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Abstract The increasing demand for performance has stimulated the wide adoption of many-core accelerators

like IntelR© Xeon PhiTM Coprocessor, which is based on Intel’s Many Integrated Core architecture. While many

HPC applications running in native mode have been tuned to run efficiently on Xeon Phi, it is still unclear how

a managed runtime like JVM performs on such an architecture. In this paper, we present the first measurement

study of a set of Java HPC applications on Xeon Phi under JVM. One key obstacle to the study is that there

is currently little support of Java for Xeon Phi. This paper presents the result based on the first porting of

OpenJDK platform to Xeon Phi, in which the HotSpot virtual machine acts as the kernel execution engine. The

main difficulty includes the incompatibility between Xeon Phi ISA and the assembly library of Hotspot VM.

By evaluating the multithreaded Java Grande benchmark suite and our ported Java Phoenix benchmarks, we

quantitatively study the performance and scalability issues of JVM on Xeon Phi and draw several conclusions

from the study. To fully utilize the vector computing capability and hide the significant memory access latency on

the coprocessor, we present a semi-automatic vectorization scheme and software prefetching model in HotSpot.

Together with 60 physical cores and tuning, our optimized JVM achieves averagely 2.7x and 3.5x speedup

compared to Xeon CPU processor by using vectorization and prefetching accordingly. Our study also indicates

that it is viable and potentially performance-beneficial to run applications written for such a managed runtime

like JVM on Xeon Phi.
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1 Introduction

As high-performance computing (HPC) continually evolves, the demand for computing resources has

been steadily increasing in recent years. This also stimulates a new processor architecture, where more

and more cores are integrated onto a single chip. The evolvement of many-core architectures has gener-

ated some remarkable outcomes. One of them is the Intel R© Xeon PhiTM Many Integrated Core (MIC)

Architecture, which is targeted for highly parallel and HPC workloads in a variety of fields [1]. Despite

the similar features like SIMD and vectorization shared with general-purpose CPUs and GPUs, Xeon Phi

has a completely independent OS and cache coherency support, providing massive computing power.

*Corresponding author (email: byzang@sjtu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-015-0989-3&domain=pdf
https://doi.org/10.1007/s11432-015-0989-3
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-015-0989-3


Yu Y, et al. Sci China Inf Sci December 2017 Vol. 60 122106:2

On the other hand, the pursuit for easy and portable programmability for HPC has never stopped.

Java, as a very popular and widely-used language, is emerging as an appealing and competitive paradig-

m in HPC area, particularly because of its built-in multithreading mechanism and strong communi-

ty/corporation support, as well as the continuous improvement in the performance of Java Virtual Ma-

chine (JVM) over the years. There are a lot of projects that focus on Java in HPC to improve program

productivity [2–4], covering various fields such as computational physics, biochemistry, astronomy [5],

and financial services. Java is shown not much slower than C/C++ for many numeric and scientific

computing benchmarks [6, 7].

Despite the emergence of Java on HPC, we observe that there is still little study on the performance and

scalability of Java HPC applications on Xeon Phi. Part of the reason is the lack of official support for Java

in Intel’s MIC architecture. To bridge this gap, this paper first presents a porting of OpenJDK platform

to the Xeon Phi coprocessor, including the HotSpot VM as the kernel execution engine. This enables

us to conduct a comprehensive study to gain more understanding on the performance characteristics of

Java HPC applications on Xeon Phi.

Our study analyze the single-threaded throughput and multithreaded scalability of nine Java HPC

programs which cover different kinds of algorithms and computing kernels. The single-threaded runs

reveal quite inferior performance on Xeon Phi compared to that on CPU processors. Additionally, huge

variations are observed among our selected benchmarks due to the different program characteristics,

especially the memory access patterns. According to the result of multithreaded runs, we observe a sat-

isfying scalability which is mainly brought by the large amount of hardware threads and the intrinsically

supported multithreading mechanism in HotSpot VM. We thoroughly analyze the reasons for the perfor-

mance gap between two architectures and the scalability issues. Accordingly, we provide a guidance for

further optimization opportunities in HotSpot.

Among our proposed optimizing strategies, we implement a semi-automatic vectorization scheme in

HotSpot to fully utilize the 512-bit vector processing unit on Xeon Phi as a first step. Our approach

breaks the restrictions of HotSpot’s original auto-vectorization, allowing programmers to indicate the

computing loop that needs to be vectorized by using an annotation before the loop. Accordingly, our

modified HotSpot VM will generate the corresponding native vector instructions. In a single-threaded

run, an averagely 2.5x speedup is gained for five array-based benchmarks. By using our semi-automatic

vectorization and an optimal number of threads, we can achieve averagely 2.7x and up to 3.4x speedup

on MIC compared to that on the CPU processor.

Besides, Xeon Phi suffers significant memory access latency as a result of the design tradeoff for a much

higher aggregate bandwidth, as well as more frequent on-chip cache misses due to the lack of traditional

last-level cache. Hence, it relies heavily on software data prefetching to bring data into local caches ahead

of need. In order to improve the poor memory performance, we implement a semi-automatic software

prefetching model in HotSpot’s JIT compiler based on an in-depth learning of the default customized

prefetching policies of Intel ICC compiler. We apply various prefetching strategies to the vectorized Java

benchmarks and analyze the performance under different combinations. The evaluation result shows

that compared to the original version, our prefetching model could achieve up to 8.1x and 3.8x speedup

under single thread and multi-threads accordingly. Moreover, an averagely 3.5x speedup for the best

throughput with optimal thread count could be observed with respect to the CPU server. In summary,

the main contributions of this paper include:

• The first porting of OpenJDK as a Java runtime environment (JRE) on Intel MIC architecture

(Section 3).

