(

x, x(t− η(t)), t
)

dω, ∀t > 0, (3)

where x(t) and η(t) denote the system state and the time delay, respectively. The system initial condition

is {x(θ) : −τ 6 θ 6 0} = φ ∈ Cn
F0

([−τ, 0];Rn). f : Rn × R
n × R

+ → R
n and g : Rn × R

n × R
+ → R

n×r

satisfy locally Lipschitz condition with f(0, 0, t) and g(0, 0, t) being bounded.

The definition and several lemmas play a crucial role in later control process and theoretical analysis.
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Definition 1 ([24]). For V (x, t) ∈ C2,1 associated with system (3), L is defined as LV = ∂V
∂t

+ ∂V
∂x

f +
1
2Tr{g

⊤ ∂2V
∂x2 g}, where

1
2Tr{g

⊤ ∂2V
∂x2 g} is the Hessian term.

Lemma 1 ([22]). If the continuous function h : [m,n] → R is monotone and h(m) = 0, then

|
∫ n

m
h(t)dt| 6 |h(n)||n−m|.

Lemma 2 ([22]). For x1, x2 ∈ R, h(x1, x2) > 0 and g(x1, x2) > 0, one has

|h(x1, x2)x
m
1 xn

2 | 6 g(x1, x2)|x1|
m+n +

n

m+ n

(

m

(m+ n)g(x1, x2)

)
m
n

|h(x1, x2)|
m+n

n |x2|
m+n.

Lemma 3 ([16]). |xn
1 − xn

2 | > 21−n|x1 − x2|
n when n > 1, and |xn

1 − xn
2 | 6 21−n|x1 − x2|

n when

0 < n 6 1.

Lemma 4 ([25]). |x1 + x2|
n 6 |x1|

n + |x2|
n when 0 6 n < 1, and |x1 + x2|

n 6 2n−1(|x1|
n + |x2|

n) when

n > 1.

Lemma 5 ([26]). For 0 < n < p < ∞, let Lp(Ω;Rn) be a set of Rn-valued random variables with

E|X |p < ∞. The inequality (E|X |n)
1
n 6 (E|X |p)

1
p holds.

Lemma 6. For system (3), if there exists V (x, t) ∈ C2,1(Rn × [−τ ;∞);R+) satisfying

α1(|x|) 6 V (x, t) 6 α2

(

sup
−τ6s60

|x(t+ s)|

)

, (4)

LV (x, t) 6 −ρ1V (x, t) + ρ2, (5)

then

(i) there is a unique strong solution with initial condition φ ∈ Cn
F0

([−τ, 0];Rn);

(ii) there holds the following inequality:

E[V (x, t)] 6 e−ρ1(t−t0)V (x(t0), t0) +
ρ2

ρ1

(

1− e−ρ1(t−t0)
)

,

where α1(·), α2(·) ∈ K∞, and constants ρ1, ρ2 > 0.

Proof. (i) Considering the inequality (5) and the definition of V (·), we have

LV (x, t) 6 −ρ1V (x, t) + ρ2 6 ρ2.

Similar to the proofs in [24, 27], system (3) has a unique solution on [−τ,∞).

(ii) For integer r > 1, the stopping time Γr = inf{t : t > 0, |x| > r}. Since system (3) has a unique

solution, one gets P (Γ∞ = ∞) = 1. By the proof of Theorem A.1 in [27], one gets the Itô formula

E[V (x(tr), tr)]− E[V (x(t0), t0)] = E

[∫ tr

t0

LV (x(s), s)ds

]

, (6)

where tr = t ∧ Γr. From (6), it follows that

E
[

eρ1trV (x(tr), tr)
]

− E
[

eρ1t0V (x(t0), t0)
]

6 E

[
∫ tr

t0

eρ1s
(

− ρ1V (x(s), s) + ρ2
)

ds

]

+ E

[
∫ tr

t0

ρ1e
ρ1sV (x(s), s)ds

]

= E

[∫ tr

t0

ρ2e
ρ1sds

]

= E

[

ρ2

ρ1

(

eρ1tr − eρ1t0
)

]

,

which further gives

E
[

eρ1trV (x(tr), tr)
]

6 eρ1t0V (x(t0), t0) + E

[

ρ2

ρ1

(

eρ1tr − eρ1t0
)

]

.

Setting r → ∞ and considering tr = t ∧ Γr, P (Γ∞ = ∞) = 1, we have

E[V (x, t)] 6 e−ρ1(t−t0)V (x(t0), t0) +
ρ2

ρ1

(

1− e−ρ1(t−t0)
)

.
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This completes the proof.

To facilitate the practical tracking control, the coordinate transformations are introduced,

z1 =
(

x1 − yr
)

µ
r1 ,

zi = x
µ
ri

i − α
µ
ri

i , α
pi−1

i = −β

ripi−1

µ

i−1 z

ripi−1

µ

i−1 , i = 2, . . . , n, (7)

u = xn+1, α
pn

n+1 = −β

rn+1pn

µ
n z

rn+1pn

µ
n ,

where β1, . . . , βn > 0 to be specified later and µ ∈ R+
odd satisfies max16i6n{2ri} 6 µ 6 rn +̟. Define

Vi =

i
∑

j=1

(n− j + 1)Wj +

i
∑

j=1

Uj + c0V0, Wi =

∫ t

t−η(t)

es−tz
4λ
µ

i (s)ds, i = 1, . . . , n,

U1 =
r1

4λ−̟
z

4λ−̟
µ

1 , Uk =

∫ xk

αk

(

s
µ
rk − α

µ
rk

k

)

4λ−̟−rk
µ

ds, k = 2, . . . , n, (8)

where 0 < c0 6 (1−τ̄)e−τ

3l4
· 2

−4λ+r1
r1 .