• A comprehensive study on the performance issues such as the throughput and scalability of a set of

high-performance computing applications on Xeon Phi (Section 4).

• A semi-automatic vectorization scheme in HotSpot, which fully utilizes the computing power of VPU

on MIC and achieves averagely 2.7x speedup compared to the CPU server (Section 5).

• A semi-automatic prefetching model based on an in-depth learning of the prefetching strategies on

Xeon Phi, which can effectively hide the high memory access latency and achieve averagely 3.5x speedup

with respect to the CPU server (Section 6).
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2 Background

This section presents an architectural overview of Intel R© Xeon PhiTM coprocessor and a brief introduction

to OpenJDK Java platform.

2.1 Intel Xeon Phi many-core architecture

The Intel Many Integrated Core (MIC) Architecture is designed by Intel for the purpose of high-

performance computing. Intel announced “Xeon Phi” as the brand name for all their products based on

the MIC architecture. The current generation of Xeon Phi product has a code name—Knights Corner

(KNC), which is a coprocessor card that could be connected to a Xeon CPU host via a PCIe interface.

2.1.1 Architectural overview

The Xeon Phi coprocessor comprises up to 60 physical cores, each supporting 4 hardware thread contexts,

which enables a total of 240 threads running simultaneously. The cores are based on a modified P54C

design (used in the original Pentium) and comply with an in-order execution mode. The frequency of

each core is around 1GHz, which is much lower than that on normal CPUs. This architecture provides a

great opportunity for high parallelism but with a weak single-core processing ability.

Each coprocessor core employs a 512-bit wide vector processing unit (VPU) with 32 vector registers

named ZMM. A new 512-bit SIMD ISA for Intel MIC architecture is designed to make use of the VPU.

MIC does not support other SIMD ISAs, such as MMX, SSE, or AVX [8]. With the 512-bit VPU, 16

single-precision or 8 double-precision float-point operations can be performed in a single vector instruction.

Therefore, compared to the traditional 128-bit SSE and 256-bit AVX, the new vector ISA can achieve a

great improvement in the instruction-level parallelism.

The memory on the MIC is based on GDDR5 technique, which provides a theoretical maximum

aggregate bandwidth of more than 300 GB/s, but suffers high memory access latency as a tradeoff. Each

core has a 32 KB L1 data/instruction cache and a 512 KB L2 cache. The L2 caches are kept fully coherent

and interconnected with each other as well as the memory controllers via a bidirectional ring bus. There

is no traditional shared last-level cache on MIC.

2.1.2 Programming for Xeon Phi

Unlike other many-core platforms like GPU, there is a modified Linux µOS (version: 2.6.38.8) running

on MIC, which is completely independent of the operating system on the host. An application has two

ways to run on Xeon Phi—offload mode and native mode. Under the offload mode, the application starts

on the host, and during execution it offloads highly parallel and computation-intensive regions to the

coprocessor. As for the native mode, the application runs independently on Xeon Phi and never transfers

data from/to the host. In this paper, we only focus on the native execution mode.

At present, Xeon Phi can run applications written in C/C++ and Fortran. There are various program-

ming models and tools provided for Xeon Phi, e.g., OpenMP, Intel MPI, Intel Cilk Plus [9]. However,

Xeon Phi does not support running Java.

2.2 OpenJDK platform

OpenJDK (Open Java Development Kit) is a widely-used and open-source implementation of the Java

Platform.

The OpenJDK project consists of a number of components, including the Java compiler—javac,

HotSpot virtual machine and the Java Class Library, etc.

Javac Compiler: OpenJDK provides a front-end Java compiler—javac, to parse Java source files into

bytecodes that conform to the JVM specification [10] and store them in the class files in binary, which

can be then executed by a Java virtual machine.
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HotSpot VM: HotSpot virtual machine is the kernel execution engine of OpenJDK that can execute

the Java bytecodes. HotSpot has a number of modules, including the class loader, Java interpreter, just-

in-time compiler (JIT), garbage collector, etc., which cooperatively work together. In a running process,

the class loader first dynamically loads the classes and interfaces into HotSpot. The interpreter then

decodes and executes the bytecodes one by one, following the original instruction sequence stored in the

binary file. Since javac does not perform any advanced optimization when compiling the source code, it is

very slow to run a Java program solely using the interpreter. To improve the performance, HotSpot VM

employs a just-in-time compiler (JIT) to translate Java bytecodes into native machine instructions for

“hot codes” at runtime. The JIT compiler leverages a lot of extensive and multi-level optimizations while

generating native instructions, which significantly reduces the execution time. HotSpot VM maintains an

assembly library for each particular architecture such as x86 and Sparc. Either the bytecodes executed

by interpreter or the native codes generated by JIT, they are essentially implemented by the platform-

dependent instructions in the assembly library.

3 Methodology

In this section, we present our methodology in detail, including: (1) an introduction about our porting

work of OpenJDK to Xeon Phi, (2) the multi-threaded Java HPC benchmarks, and (3) the experimental

environment and measurement details.

3.1 Porting OpenJDK to Xeon Phi

In this work, we use OpenJDK 7u as our porting target. The primary challenges we face during the

porting process and corresponding solutions are presented as below:

(1) First we need to cross-build OpenJDK for the MIC architecture. We use a customized GCC as

the cross-compiler from the host machine, which is available as part of the Xeon Phi SDK. Moreover,

building the Java class libraries in OpenJDK requires many dependent libraries, some of which are not

provided by the µOS on MIC. Such libraries are related to graphics, fonts, etc., which are not essential

for basic Java running. Therefore, we make a headless (i.e., no support for graphical applications) build

of OpenJDK and modify the makefiles to omit such libraries when cross-compiling.

(2) The HotSpot VM can not be simply initialized after the cross-build. Most of our efforts focus on

customizing HotSpot for the MIC architecture. As mentioned, Xeon Phi is not compatible with Intel’s

SSE or AVX instruction sets, which are required by HotSpot for floating-point operations on x86-based

architectures. Instead, the coprocessor employs a new 512-bit SIMD ISA with brand new instructions

and encodings. However, it does not cover all floating-point related instructions in HotSpot. Fortunately,

Xeon Phi does support the legacy x87 FPU instruction set [11]. In Java, all floating-point arithmetic is

basically IEEE 754 compliant [10]. Therefore, we leverage the new vector instructions to replace the SSE

and AVX instructions in HotSpot, with some legacy x87 floating-point instructions as complement.

(3) Besides the incompatibility of SSE and AVX instructions, some others instructions, e.g., mfence

and clflush, are not supported either. We modified these instructions based on the semantics in HotSpot

as well as the instruction manual of MIC. Moreover, the encoding format of vector instructions on Xeon

Phi is totally different from x86 instructions, which means adding vector instructions into the assembly

library of HotSpot requires a redesign in the binary encoding. Therefore, we extend the assembly library

with all indispensable vector instructions included.

3.2 Java benchmarks

In this paper, we study nine multi-threaded computing- and memory-intensive benchmarks. Five of

them are derived from the Thread Version 1.0 of Java Grande benchmark suite [12]—Crypt, Series,

SOR, SparseMatmult and LUFact. The Java Grande benchmarks are essentially dominated by scientific

and numeric-intensive computation. For the other four Java benchmarks, we port them from the Phoenix

benchmark suite [13] almost without distinction. Their key computations cover application domains such
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Table 1 Hardware configuration

Parameter Intel Xeon PhiTM Coprocessor 5110P IntelR© XeonR© CPU E5-2620

Chips 1 1

Core type In-order Out-of-order

Physical cores 60 6

Threads per core 4 2

Frequency 1052.630 MHz 2.00 GHz

Data caches 32 KB L1, 512 KB L2 per core

32 KB L1d, 32 KB L1i

256 KB L2, per core

15 MB L3, shared

Memory capacity 7697 MB 32 GB

Memory technology GDDR5 DDR3

Peak memory bandwidth 320 GB/s 42.6 GB/s

Vector length 512 bits 256 bits (IntelR© AVX)

Memory access latency 340 cycles 140 cycles

as scientific computing (MatrixMultiply) and artificial intelligence (KMeans, LinearRegression, PCA).

We emulate the parallel P-thread version of Phoenix and implement them using Java’s built-in multi-

threading mechanism, keeping their computing kernel logics unchanged. An arbitrary number of threads

could be set to run each of the above benchmarks.

3.3 Experimental setup

Table 1 lists the architectural details of the MIC card used in this work. In addition, we provide perfor-

mance comparison with an Intel Xeon processor, which acts as the host server of the coprocessor.

For multi-threaded executions on Xeon Phi, we assign the thread count as 1, 20, 40, 60 (physical

core count), 120, 180 and 240. While for the Xeon CPU, the selected thread number varies among 1,

2, 4, 6 (physical core count), 9 and 12. In an implementation of HotSpot VM on Linux OS, each Java

application thread is mapped to a native thread, belonging to the same JVM process. We invoke JNI

(i.e., Java Native Interface) to make sure all the application threads will be distributed evenly onto each

physical core in a multi-threaded run. Considering the inherent timing variations during benchmark

runs, each benchmark-thread pair is executed five times. We report the average throughput results for

the scalability and overall performance analysis.

4 Experimental analysis

This section summarizes the experimental results with the goal of correlating the performance metrics to

the behaviors of applications, JVM components and the coprocessor features. Such a correlation allows

us to identify the performance bottlenecks of computation- and memory-intensive Java programs running

on Xeon Phi at multiple levels. Based on this, we further propose some approaches to improve the

performance of JVM on Xeon Phi.

4.1 Performance with single thread

In order to have an intuitive impression of the performance differences between the two architectures,

we first compare the single-threaded throughputs with Xeon CPU server as a baseline. The evaluation

of all the benchmarks under single thread on both CPU and coprocessor is given in Figure 1. The left

group contains the results of Java version and the right group is for the corresponding C-version. In each

CPU-MIC pair, the throughputs are normalized to that on MIC.

As shown in Figure 1, there is a significant performance gap between CPU and MIC under single-

threaded execution. This is actually caused by various reasons, including the in-order execution type and
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Figure 1 (Color onilne) Throughput of Java Grande benchmark suite with single thread.

Table 2 L1 cache hit rates of 7 memory-intensive benchmarks

Hardware events SOR SparseMatmult LUFact KMeans LinearRegression MatrixMultiply PCA

L1 cache hit rate (%) 98.2 74.4 91.5 87.8 90.9 92.1 88.5

lower core frequency on Xeon Phi. Moreover, the two-cycle unit design in the instruction decoder makes

it inferior to the 4 decoder units in Intel Xeon E5 processors.

Besides, a big variation among different applications can be observed. Actually, the nine programs can

be divided into two categories based on the computing kernel loops: one is full of pure computations with

little memory access, e.g., Crypt and Series ; the other consists of the right seven benchmarks that are

dominated by operations of double-precision floating-point arrays, with quite frequent memory accesses

to the array elements, e.g., SOR, SparseMatmult, LUFact, KMeans, LinearRegression, MatrixMultiply

and PCA. The degradation of the second category is generally greater than that of the first one. This is

because that the GDDR5 memory of Xeon Phi suffers a much higher latency than the DDR3 memory,

which is commonly used by normal Intel Xeon processors. However, there are two exceptional cases:

one is SOR whose slowdown is much minor, the other is SparseMatmult which suffers a tremendous

throughput degradation. Actually this is mainly caused by the memory access patterns leveraged in their

computing kernels. SOR employs quite a sequential way to get array elements without nested loops, in

which the hardware prefetcher could be triggered to retrieve data ahead of need on Xeon Phi [14]. As for

SparseMatmult, its array elements are selected randomly, which leads to quite frequent off-chip memory

accesses with the high latency totally exposed to the program.