To design a delay-independent tracking controller, the following propositions are given. For clarity, the

proofs are placed in appendices.

Proposition 1. The following equation holds

α
pi−1

i = −β

ripi−1

µ

i−1

(

x

µ
ri−1

i−1 + βi−2

(

x

µ
ri−2

i−2 + · · ·+ β2

(

x
µ
r2

2 + β1z1

)

· · ·

))

ripi−1

µ

, i = 2, . . . , n+ 1.

Proposition 2. There exist constants r11, r12, r13 > 0 and small enough positive parameters C11, C12

and C13 such that

z
4λ−̟−r1

µ

1

(

f1 − ẏr
)

6 c0l3
2(n+1) |ζ0|

4λ + 1−τ̄
3 e−τz

4λ
µ

1 (t− η) + r11z
4λ
µ

1 + C11,

c0l4

(

x
4λ
r1

1 + x
4λ
r1

1 (t− η)

)

6 1−τ̄
3 e−τz

4λ
µ

1 (t− η) + r12z
4λ
µ

1 + C12,

4λ−̟−µ
2r1

Tr

{

g⊤1 z
4λ−̟−2r1

µ

1 g1

}

6 c0l3
2(n+1) |ζ0|

4λ + 1−τ̄
3 e−τz

4λ
µ

1 (t− η) + r13z
4λ
µ

1 + C13.

Proposition 3. The infinitesimal generator of Ui along (1) satisfies

LUi 6 −
1

9
z

4λ
µ

i−1 +
c0l3

n+ 1
|ζ0|

4λ + aiz
Ai
µ

i x
pi

i+1 +

i−1
∑

j=1

z
4λ
µ

j + (1− τ̄ )e−τ

i
∑

j=1

z
4λ
µ

j (t− η) +

9
∑

j=1

(

rijz
4λ
µ

i + Cij

)

,

with constants rij > 0 and the small enough design parameter Cij > 0, i = 2, . . . , n.

3 Practical tracking control design

3.1 Construction procedure of the controller

Now, we construct a tracking controller (2) by a recursive design procedure.

Step 1. From system (1) and transformation (7), a simple calculation gives

dz1 =
µ

r1
z

µ−r1
µ

1

(

dx1 − dyr
)

=
µ

r1
z

µ−r1
µ

1

(

(a1x
p1

2 + f1 − ẏr)dt+ g⊤1 dω
)

. (9)

Using Definition 1, Assumptions 2, 4, (8) and (9), we have

LV1 6 −c0l3|ζ0|
4λ − n(1− τ̄ )e−τz

4λ
µ

1 (t− η)− nW1 + a1z
4λ−̟−r1

µ

1

(

x
p1

2 − α
p1

2

)

+ a1z
4λ−̟−r1

µ

1 α
p1

2
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+nz
4λ
µ

1 + z
4λ−̟−r1

µ

1

(

f1 − ẏr
)

+ c0l4

(

x
4λ
r1

1 + x
4λ
r1

1 (t− η)

)

+
4λ−̟ − µ

2r1
Tr

{

g⊤1 z
4λ−̟−2r1

µ

1 g1

}

,

from which and Proposition 2, it follows

LV1 6 −
nc0l3

n+ 1
|ζ0|

4λ − (n− 1)(1 − τ̄)e−τz
4λ
µ

1 (t− η)− nW1 + a1z
4λ−̟−r1

µ

1

(

x
p1

2 − α
p1

2

)

+a1z
4λ−̟−r1

µ

1 α
p1

2 + (n+ r11 + r12 + r13)z
4λ
µ

1 + C1, (10)

where C1 , C11 +C12 +C13. Similar to the selection process in [21], C11, C12 and C13 do not depend on

any parameter. Choosing α
p1

2 = −β
r2p1

µ

1 z
r2p1

µ

1 with β1 > (1
ǫ
(2n+ r11 + r12 + r13))

µ
r2p1 and substituting it

into (10), there holds

LV1 6 −nz
4λ
µ

1 −
nc0l3

n+ 1
|ζ0|

4λ − (n− 1)(1− τ̄ )e−τz
4λ
µ

1 (t− η)− nW1 + a1z
4λ−̟−r1

µ

1

(

x
p1

2 − α
p1

2

)

+ C1.

Step i (i = 2, . . . , n). At Step i − 1, assume that there exists a L-K functional Vi−1 ∈ C2,1, a virtual

control α
pi−1

i = −β

ripi−1

µ

i−1 z

ripi−1

µ

i−1 and a small enough constant Ci−1 > 0, such that

LVi−1 6 −(n− i+ 2)

i−1
∑

j=1

z
4λ
µ

j −
(n− i+ 2)c0l3

n+ 1
|ζ0|

4λ − (n− i+ 1)(1− τ̄ )e−τ

i−1
∑

j=1

z
4λ
µ

j (t− η)

−

i−1
∑

j=1

(n− j + 1)Wj + ai−1z
4λ−̟−ri−1

µ

i−1

(

x
pi−1

i − α
pi−1

i

)

+ Ci−1. (11)