To verify the explanations above, we measured the cache utility of the seven benchmarks with Intel R©

VTuneTM Amplifier XE. Table 2 lists the L1 cache hit rate collected for the module of JIT generated code

(VTune is not able to collect L2 hit rate on Xeon Phi). A very low miss rate could be observed for SOR

because of its totally contiguous memory access pattern, while SparseMatmult suffers a rather high miss

rate (up to 25.6%). For others five benchmarks, they reveal close hit rates which conform to the similar

degradation times in Figure 1. The result is consistent with our analysis and explains the large variations

in different kinds of benchmarks’ performance gaps. Besides, there is no significant difference between the

degradation times of Java- and C-versions, which confirms that the potential porting overhead is trivial,

thus will not have an impact on our analysis of the performance.

4.2 Performance with multi-threads

One of the most important advantages of Xeon Phi is the large number of cores (up to 60) and hardware

threads (up to 240). We use the speedup of throughput to study the performance scalability with various

thread counts. Considering the massive number of threads, we additionally measured the throughputs

of the nine benchmarks with a much bigger workload to make sure that each thread has enough work to

do under a “many-thread” situation. The input data sizes are increased up to a magnitude of GB (while

the original sizes are no more than tens of MB). The results with both workload sizes are presented in

Figure 2. The graphs plot the speedup as a function of the number of threads. For each application, we
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Figure 2 (Color online) Throughput speedup of multithreaded benchmarks on CPU and Xeon Phi with varying workload

sizes. (a) Scalability on CPU with default size; (b) scalability on CPU with big size; (c) scalability on Xeon Phi with default

size; (d) scalability on Xeon Phi with big size.

normalize the throughput with respect to a single-threaded configuration.

The scalability shows no significant fluctuation when the workload size varies on the CPU. However,

the situation is rather different on the coprocessor. A better scalability for all the programs with a bigger

workload size is observed, which could be explained by the Amdahl’s law: since the thread count on Xeon

Phi is far greater than that on CPU, a sufficiently large workload could make the running time of the

parallel part remain non-neglected even under such a massive number of threads. The following analysis

is all based on the results with big workload size.

Much better scalability for all the programs can be observed on Xeon Phi. In general, the performance

keeps increasing with much more threads on Xeon Phi (more than 120) than CPU (no more than 12). An

important reason is that the latencies caused by the in-order execution can be hidden by multi-threading.

In another aspect, since the single-threaded performance is notably worse than that of CPU, it requires

much more threads on Xeon Phi to boost the performance till the sequential part dominates the execution

time. This also explains the prominent scalability of SparseMatmult : the high memory latency brings a

much worse single-threaded throughput as well as a fairly high proportion of parallel-running part, which

needs more than 240 threads to reach the critical point.

The throughputs increase before 120 threads for all the programs on Xeon Phi. As depicted in Fig-

ure 2(d), the 120-thread appears to be the critical point in throughput improvement for most of the

benchmarks. Apart from Amdahl’s law, another important reason is that the instruction decoder of each

core is modified to be a two-cycle unit in the design of Xeon Phi [15]. For this reason the core is not able

to issue instructions from the same hardware thread context in back-to-back cycle. Therefore, in order

to hide this “issue latency” and fully utilize the core potential, programmers need to run at least two

threads on each core.

Crypt is not able to scale even a little after exceeding two running threads per core. The through-

put curve of Crypt keeps fairly flat when the number of running threads per core increases from 2 to

4. According to Intel’s manual, most integer instructions (not including vector instructions for integer

operations) have a 1-clock latency. For Crypt, when two threads are running on each core, the instruction
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Figure 3 (Color online) Throughput of Java Grande benchmark suite with big workload size. (a) Crypt; (b) Series;

(c) SOR; (d) SparseMatmult; (e) LUFact; (f) KMeans; (g) LinearRegression; (h) MatrixMultiply; (i) PCA.

stream can be fully pipelined. Since there is no more instruction latency (here is 1-clock) to hide, utilizing

more than two threads per core will bring no extra benefit for throughput.

All the programs can be faster on MIC than on CPU with big enough running thread count except for

KMeans. In Figure 3, we present a list of graphs to show the absolute throughput of each benchmark

with varying thread counts on the two architectures. The x-axis on the top represents the number

of running threads on CPU, while the bottom x-axis is for the coprocessor. We can observe a better

performance for most benchmarks on Xeon Phi when running enough threads. Typically, the throughputs

of Series, LUFact, MatrixMultiply and PCA with 240 threads nearly double the best throughputs on

CPU accordingly. One exception here is the KMeans benchmark, which reveals inferior scalability and

throughput under big thread count with respect to the processor. This is mainly because KMeans always

performs a large number of computations for each element. When a lot of running threads are initialized,

the application needs more space to cache previous data for later computations. The limited on-chip

caches make Xeon Phi not able to fully parallelize the computing tasks, while normal CPU could scale

well by using a sufficient last-level cache.

4.3 Summary of observations

Based on the observations, we can obtain some experience for the guidance of Java programming on Xeon

Phi.

Memory latency. The lack of last-level cache generally causes more frequent off-chip memory accesses

with much higher latency. The fact that different memory access patterns lead to tens of times’ perfor-

mance variation in Java HPC programs proves the importance of hiding off-chip memory latency on the
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coprocessor. Therefore, it is much more critical to leverage on-chip caches for improving Java performance

on Xeon Phi in comparison to normal CPU processors.