Combining Definition 1, Assumptions 2, (8) and (11), we have

LVi 6 −(n− i+ 2)

i−1
∑

j=1

z
4λ
µ

j −
(n− i+ 2)c0l3

n+ 1
|ζ0|

4λ − (n− i+ 1)(1− τ̄ )e−τ

i
∑

j=1

z
4λ
µ

j (t− η)

−

i
∑

j=1

(n− j + 1)Wj + (n− i+ 1)z
4λ
µ

i + ai−1z

4λ−̟−ri−1

µ

i−1

(

x
pi−1

i − α
pi−1

i

)

+ Ci−1 + LUi. (12)

By Lemmas 2, 3, x
pi−1

i −α
pi−1

i = (x
µ
ri

i )
ripi−1

µ −(α
µ
ri

i )
ripi−1

µ and 0 < ai−1 6 ǭ, we can find ri0 > 0 satisfying

ai−1z

4λ−̟−ri−1

µ

i−1

(

x
pi−1

i − α
pi−1

i

)

6 ǭ 21−
ripi−1

µ |zi−1|
4λ−̟−ri−1

µ |zi|
ripi−1

µ 6
1

9
z

4λ
µ

i−1 + ri0z
4λ
µ

i . (13)

Substituting Proposition 3 and (13) into (12), it is not hard to arrive at

LVi 6 −(n− i+ 1)

i
∑

j=1

z
4λ
µ

j −
(n− i+ 1)c0l3

n+ 1
|ζ0|

4λ − (n− i)(1− τ̄ )e−τ

i
∑

j=1

z
4λ
µ

j (t− η) + aiz
4λ−̟−ri

µ

i α
pi

i+1

−

i
∑

j=1

(n− j + 1)Wj +



2n− 2i+ 2 + ri0 +

9
∑

j=1

rij



 z
4λ
µ

i + aiz
4λ−̟−ri

µ

i (xpi

i+1 − α
pi

i+1) + Ci, (14)

where Ci , Ci−1 +
∑9

j=1 Cij is a small enough design parameter. If we choose α
pi

i+1 = −β

ri+1pi
µ

i z

ri+1pi
µ

i

with βi > (1
ǫ
(2n− 2i+ 2 + ri0 +

∑9
j=1 rij))

µ
ri+1pi , then it follows from (14) that

LVi 6 −(n− i+ 1)

i
∑

j=1

z
4λ
µ

j −
(n− i+ 1)c0l3

n+ 1
|ζ0|

4λ − (n− i)(1− τ̄ )e−τ

i
∑

j=1

z
4λ
µ

j (t− η)

−

i
∑

j=1

(n− j + 1)Wj + aiz
4λ−̟−ri

µ

i (xpi

i+1 − α
pi

i+1) + Ci,
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which shows that Eq. (11) still holds for Step i. At Step n, we choose

u = αn+1 = −β

rn+1

µ
n

(

x
µ
rn
n + βn−1

(

x

µ
rn−1

n−1 + · · ·+ β2

(

x
µ
r2

2 + β1(x1 − yr)
µ
r1

)

· · ·

))

rn+1

µ

, (15)

where the system initial condition φ ∈ Cn
F0
([−τ, 0];Rn). It can be deduced that

LVn 6 −

n
∑

j=1

z
4λ
µ

j −
c0l3

n+ 1
|ζ0|

4λ −

n
∑

j=1

(n− j + 1)Wj + Cn, (16)

with Cn =
∑3

k=1 C1k +
∑n

l=2

∑9
j=1 Clj being a small enough design parameter.

By Assumption 4, the following inequality holds

−
c0l3

n+ 1
|ζ0|

4λ 6 −
c0l3

l2(n+ 1)
V0. (17)

Noting 0 < ri
µ
< 1, 0 < r1

4λ−̟
< 1 and using Lemmas 1 and 3, we obtain

n
∑

j=1

Uj 6
r1

4λ−̟
z

4λ−̟
µ

1 +
n
∑

j=2

|zi|
4λ−̟−ri

µ

∣

∣

∣

∣

(

x
µ
ri

i

)

ri
µ

−

(

α
µ
ri

i

)

ri
µ
∣

∣

∣

∣

6
r1

4λ−̟
z

4λ−̟
µ

1 + 2

n
∑

j=2

z
4λ−̟

µ

i 6 2

n
∑

j=1

z
4λ−̟

µ

i . (18)

Let 0 < Cn 6 min{( l3
l2(n+1) )

2, 1}, by using Lemma 2, we have

2

n
∑

j=1

z
4λ−̟

µ

i 6 C
− 1

2
n

n
∑

j=1

z
4λ
µ

i +
n̟

2λ

(

4λ−̟

2λC
− 1

2
n

)
4λ−̟

̟

. (19)

Combing (18) and (19), it follows that

−

n
∑

j=1

z
4λ
µ

i 6 −C
1
2
n

n
∑

j=1

Uj + C
2λ
̟
n

n̟

2λ

(

4λ−̟

2λ

)
4λ−̟

̟

. (20)

Substituting (17) and (20) into (16) yields

LVn 6 −C
1
2
n

n
∑

j=1

Uj −
c0l3

l2(n+ 1)
V0 −

n
∑

j=1

(n− j + 1)Wj + C
2λ
̟
n

n̟

2λ

(

4λ−̟

2λ

)
4λ−̟

̟

+ Cn

6 −ρ1Vn + ρ2, (21)

where ρ1 and ρ2 are defined as ρ1 = C
1
2
n , ρ2 = C

2λ
̟
n

n̟
2λ

(

4λ−̟
2λ

)
4λ−̟

̟ + Cn.