Multithreading utilization. Because of the relatively poor single-core performance and the modified

P54C-based core design, SMT (Simultaneous Multi-Threading) plays a more important role on Xeon

Phi. For well-parallelized Java programs, at least two hardware threads per core should be initialized

to hide instruction-issuing latency. In general, the default multi-threading mechanism of HotSpot VM

reveals a good scalability for Java HPC programs. Besides, in order to achieve better inter-threading

cooperation and maximum chip utilization with more than 120 threads, there still remains further opti-

mizing opportunities in JIT when the instruction streams are generated.

Optimizing solutions. Since HotSpot VM is not “brilliant” enough for MIC architecture so far, there

remains much room for improvement. (a) One of the most important reasons for the poor single-threaded

performance is not using the 512-bit VPU on Xeon Phi. Enabling vectorization in HotSpot VM would

significantly improve the performance of Java HPC programs. (b) Since the high cache miss rate makes

the memory latency totally exposed to the array-based Java applications, we can leverage a software

prefetching method [14, 16, 17] when processing arrays in the computing kernel loops. (c) HotSpot’s JIT

does not do any optimization for the in-order execution type, making the instruction streams generated by

JIT not well-pipelined on the coprocessor under single thread. Therefore, the corresponding optimization,

e.g., to gather the same vector instructions together in unrolling loops, could be promising and expected.

5 Vectorization

5.1 Semi-automatic vectorization

The 512-bit vector unit is an important component to boost the performance for applications running

on Xeon Phi. A vector instruction is able to operate 8 double-precision or 16 float-precision elements

simultaneously, which brings a great opportunity for array-based Java HPC programs.

5.1.1 Auto-vectorization in HotSpot

Automatic vectorization has been enabled since the latest OpenJDK 7u version. The JIT compiler in

HotSpot VM can recognize appropriate loops of array-based arithmetic operations. For example:

//Loop format that can be vectorized by JIT

for (int i = 0; i < n; i++) {

a[i] = b[i] * c;

}

On traditional x86-based platform that supports Intel R© AVX instructions, JIT will translate the above

codes into native vector instructions like:

...

0xc90600a1: vmovdqu 0x10(%r14,%r13,8), %ymm2

0xc90600a8: vmulpd %ymm1, %ymm2, %ymm2

0xc90600ac: vmovdqu %ymm2, 0x10(%r8,%r13,8)

0xc90600c8: add $0x4, %r13d

0xc90600cc: cmp %edi, %r13d

0xc90600cf: jl 0xc90600a1

...

Nevertheless, the auto-vectorization in HotSpot has some restrictions. For example:

1. HotSpot’s JIT requires the loop to comply with a very restricted format for vectorization. If the

indexes of the array variables do not match the loop counter, JIT will not vectorize the loop:
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// Constant times a vector, then plus a vector

void daxpy(int n, double da, double dx[], int dx off, double dy[], int dy off) {

for (int i = 0; i < n; i++) {

dy[i + dy off] += da * dx[i + dx off];

}

}

However, this is a very good chance for vectorization from a programmer’s standpoint.

2. For a widely-used operation—reduction idiom, JIT is not able to vectorize the loop because the left

value of the assignment is not an array variable:

//Reduction idiom that can not be vectorized by JIT

double sum;

for (int i = 0; i < n; i++) {

sum += a[i] * b;

}

5.1.2 Implementation of semi-automatic vectorization

The restrictions of the auto-vectorization in JIT reveal the importance to find a new way for vectorization,

which can fully exploit developers’ insights. Therefore, we implement a semi-automatic vectorization

scheme in HotSpot VM, both for the interpreter and JIT compiler.

Our implementation allows users to specify an annotation before the loop that needs to be vectorized

when writing their Java programs. We modify javac to identify the loop following the annotation and

compile the operations for floating-point arrays in the loop into a list of new bytecodes, namely “vector

bytecodes”. Meanwhile, the bytecode that controls the loop counter is modified to add 8 (for double-

precision, 16 for single-precision) across each iteration. When our optimized HotSpot VM receives the

class file, it will parse the new “vector bytecodes” and store them into the code stream, which can be

then executed by the interpreter or JIT.

Since the vector instructions for double-precision arithmetic operations on Xeon Phi have 64-byte

alignment demand for memory operands, we take measures as below.

First, we need to ensure that the addresses of array objects are 64-byte aligned for the “vector byte-

codes”. The most convenient way is to indicate a command-line argument provided by HotSpot: “-

XX:ObjectAlignmentInBytes=64”, which makes all objects allocated in 64-byte aligned addresses.

Second, at the beginning of each Java object, there is a header followed by the object data, which

contains information important for the JVM. We thus modify the length of array object’s header to

ensure that the first element of an array is 64-byte aligned.

For the reduction operation, we modify javac to recognize the loop and do a transformation:

//The loop after transformation by our modified javac

double sum;

double[] sum a = new double[8]; // Initialize with 0.0

for (int i = 0; i < n; i++) {

sum a[0] += a[i] * b;

}

sum = sum a[0] + sum a[1] + ... + sum a[7];

We use an 8-length double-precision array to replace the sum variable. The statement “sum a[0] +=

a[i] * b;” will be parsed into “vector bytecodes”, which can once operate 512-bit data. This means “(a[i]

* b)–(a[i+7] * b)” will be stored into “sum a[0]–sum a[7]” accordingly (the stride of each iteration is

modified to 8 by javac). As the loop ends, we add up the 8 elements in “sum a” to get the result.
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Figure 4 (Color online) Speedup of throughputs of five benchmarks with varying numbers of threads.