3.2 Main results

We summarize the major consequences of this paper.

Theorem 1. If Assumptions 1–4 are satisfied, then, for system (1), a practical tracking controller (15)

is designed which satisfies properties (H1)–(H3).

Proof. Firstly, it follows from Assumption 4, Lemma 3 and Proposition 1 that

c0V0 +
n
∑

j=1

Uj = c0V0 +
r1

4λ−̟
|z1|

4λ−̟
µ +

n
∑

j=2

∫ xj

αj

∣

∣

∣

∣

s
µ
rj − α

µ
rj

j

∣

∣

∣

∣

4λ−̟−rj
µ

ds

> c0l1|ζ0|
4λ +

r1

4λ−̟
|z1|

4λ−̟
µ +

n
∑

j=2

∫ xj

αj

(

2
1− µ

rj |s− αj |
µ
rj

)

4λ−̟−rj
µ

ds,
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which implies that c0V0 +
∑n

j=1 Uj is a positive definite function.

Subsequently, by Assumption 4, Lemma 1 and Proposition 1, it follows that

c0V0 +

n
∑

j=1

Uj 6 c0l2|ζ0|
4λ +

r1

4λ−̟
|z1|

4λ−̟
µ +

n−1
∑

j=2

|zj |
4λ−̟−rj

µ |xj − αj |.

Therefore, c0V0 +
∑n

j=1 Uj is positive definite and radially unbounded. Applying Lemma 4.3 in [28], for

Y (t) , [ζ⊤0 (t), z1(t), x2(t), . . . , xn(t)]
⊤, there exist α1(Y (t)), α2(Y (t)) ∈ K∞ such that

α1(|Y (t)|) 6 c0V0 +

n
∑

j=1

Uj 6 α2(|Y (t)|) 6 α2

(

sup
−τ6s60

|Y (t+ s)|

)

. (22)

From (22) and the definition of Vn, it follows that

Vn(t, Y (t)) > α1(|Y (t)|), Wj > 0, j = 1, . . . , n. (23)

Using Lemma 1, (7) and Proposition 1, there is a function α3(·) ∈ K∞ satisfying

n
∑

j=1

(n− j + 1)Wj 6 sup
−τ6s60





n
∑

j=1

(n− j + 1)τ

∣

∣

∣

∣

x

µ
rj

j (t+ s)− α

µ
rj

j (t+ s)

∣

∣

∣

∣

4λ
µ





, α3

(

sup
−τ6s60

|Y (t+ s)|

)

. (24)

From (22)–(24), we know that

α1(|Y (t)|) 6 Vn 6 α4

(

sup
−τ6s60

|Y (t+ s)|

)

, (25)

where α4(sup−τ6s60 |Y (t+ s)|) ∈ K∞.

Considering Lemma 6, inequalities (21) and (25) show that the property (H1) holds and

E[Vn(Y (t), t)] 6 e−ρ1(t−t0)Vn(Y (t0), t0) + ρ−1
1 ρ2

(

1− e−ρ1(t−t0)
)

6 Vn(Y (t0), t0) + ρ−1
1 ρ2. (26)

From the boundedness of ρ1, ρ2, then Vn(Y (t), t) is bounded in probability, which further indicates that

the property (H2) is fulfilled. Finally, using the inequality r1
4λ−̟

|z1|
4λ−̟

µ 6 Vn(Y (t), t), and noting
4λ−̟

µ
> 2r1

µ
, Lemma 5 and (26), one has

E|z0|
2 = E|z1|

2r1
µ 6

(

E
[

|z1|
4λ−̟

µ

]

)

2r1
4λ−̟

6

(

4λ−̟

r1
E[Vn(Y (t), t)]

)

2r1
4λ−̟

6

(

4λ−̟

r1

(

e−ρ1(t−t0)Vn(Y (t0), t0) + ρ−1
1 ρ2

(

1− e−ρ1(t−t0)
)

))

2r1
4λ−̟

. (27)

Taking the limit on both sides of (27), it follows that limt→∞ E|z0|
2 6 ρ with ρ = (ρ2(4λ−̟)

ρ1r1
)

2r1
4λ−̟ .

Noticing ρ1 = C
1
2
n , ρ2 = C

2λ
̟
n

n̟
2λ

(

4λ−̟
2λ

)
4λ−̟

̟ + Cn, it follows that

ρ =

(

ρ2(4λ−̟)

ρ1r1

)

2r1
4λ−̟

=





(C
2λ
̟
n

n̟
2λ

(

4λ−̟
2λ

)
4λ−̟

̟ + Cn)(4λ−̟)

C
1
2
n r1





2
4λ−̟

=

(

C
4λ−̟
2̟

n
n̟

r1

(

4λ−̟

2λ

)
4λ
̟

+ C
1
2
n
4λ−̟

r1

)

2
4λ−̟

.