During the transformation of a reduction operation, we do not perform a memory boundary check for

the last few elements in the array a. The correctness is guaranteed by the 64-byte alignment mechanism:

For a double-precision array whose length is not divisible by 8, the memory space from the end of its last

element to the next 64-byte aligned address does not contain any effective data, which is typically filled

with zero. Therefore, we do not need to check whether the last iteration has enough elements because

zero will be added into “sum a” for those absences.

5.2 Evaluation

Since vectorization allows no dependency across the loop iterations, we choose LUFact, KMeans, Linear-

Regression, MatrixMultiply and PCA as the most appropriate benchmarks for vectorization. We make

some transformation in the object placement for LinearRegression to make it meet the requirement for

vectorization, while leaving the computing logic and result unchanged.

We vectorize the inner loops of these programs and evaluate their throughputs with varying numbers

of threads. Figure 4 depicts the scalability curves of the five vectorized benchmarks. It is observed that

most of them do not scale well after 60 running threads. This is mainly because that vectorization makes

the proportion of parallel part’s running time reduced, leaving the sequential part (like synchronization)

dominant with big thread counts.

Figure 5 provides the throughput comparison among the three different versions of these array-based

applications, including the vectorized version on Xeon Phi, and the original non-vec versions running on

both Xeon Phi and CPU processor. In the left group, we compare the single-threaded throughputs on

Xeon Phi. As for the right two groups, the best throughput is selected out of different thread counts to

form the comparison. For each group, all the results are normalized to the non-vec version.

From the left part we can observe that on Xeon Phi, applying vectorization could achieve averagely

2.5x and maximumly 3.1x speedup of throughput compared to the original version under single thread.

Moreover, we have measured the hardware events of the computing kernel modules for these applications

on MIC (with and w/o vectorization) under a single-threaded run. As shown in Table 3, the number of

retired instructions is significantly reduced, which is due to the fact that the essence of utilizing vector

instructions is to reduce the loop iterations. Besides, an obvious decline in L1 cache hit rates is observed

for all benchmarks with vectorization. This is reasonable because the 512-bit vector instruction makes

the array traversed in a larger stride, e.g., 64 bytes, thus experiencing an L1 cache miss per access.

The right two parts of Figure 5 reveal significant performance improvement with the combination of

multi-threading and vectorization for these array-based computing-intensive Java benchmarks on Xeon

Phi. Compared to the peak throughput of the original version running on MIC, vectorization could bring

up to 2.9x and averagely 1.8x speedup. With the best throughput on CPU as a baseline, averagely 2.7x

speedup is achieved with the two key features on Xeon Phi, as shown in the third group. KMeans does

not perform well on the coprocessor, which is mainly because its original multi-threaded performance

is inferior to that of CPU server, and the improvement derived by vectorization is not able to make its
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Figure 5 (Color online) Performance gains by vectorization compared to different versions on both architectures.

Table 3 Comparison of hardware events among different versions

Benchmarks Hardware events Origin Vectorization Prefetching

LUFact
Instructions retired 90440000000 17710000000 21630000000

L1 hit ratio (%) 91.5 80.7 96.5

KMeans
Instructions retired 9660000000 6160000000 7070000000

L1 hit ratio (%) 87.8 85.7 88.7

LinearRegression Instructions retired 10290000000 6230000000 6720000000

(trans) L1 hit ratio (%) 96.5 88.6 92.0

MatrixMultiply
Instructions retired 4690000000 3080000000 3290000000

L1 hit ratio (%) 92.1 84.6 89.2

PCA
Instructions retired 18760000000 7280000000 8470000000

L1 hit ratio (%) 88.5 79.3 91.9

throughput on Xeon Phi outperform CPU that much.

5.3 Lessons learnt

Our semi-automatic vectorization scheme provides a high programmability for users to fully utilize Xeon

Phi’s strong vector computing power in Java HPC. The significant performance improvement has demon-

strated the feasibility of our proposed optimizing strategies, as well as the great potential of HotSpot’s

JIT on this state-of-the-art many-core architecture. However, the inefficiency in memory access is still a

big challenge to the overall performance. Since Xeon Phi relies heavily on software prefetching technique

to hide the high memory latency, we explore the prefetching mechanism of the coprocessor correlated

with the HotSpot VM, which is introduced in Section 6.

6 Prefetching

Data prefetching is a prevalent memory optimizing technique to fetch data into caches in advance, which

could help hide memory access latency and reduce processor stall time. It can be divided into two

categories—hardware prefetching is implemented by the hardware mechanism inside the processor to

determine the specific data prefetching way spontaneously; software prefetching is usually performed

during compiling process, i.e., compilers automatically issue the prefetching instructions according to

the analysis of program data and instruction streams. Since the hardware prefetching mechanism on

Xeon Phi is rather limited with some restrictions in multiple scenarios [14], this work mainly focuses on

software prefetching approaches to fully boost the memory performance.

In this section, we first implement a semi-automatic software prefetching model in HotSpot’s JIT

compiler according to an in-depth learning of the default prefetching policies from Intel R© ICC compiler
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that are customized for MIC. The prefetching model is based on our vectorization scheme, which allows

users to indicate specific prefetching strategies via JVM command-line arguments. We apply the strategies

to the vectorized Java benchmarks and analyze the performance under various combinations. Finally we

provide the evaluation result of our prefetching model compared to the original and vectorized versions.

6.1 Prefetching model

By studying the assembly codes generated by Intel R© ICC compiler with the “-opt-prefetch” option

enabled, we found that several particular compiling policies are customized for this new many-core ar-

chitecture. For example, a two-stage software prefetching algorithm performs best on the coprocessor.