Since n, r1, λ,̟ are constants, 4λ−̟ > 0, Cn =
∑3

k=1 C1k +
∑n

l=2

∑9
j=1 Clj 6 min{

(

l3
l2(n+1)

)2
, 1}, and

C1k, Clj , k = 1, . . . , 3, l = 2, . . . , n, j = 1, . . . , 9 are designed to be independent of any parameter (see the

work in [21] for details). By choosing C1k, Clj small enough, the parameter ρ can be adjusted to be small

enough. The property (H3) is met. The proof is completed.
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Remark 4. For the deterministic systems [22, 29], V (x, t) is C1. However for the stochastic systems

[3, 5, 9, 19, 20], due to the existence of Hessian term, the L-K functional V (x, t) must be C2 with respect

to x and C1 with respect to t. Therefore, in this paper, how to choose a well-defined and meaningful L-K

functional is a difficult task. To solve this problem, let µ ∈ R+
odd and suppose max16i6n{2ri} 6 µ 6 rn+

̟,λ > max16i6n{ri +̟}, then 4λ−̟−ri−2µ
µ

> 1, µ−2ri
ri

> 0. In this case, ∂2Ui

∂z2
1

and ∂2Ui

∂x2
j

, j = 2, . . . , i− 1

are well defined, which ensure that Ui, i = 2, . . . , n is C2 with respect to [z1, x2, . . . , xn]
⊤. By the definition

of Vn and V0(ζ0) ∈ C2, we know that Vn is C2 with respect to [ζ0, z1, x2, . . . , xn]
⊤ and C1 with respect

to t.

In fact, when system (1) has no SISS-like inverse dynamics, we can also design the practical tracking

controller. The stochastic system is described as















dxi =
(

aix
pi

i+1 + fi(x̄i, x̄i(t− η)), t
)

dt+ g⊤i (x̄i, x̄i(t− η), t)dω, i = 1, . . . , n− 1,

dxn =
(

anu
pn + fn(x, x(t − η)), t

)

dt+ g⊤n (x, x(t − η), t)dω,

y = x1,

(28)

where the vector [x, x(t−η)]⊤ ∈ R
2n; fj(·), gj(·), j = 1, . . . , n satisfy locally Lipschitz condition and other

parameters are defined as in (1). Assumption 5 is imposed on system (28).

Assumption 5. Let C, li1 and li2, i = 1, . . . , n be nonnegative constants, then



























|fi| 6 C

i
∑

j=1

(

|xj |
ri+̟

rj + |xj(t− η)|
ri+̟

rj

)

+ li1,

|gi| 6 C

i
∑

j=1

(

|xj |
2ri+̟

2rj + |xj(t− η)|
2ri+̟

2rj

)

+ li2.

(29)

Theorem 2. For the reference trajectory yr to be traced, suppose that Assumptions 1, 2 and 5 hold,

then there is a tracking controller similar to (15), such that the nonlinear system (28) has a unique

strong solution which is bounded in probability and the mean square of z0 converges to an arbitrary

neighborhood of zero.

Proof. Introducing the same coordinate transformation (7), an L-K functional is chosen as

V n =

n
∑

j=1

(n− j + 1)

∫ t

t−η

es−tz
4λ
µ

j (s)ds+
r1

4λ−̟
z

4λ−̟
µ

1 +

n
∑

j=2

∫ xj

αj

(

s
µ
rj − α

µ
rj

j

)

4λ−̟−rj
µ

ds.

Based on the similar design procedure to Theorem 1, one gets

ᾱ1(|Ȳ |) 6 V n 6 ᾱ2

(

sup
−τ6s60

|Ȳ (t+ s)|

)

, LV n 6 −ρ̄1V n + ρ̄2,

where ᾱ1, ᾱ2 ∈ K∞, Ȳ , [yr, x1, . . . , xn]
⊤ and ρ̄1, ρ̄2 > 0. Similar to Theorem 1, Theorem 2 can be shown

easily.

4 Example

The above method is used to the following example:























dζ0 =
(

− 5ζ0 + x1(t− η(t))
)

dt+ ζ0dω,

dx1 = x3
2dt+ 0.2x2

1(t− η(t))dω,

dx2 =
(

u3 + sin(ζ0) sin(x1(t− η(t)))x3
2(t− η(t))

)

dt+ sin(x2)x
2
2dω,

y = x1,

(30)
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Figure 1 (Color online) Trajectories of y and yr. Figure 2 (Color online) The trajectory of input u.
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Figure 3 (Color online) The trajectory of the inverse dy-

namics ζ0.

Figure 4 (Color online) The trajectory of the state x2.

where the reference signal yr = 5 sin(t) and η(t) = 0.1 + 0.1 sin(t). By simple calculation, Assumptions

1 and 2 hold. Taking ̟ = 2, from p1 = p2 = 3, r1 = 1, ri+1 = ri+̟
pi

, i = 1, 2, one gets r2 = r3 = 1.

By choosing µ = λ = 3, Assumption 3 holds with f1 = 0, |f2| , | sin(ζ0) sin(x1(t − η))x3
2(t − η)| 6

|x2(t − η)|3, |g1| , 0.2|x1(t − η)|2, and |g2| , | sin(x2)x
2
2| 6 |x2|

2. If we choose V0 = ζ120 , it can be seen

that LV0 6 −49ζ120 + x12
1 (t− η), which shows that Assumption 4 holds.

Following the design procedure above, we can construct a tracking controller

u = −3.5
(

x3
2 + 1.6(x1 − sin(t))3

)
1
3 .

In the simulation, the design parameters are selected as ζ0(t0) = −1, x1(t0) = 1, x2(t0) = −1, t0 ∈

[−0.2, 0]. From Figures 1–4, the effectiveness of the design procedure is verified.

Remark 5. Tracking control design has been widely studied both in the theoretical research and in the

practical application. As demonstrated in [19], a practical example satisfying system (28) is investigated.