Two-stage means that data is first brought from memory to L2 cache with a relatively large prefetching

distance, and then brought from L2 to L1 cache with a much smaller stride. Particularly, the prefetching

distance is an extremely important factor which is correlated with loop structure and iteration times.

Moreover, since the cache space on each core is very limited, ICC usually issues clevict instruction after

store operations to manually evict the specific cache line that has just been used.

Based on the observations, we implement a semi-automatic software prefetching model in HotSpot

VM, and further evaluate the performance of prefetching in Java HPC programs. When the added

JVM argument “-XX:+UsePrefetch” is switched on, our modified HotSpot will recognize all the memory

operations in the vectorized loops and generate two prefetching instructions around each corresponding

load/store instruction—the first is from memory to L2, the second is from L2 to L1. It is worth noting

that in a loop iteration, one array element may be used for multiple times, which means the same

memory address may be accessed more than once in JIT’s generated instructions. To solve this problem,

we modify JIT to recognize and remove all the redundant prefetching nodes (HotSpot’s JIT compiler

uses an intermediate graph data structure called ideal graph to represent the program for most of its

optimizations when compiling Java bytecodes to machine code [18]) during the loop transformation

phase within its optimization process. Therefore, we can guarantee that all prefetching instructions are

issued appropriately.

Meanwhile, our prefetching model provides command-line arguments for users to customize different

prefetching strategies in JIT compiler, including the specific two-stage prefetching distances and the

eviction of cache lines after memory store instructions. Moreover, for such memory load operation which

is followed by a store operation for the same address, the user can indicate whether to prefetch the

elements in the load operation exclusively1) or not.

6.2 Prefetching policy in Java

We conduct a set of experiments to evaluate the performance with various combinations of these prefetch-

ing policies using the five vectorized Java benchmarks. We select two groups of prefetching distances—one

group is 64 cache lines (4096 bytes) for memory→L2, 16 lines (1024 bytes) for L2→L1; the other is 32

lines (2048 bytes) for memory→L2, 12 lines (768 bytes) for L2→L1. Other variables include the length of

innermost loops and the number of running threads. Small loop length represents thousands of iterations,

while big length means more than tens of thousands of iteration times. The thread counts are fixed as one

single thread and 60 running threads. For each configuration and prefetching strategy, benchmarks are

executed for five times. We report the average throughputs and normalize them to that of non-exclusive

and non-clevict policy with (4096, 1024) stride pair.

The results are shown in Table 4. A very significant decline in throughput is observed for most

benchmarks with the clevict-policy except LUFact. This is because in the other four programs, the

reduction operation is frequently used in their innermost computing loops. Due to our implementation

of the vectorization scheme in HotSpot mentioned in Section 5, the clevict-policy will evict the cache line

that holds “sum a[0]–sum a[7]”, resulting a miss in each store operation for “sum a” array. While for

1) Exclusive prefetching means data is prefetched to the specific cache level with an invalidation broadcast to all other

cores’ cache lines that holds this memory data.
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Table 4 Normalized throughputs of 5 Java vectorized benchmarks with different prefetching strategies

Bench-

marks

Loop

length
Threads

Prefetching Stride/bytes (MEM→L2, L2→L1)

(4096, 1024) (2048, 768)

None (%) Exclusive (%) Clevict (%) Both (%) None (%) Exclusive (%) Clevict (%) Both (%)

KMeans

Small
1T 100.00 100.13 77.81 77.30 106.16 105.75 79.78 79.74

60T 100.00 100.27 90.00 88.86 106.41 107.75 92.88 90.87

Big
1T 100.00 99.55 79.74 80.21 102.63 102.28 80.14 79.74

60T 100.00 101.56 90.14 91.78 105.55 99.68 94.78 89.66

Linear-

Regression

(trans)

Small
1T 100.00 100.00 5.61 5.40 100.35 100.40 5.33 5.60

60T 100.00 97.76 4.09 4.12 99.16 96.96 4.03 4.23

Big
1T 100.00 99.91 5.45 5.73 100.39 100.13 5.63 5.09

60T 100.00 101.52 4.32 4.18 102.74 101.83 4.17 4.04

Matrix-

Multiply

Small
1T 100.00 100.48 31.80 32.75 97.64 98.57 31.23 32.73

60T 100.00 104.02 42.49 42.39 101.78 101.57 42.55 43.17

Big
1T 100.00 102.01 30.37 34.01 97.83 98.03 30.41 32.82

60T 100.00 95.83 43.15 42.03 86.53 89.78 40.98 41.63

PCA

Small
1T 100.00 97.66 43.03 37.76 93.63 93.34 38.01 40.61

60T 100.00 102.28 38.85 37.12 105.87 105.69 38.44 39.34

Big
1T 100.00 98.81 35.81 38.15 97.50 97.58 36.96 41.67

60T 100.00 102.92 35.86 34.98 90.94 95.19 34.03 33.39

LUFact

Small
1T 100.00 99.87 97.64 97.63 95.31 94.86 94.94 94.93

60T 100.00 97.43 98.81 101.13 104.69 104.45 100.98 104.15

Big
1T 100.00 100.30 96.64 96.43 100.13 100.49 96.65 96.69

60T 100.00 99.26 99.39 99.09 93.00 92.90 100.92 100.19

Table 5 Correspondence between innermost loop length and prefetching distance

Loop length Prefetching stride (in cache line)

[0, 1000) No prefetch

[1000, 2000) MEM→L2: 16 lines; L2→L1: 8 lines

[2000, 5000) MEM→L2: 32 lines; L2→L1: 12 lines

[5000,+∞) MEM→L2: 64 lines; L2→L1: 16 lines

LUFact benchmark, store instructions followed by line eviction may not benefit the throughput either.

As for the exclusive-policy, we can see that it has a very tiny impact for our chosen benchmarks.

Despite the strategies mentioned above, we find that the prefetching distance plays a more important

role under all circumstances. Comparing the two columns of throughput of (4096, 1024) and (2048, 768)

stride pairs with no exclusive- or clevict-policy, about −14.5%–6.4% difference could be observed. The

influence of prefetching distance varies a lot with the loop length. An empirical mapping rule can be

extracted from our substantial experimental results, which is shown in Table 5.

6.3 Evaluation

We evaluate the throughputs of the five applications using our prefetching model. Prefetching strides are

determined according to Table 4. We provide the results with exclusive prefetching and clevict policies

off. First, we compare the performance with that of the vectorized versions. Then we show the significant

speedups with respect to the original versions on both Xeon Phi and CPU processor. As evaluations in
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Figure 6 (Color online) Throughput comparison between prefetching and vectorization.
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Figure 7 (Color online) Performance gains by prefetching compared to different versions on both architectures.

Section 5, we report the average throughput out of five iterative runs for each benchmark configuration,

and normalize the results to that of non-prefetching versions. For the multi-threaded comparison, the

best throughput that could be achieved across all executed thread counts is selected.

As illustrated in Figure 6, the left group is the single-threaded comparison with vectorized benchmarks

while the right group is for multithreading. It is observed that based on vectorization, our prefetching

scheme could bring averagely 2.5x and maximumly 3.0x speedup for single-threaded performance. For

multi-threaded runs, the best throughput is averagely 40% more than that of the vectorized version.

The performance improvement under multithreading is less notable than single thread, which is mainly

caused by two reasons. The first is that a large number of threads manipulating prefetching operations

simultaneously may fill up all the MSHRs2) on Xeon Phi, making the following outstanding prefetching

requests postponed and keep waiting. The second is because of the cache contention that may be brought

by data prefetching under SMT environment.

Figure 7 depicts the significant performance improvement derived by prefetching with respect to the

original program versions on both architectures. The left group is the single-threaded throughput com-

parison between the prefetching version and original version on the coprocessor. On the basis of the

great improvement with vectorization, the speedup of LUFact could reach up to 8.1 times. Besides, an

averagely 6.2x speedup is observed. The right two groups compare the best performance improvement

with prefetching on both Xeon Phi and CPU server. Averagely 2.3x and 3.5x speedups could be observed

in terms of maximum throughput that could be reached on these two different architectures, respectively.

The hardware events profiled by VTuneTM are given in Table 3. With a slight increase in retired

instructions due to the extra prefetches, the L1 cache miss rates for all applications are significantly

reduced compared to the vectorized version, which explains the notable decrease in execution time and

confirms the availability of our prefetching model for hiding memory access latency.

2) MSHR - Miss Status Handling Register [19], is a key hardware component that holds the cache miss requests and

outstanding prefetches.
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7 Related work

Our study is the first comprehensive study of JVM performance on Xeon Phi. This section discusses

the most related work to our study, including research with respect to Intel’s MIC architecture and Java

performance analysis on multi-core and many-core platforms.

Fang et al. [20] perform an empirical study of Xeon Phi with a micro-benchmark suite, stressing both

the potential and limits of the key performance factors that are not provided by Intel’s data sheet. Some

of our analysis is based on their findings. In [17], the authors focus on how to hide memory latencies and

save bandwidth with software prefetching and special store instructions on the coprocessor. Fang [14] and

Mehta [16] have studied different prefetching strategies and find a coordinated multi-stage prefetching

policy that yields the best performance on Xeon Phi. Such studies give us hints to handle the performance

problems of the memory system when running Java HPC benchmarks on the coprocessor. There are also

studies that focus on the performance analysis and optimization for specific HPC applications on Xeon

Phi, such as NAS parallel benchmarks [21] and Linpack benchmark [22].

For multi-core platforms, Eyerman et al. [23] give a comprehensive study about the performance of

thread-level parallelism of different homo- or hetero-geneous multi-core designs, with or w/o SMT. Their

results claim that many small cores are inferior to big multi-cores, some of which are in line with our

results. But we additionally show that the weakness of small cores could be mitigated, or even to the

point of getting better performance than big multi-cores via vectorization and massive threading.

Plenty of studies explore Java on general multi-core platforms. In [24], the authors focus on the

performance and scalability issues of Java programs on modern multi-cores, including low-level hardware

measurements and tuning techniques. However, their experiments do not cover large-enough thread count

due to hardware limits. Gidra et al. [25] study the scalability problems of OpenJDK’s default Parallel

Scavenge garbage collector, and fix the bottlenecks with some well-established parallel programming

techniques on NUMA multi-cores.

There are studies focusing on running Java applications on GPU. Yan et al. [26] present a programming

interface called JCUDA, allowing Java programmers to invoke CUDA kernels. In [27], the authors provide

an evaluation of Aparapi, which enables the data-parallel fragments in Java programs to be executed on

GPGPUs. These studies convert Java bytecode into CUDA or OpenCL at runtime, but not run a managed

runtime on many-core architectures like GPU.

8 Conclusion

This paper presents the first comprehensive study on the performance of JVM using high-performance

computing applications on Intel MIC architecture. Based on our porting of OpenJDK to Xeon Phi that

builds a complete Java environment, we analyze the performance issues using the metrics of throughput

and scalability. To fully utilize the abundant computing power of Xeon Phi, we implement a semi-

automatic vectorization scheme in HotSpot. Further, we propose a software prefetching model to hide

the memory access latency. We show that, with the combination of the key features and our optimizing

solutions, e.g., massive threading, vectorization and prefetching, it can bring significant performance

improvement for the Java HPC applications that have abundant data parallelism and computing tasks.
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