Via the coordinate conversion, the underactuated system with weak coupling is transformed into the

stochastic system:

dx1 = x2dt, dx2 = a2x
3
3dt+ f2dt, dx3 = x4dt,

dx4 = (a4u+ f4)dt+ g4dω, y = x1,

where x1, . . . , x4 are the system states, y is the system output, yr = 0.2 sin(t) is the signal to be tracked,

a2, a4 are constants, the time-delay is equal to zero, p1 = · · · = p4 = 1, and f2, f4, g4 are smooth

functions.
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5 Conclusion

For stochastic nonlinear systems (1) and (28), this paper discusses the problem of practical tracking

control. Before the control design, a useful theoretical tool is presented to achieve some meaningful

theoretical results, that is, the closed-loop system has a unique strong solution and the solutions are

bounded in probability. Since the conventional quadratic Lyapunov function does no longer suit to the

design procedure, a class of new L-K functionals are constructed flexibly. A modified version of adding

a power integrator is also introduced. Finally, an example is utilized to demonstrate the feasibility

of our design scheme and excellent tracking performance. There still exist some problems for further

investigation, such as how to solve the control problem when the considered system contains unknown

parameters or some of the system states cannot be measured. Future work will contribute to adaptive

tracking control model and adaptive output feedback design of system (1).
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Appendix A Proof of Proposition 1

By transformation (7), it can be deduced that

α
pi−1

i = −β

ripi−1

µ

i−1
z

ripi−1

µ

i−1
= −β

ripi−1

µ

i−1

(
x

µ
ri−1

i−1
− α

µ
ri−1

i−1

) ripi−1

µ

= −β

ripi−1

µ

i−1

(
x

µ
ri−1

i−1
+ βi−2zi−2

) ripi−1

µ

= −β

ripi−1

µ

i−1

(
x

µ
ri−1

i−1
+ βi−2

(
x

µ
ri−2

i−2
− α

µ
ri−2

i−2

)) ripi−1

µ

= −β

ripi−1

µ

i−1

(
x

µ
ri−1

i−1
+ βi−2

(
x

µ
ri−2

i−2
+ · · ·+ β2

(
x

µ
r2
2

+ β1z1

)
· · ·

)) ripi−1

µ

.

Appendix B Proof of Proposition 2

By defining δi0 = max{1, 2
ri+̟−r1

r1 }, i = 1, . . . , n and using Assumption 1, Lemma 4 and (7), it yields that

|x1|
ri+̟

r1 6 δi0

(
|z1|

ri+̟

µ +M
ri+̟

r1

)
, |xk|

ri+̟

rk 6 |zk|
ri+̟

µ + |βk−1zk−1|
ri+̟

µ ,

from which and Assumptions 1–3, one gets

|fi| 6 C|ζ0|
ri+̟ + δi0C

(
|z1|

ri+̟

µ + |z1(t − η)|
ri+̟

µ

)
+ 2δi0CM

ri+̟

r1 + li1

+
i∑

k=2

C

(
|zk|

ri+̟

µ + |βk−1zk−1|
ri+̟

µ + |zk(t − η)|
ri+̟

µ + |βk−1zk−1(t − η)|
ri+̟

µ

)

6 Ĉi1

(
1 + |ζ0|

ri+̟ +
i∑

k=1

(
|zk|

ri+̟

µ + |zk(t− η)|
ri+̟

µ

))
, (B1)

where Ĉi1 , max26k6i−1{C,C(δi0 + β

ri+̟

µ

1
), Cβ

ri+̟

µ

k , 2δi0CM
ri+̟

r1 + li1}. For simplicity, let
∑1

k=2 xk = 0 for all xk.

Similarly, define δi2 , max{1, 2
2ri+̟−2r1

2r1 }. By 0 <
µ−2rk

µ
< 1, one has

|x1|
2ri+̟

2r1 = |z
r1
µ

1
+ yr|

2ri+̟

2r1 6 δi2

(
|z1|

2ri+̟

2µ +M
2ri+̟

2r1

)
, |xk|

2ri+̟

2rk 6 |zk|
2ri+̟

2µ + |βk−1zk−1|
2ri+̟

2µ .

Then one can find two positive constants Ĉi2 and Ĉi3, such that

|gi| 6 C|ζ0|
2ri+̟

2 + δi2C

(
|z1|

2ri+̟

2µ + |z1(t − η)|
2ri+̟

2µ

)
+ 2δi2CM

2ri+̟

2r1 + li2

+
i∑

k=2

C

(
|zk|

2ri+̟

2µ + |βk−1zk−1|
2ri+̟

2µ + |zk(t− η)|
2ri+̟

2µ + |βk−1zk−1(t − η)|
2ri+̟

2µ

)

6 Ĉi2

(
1 + |ζ0|

2ri+̟

2 +
i∑

k=1

(
|zk|

2ri+̟

2µ + |zk(t − η)|
2ri+̟

2µ

))
, (B2)
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|gi|
2 6 Ĉi3

(
1 + |ζ0|

2ri+̟ +
i∑

k=1

(
|zk|

2ri+̟

µ + |zk(t − η)|
2ri+̟

µ

))
. (B3)

From Assumption 1, Lemma 2 and (B1), there exist a small enough parameter C11 > 0 and a constant r11 > 0 such that

z

4λ−̟−r1
µ

1

(
f1 − ẏr

)
6 |z1|

4λ−̟−r1
µ

(
Ĉ11

(
1 + |ζ0|

r1+̟ + |z1|
r1+̟

µ + |z1(t − η)|
r1+̟

µ

)
+M

)

6
c0l3

2(n+ 1)
|ζ0|

4λ +
1− τ̄

3
e−τ z

4λ
µ

1
(t − η) + r11z

4λ
µ

1
+ C11. (B4)

Similar to the proof of (B4), one obtains

c0l4

(
x

4λ
r1
1

+ x
4λ
r1
1

(t− η)

)
6 c0l4

((
z

r1
µ

1
+ yr

) 4λ
r1

+

(
z

r1
µ

1
(t − η) + yr(t− η)

) 4λ
r1

)

6 c0l42
4λ−r1

r1

(
z

4λ
µ

1
+ z

4λ
µ

1
(t − η)

)
+ c0l4(2M)

4λ
r1 6

1− τ̄

3
e−τ z

4λ
µ

1
(t − η) + r12z

4λ
µ

1
+ C12,

where C12 is a small enough design parameter and r12 > 0. By Lemma 2, (7) and (B3), one can find a constant r13 > 0

and a small enough design parameter C13 > 0, such that

4λ−̟ − µ

2r1
Tr

{

g⊤1 z

4λ−̟−2r1
µ

1
g1

}

6
4λ−̟ − µ

2r1
|z1|

4λ−̟−2r1
µ |g1|

2

6
4λ−̟ − µ

2r1
|z1|

4λ−̟−2r1
µ Ĉ13

(
1 + |ζ0|

2r1+̟ + |z1|
2r1+̟

µ + |z1(t − η)|
2r1+̟

µ

)

6
c0l3

2(n + 1)
|ζ0|

4λ +
1− τ̄

3
e−τ z

4λ
µ

1
(t− η) + r13z

4λ
µ

1
+ C13.

Appendix C Proof of Proposition 3

For simplicity, we define Ai = 4λ−̟− ri, Bi = 4λ−̟− µ− ri and Di = 4λ−̟− 2µ− ri. Then the function Ui can be

rewritten as Ui =
∫ xi
αi

(s
µ
ri − α

µ
ri
i )

Ai
µ ds, i = 2, . . . , n. By Definition 1 and (9), one has

LUi =
∂Ui

∂z1

µ

r1
z

µ−r1
µ

1
(a1x

p1
2

+ f1 − ẏr) +

i−1∑

j=2

∂Ui

∂xj

(ajx
pj
j+1

+ fj) +
∂Ui

∂xi

(aix
pi
i+1

+ fi)

+
1

2

∂2Ui

∂z2
1

∣∣∣∣
µ

r1
z

µ−r1
µ

1
g1

∣∣∣∣
2

+
1

2

i−1∑

j=2

∂2Ui

∂x2
j

|gj |
2 +

1

2

∂2Ui

∂x2
i

|gi|
2 +

i∑

j=2

∂2Ui

∂z1∂xj

∣∣∣∣
µ

r1
z

µ−r1
µ

1
g1

∣∣∣∣|gj |

+
1

2

i−1∑

k,j=2,k 6=j

∂2Ui

∂xk∂xj

|gk||gj |+

i−1∑

j=2

∂2Ui

∂xi∂xj

|gi||gj|. (C1)

Next, we estimate the terms in (C1).

Term 1. By Lemmas 1, 3 and (7),

∣∣∣∣

∫ xi

αi

(
s

µ
ri − α

µ
ri
i

)Bi
µ

ds

∣∣∣∣ 6 |zi|
Bi
µ |xi − αi| 6 2

µ−ri
µ |zi|

4λ−̟−µ
µ . (C2)

By the definitions of Ui, Ai, Bi and Proposition 1, the partial derivative ∂Ui
∂z1

is given by

∂Ui

∂z1
= −

Ai

µ

∂α

µ
ri
i

∂z1

∫ xi

αi

(
s

µ
ri − α

µ
ri
i

)Bi
µ

ds =
Ai

µ
βi−1 · · ·β1

∫ xi

αi

(
s

µ
ri − α

µ
ri
i

)Bi
µ

ds. (C3)

Taking the absolute value on both sides of (C3), by (C2), we have
∣∣∣∣
∂Ui

∂z1

∣∣∣∣ 6
Ai

µ
2

µ−ri
µ βi−1 · · · β1|zi|

4λ−̟−µ
µ . (C4)

From 0 < a1 6 ǭ, |x2|p1 6 |z2|
r1+̟

µ + |β1z1|
r1+̟

µ and (B1), it follows that

|a1x
p1
2

+ f1 − ẏr| 6 ǭ

(
|z2|

r1+̟

µ + |β1z1|
r1+̟

µ

)
+ Ĉ11

(
1 + |ζ0|

r1+̟ + |z1|
r1+̟

µ + |z1(t − η)|
r1+̟

µ

)
+M

6 Ĉ14

(
1 + |ζ0|

r1+̟ + |z1|
r1+̟

µ + |z1(t − η)|
r1+̟

µ + |z2|
r1+̟

µ

)
(C5)

with Ĉ14 = max{ǭ, ǭβ
r1+̟

µ

1
+ Ĉ11, Ĉ11 +M}. By using Lemma 2, (C4) and (C5), the first term of (C1) is estimated

∣∣∣∣
∂Ui

∂z1

µ

r1
z

µ−r1
µ

1
(a1x

p1
2

+ f1 − ẏr)

∣∣∣∣ 6
Ai

r1
2

µ−ri
µ βi−1 · · · β1|zi|

4λ−̟−µ
µ |z1|

µ−r1
µ |a1x

p1
2

+ f1 − ẏr|
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6
c0l3

9(n+ 1)
|ζ0|

4λ +
1

9

(
z

4λ
µ

1
+ z

4λ
µ

2

)
+

1− τ̄

9
e−τ z

4λ
µ

1
(t − η) + ri1z

4λ
µ

i + Ci1.

Term 2. Similar to the proofs of (C3) and (C4), it can be verified that

∂Ui

∂xj

= −
Ai

µ

∂α

µ
ri
i

∂xj

∫ xi

αi

(
s

µ
ri − α

µ
ri
i

)Bi
µ

ds =
Ai

rj
βi−1 · · · βjx

µ−rj
rj

j

∫ xi

αi

(
s

µ
ri − α

µ
ri
i

)Bi
µ

ds, (C6)

∣∣∣∣
∂Ui

∂xj

∣∣∣∣ 6
Ai

rj
2

µ−ri
µ βi−1 · · · βj

(
|zj |

µ−rj
µ + |βj−1zj−1|

µ−rj
µ

)
|zi|

4λ−̟−µ
µ , j = 2, . . . , i− 1,

from which and using Lemma 2, (B1) and 0 < aj 6 ǭ, the second term of (C1) is estimated as
∣∣∣∣∣∣

i−1∑

j=2

∂Ui

∂xj

(
ajx

pj
j+1

+ fj

)
∣∣∣∣∣∣

6
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rj
2
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(
|zj |
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µ

)
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µ

(
ǭ

(
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rj+̟

µ + |βjzj |
rj+̟

µ

)
+ |fj |

)

6
c0l3

9(n+ 1)
|ζ0|
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1

9
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z
4λ
µ

j +
1− τ̄

9
e−τ

i−1∑

j=1

z
4λ
µ

j (t − η) + ri2z
4λ
µ

i + Ci2.

Term 3. By Lemma 2, (B1) and ∂Ui
∂xi

= z

Ai
µ

i , there holds

∂Ui

∂xi

(
aix

pi
i+1

+ fi

)
6 aiz

Ai
µ

i x
pi
i+1

+ |zi|
Ai
µ |fi|

6
c0l3
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9
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z
4λ
µ

i +
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9
e−τ

i∑

j=1

z
4λ
µ

j (t − η) + aiz
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µ

i x
pi
i+1

+ ri3z
4λ
µ

i + Ci3.

Term 4. By (C3) and Proposition 1, it follows that

∂2Ui

∂z2
1

=
AiBi

µ2

(
∂α

µ
ri
i

∂z1

)2 ∫ xi

αi

(
s

µ
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µ
ri
i

)Di
µ

ds =
AiBi

µ2
(βi−1 · · · β1)

2

∫ xi

αi

(
s

µ
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µ
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i

)Di
µ

ds.

Furthermore, using the inequality

∣∣∣∣

∫ xi

αi

(
s

µ
ri − α

µ
ri
i

)Di
µ

ds

∣∣∣∣ 6 2
µ−ri

µ |zi|
4λ−̟−2µ

µ , (C7)

we deduce that
∣∣∣∣
∂2Ui

∂z2
1

∣∣∣∣ 6
AiBi

µ2
2

µ−ri
µ (βi−1 · · · β1)

2|zi|
4λ−̟−2µ

µ . (C8)

Finally, using Lemma 2, (B3) and (C8),

1

2
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∂2Ui
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µ
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1
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6
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9(n+ 1)
|ζ0|

4λ +
1

9
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4λ
µ

1
+
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9
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µ

1
(t− η) + ri4z

4λ
µ
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Term 5. Taking the partial derivative of the equation (C6), we have

∂2Ui

∂x2
j

=
Ai(µ− rj)

r2j
βi−1 · · · βjx

µ−2rj
rj

j

∫ xi

αi

(
s

µ
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µ
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i
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µ

ds+
AiBi
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(βi−1 · · · βj)

2x
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j

∫ xi
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(
s

µ
ri − α

µ
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i

)Di
µ

ds.

In addition, considering |xk|
2µ−2rk

rk 6 2(|zk|
2µ−2rk

µ + |βk−1zk−1|
2µ−2rk

µ ), |xk|
µ−2rk

rk 6 |zk|
µ−2rk

µ + |βk−1zk−1|
µ−2rk

µ , and

using (C2) and (C7), we obtain
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∂2Ui

∂x2
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Ai(µ − rj)
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µ

+
AiBi
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2
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)
|zi|

4λ−̟−2µ
µ . (C9)

Then, by Lemma 2, (B3) and (C9), the fifth term of (C1) is estimated as follows:
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2
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j
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2 6
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Term 6. By utilizing | ∂
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∂x2
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i z
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i | 6 Ai
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µ , Lemma 2 and (B3), it yields
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Term 7. Similar to the proof of Term 5, we can deduce
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Utilizing (B2) and Lemma 2, one has
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Term 8. For k 6= j, 2 6 k, j 6 i− 1, we have
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µ and (C7), it yields that
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Using Lemma 2, (B2), (C11) and taking the similar manipulations of (C10), we obtain
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Term 9. For j < i, notice
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and use Lemma 2 and (B2), the last term of (C1) is estimated as
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Substituting Terms 1–9 into (C1) leads to Proposition 3.
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