
SCIENCE CHINA
Information Sciences

December 2017, Vol. 60 122102:1–122102:13

doi: 10.1007/s11432-016-0322-7

c© Science China Press and Springer-Verlag Berlin Heidelberg 2017 info.scichina.com link.springer.com

. RESEARCH PAPER .

Saudi cloud infrastructure: a security analysis

Wahid RAJEH1,2, Hai JIN1* & Deqing ZOU1

1Services Computing Technology and System Lab, Big Data Technology and System Lab,

Cluster and Grid Computing Lab, School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan 430074, China;
2School of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia

Received September 18, 2016; accepted November 17, 2016; published online April 1, 2017

Abstract The growing demand and dependence upon cloud services have garnered an increasing level of

threat to user data and security. Some of such critical web and cloud platforms have become constant targets

for persistent malicious attacks that attempt to breach security protocol and access user data and information

in an unauthorized manner. While some of such security compromises may result from insider data and access

leaks, a substantial proportion continues to remain attributed to security flaws that may exist within the core web

technologies with which such critical infrastructure and services are developed. This paper explores the direct

impact and significance of security in the Software Development Life Cycle (SDLC) through a case study that

covers some 70 public domain web and cloud platforms within Saudi Arabia. Additionally, the major sources of

security vulnerabilities within the target platforms as well as the major factors that drive and influence them are

presented and discussed through experimental evaluation. The paper reports some of the core sources of security

flaws within such critical infrastructure by implementation with automated security auditing and manual static

code analysis. The work also proposes some effective approaches, both automated and manual, through which

security can be ensured through-out the SDLC and safeguard user data integrity within the cloud.

Keywords cloud security, vulnerability detection, web security, Saudi infrastructure, cloud service

Citation Rajeh W, Jin H, Zou D Q. Saudi cloud infrastructure: a security analysis. Sci China Inf Sci, 2017,

60(12): 122102, doi: 10.1007/s11432-016-0322-7

1 Introduction

The advent of the Internet many decades ago has perhaps been one of the most influential elements

that have impacted the lives of many. Since its emergence, the Internet has steadily grown in both

scope and complexity. The technology has been widely adopted for various services including but not

limited to Ecommerce, Voice over IP (VoIP), online gaming, streaming services and cloud services. As

the Internet continues to grow and get adopted for various services, so do the associated technologies

that are relied upon in the design and realization of these web platforms. With the growing reliance

upon the on-line services, the security and integrity of the abundant data that is handled, transferred

and stored within the cloud is constantly becoming the target of malicious activities that attempt to

breach and gain unauthorized access for various reasons and motive. Recent years have seen a steady

*Corresponding author (email: hjin@hust.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-016-0322-7&domain=pdf&domain=pdf&date_stamp=2017-3-31
https://doi.org/10.1007/s11432-016-0322-7
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-016-0322-7


Rajeh W, et al. Sci China Inf Sci December 2017 Vol. 60 122102:2

C
lo

u
d
 c

ar
ri

er

Performance audit

Privacy impact

Security audit

Cloud auditor

Business support

Interoperability

Provisioning

Service management

Cloud consumers

Service

orchestration

Privacy

Security
File servers

Finance data servers

Cloud provider

Database servers

Media servers

Cloud infrastructure

Figure 1 A generalized structure of cloud/web services.

growth in the volume and sophistication of exploits and data breaches, some of which have affected

critical infrastructure and resulted in huge financial losses. Security has been and continues to remain a

core concern within critical infrastructure. As more services continue to evolve and migrate to the web,

making them openly accessible within the public domain, the need to safeguard and protect user data and

service integrity grows accordingly. Furthermore, in an attempt to bridge the gap between citizens and

governments, clients and service providers, it has become even mandatory in some countries for public

services to achieve and maintain a complete web presence [1]. This trend which is gradually picking up

in Saudi Arabia has seen numerous public services including education, banking, healthcare and even

government, migrate to the web where such services have become more efficient in reaching the needs of

citizens in even the most remote areas of the nation. With such a web presence, security analysis and

awareness reports are important to ensure that the ever-growing data are safeguarded from malicious

intent such as the Shamoon Trojan [2] that targeted the Saudi petroleum industry. The breach in such

critical web and cloud services would not only impact on individual user privacy but could have high

financial and economic ramifications on major industries. This is a core motivation of the work presented

in this paper.

A majority of security concerns are related to the application layer and this is simply motivated by

the fact that most X as a Service (XaaS) platforms are rendered at the application layer and accessed

via web browsers amongst other application tools. The openness and availability of such services to all

users have led to the steady growth of application layer attacks in comparison to other layers such as

the physical and network layers. This claim is also strongly supported by current reports including the

NIST database [3]. Another independent source, Gartner Group has suggested that more than 72% of the

security attacks that target organizations reside within the application layer of cloud and web services,

generally illustrated in the Figure 1.

Since the application layer is the final level of implementation, organizations without the man-power or

development team size tend to lack the resources required to ensure proper integration of services at the

application layer. Additionally, since security at the application layer is strongly dependent on security

at the underlying network, internet and transport layers, critical skill is often required in ensuring that

implementation at the application layer does not inherit vulnerabilities from underlying layers while not

introducing its own vulnerabilities into the integrated framework that makes up a system.

The aim of this paper is precise and thus motivated. Through experimental security analysis and

evaluation of a large number of platforms, the paper aims to stress methodologies, tools and practices

which are crucial in ensuring application layer security of such platforms at each level of the Software

Development Life Cycle (SDLC). By focusing on Saudi cloud infrastructure, the paper aims to establish

a framework towards security-aware web software development as well as assuring application security

standards. Moreover, since the current on-demand data products development trend is not unique to

Saudi Arabia, the results and framework presented in this paper offer feasible adaptations to a majority of



Rajeh W, et al. Sci China Inf Sci December 2017 Vol. 60 122102:3

middle-eastern and global scenarios. This extends the impacts and benefits of the experimental evaluation

beyond the targeted country.

2 Application layer as a security focus

While web applications originally surfaced as a means for businesses and organizations to function and

handle operations, the modern day web applications have become core and integral components of daily

lives. The application layer remains the weakest link in the security chain and this is largely attributed

to the fact that, good programming skill is simply not sufficient in guaranteeing software security at the

application layer. The OWASP [4] and WASC [5] top 10 list from the year 2015 are presented below.

• Injection (SQLi).

• Broken Authentication and Session Management (BASM).

• Cross-Site Scripting (XSS).

• Insecure Direct Object Referencing (IDOR).

• Security Misconfiguration (SM).

• Sensitive Data Exposure (SDE).

• Missing function Level Access Control (MFLAC).

• Cross Site Request Forgery (CSRF).

• Use of components with known vulnerabilities (UCKV).

• Unvalidated redirects and forwards (URF).

Unfortunately, counter intuitively, organizations continue to adopt a reactive rather than proactive

stance in application layer security, a trend that is further demonstrated by the experimental results

presented in this paper. A core drawback with the reactive stance to security is that, in Saudi Arabia as

well as in most nations where everyday lives continue to become more interwoven with cloud products

and services, critical data continues to accrue within such services and to react to security only after

a breach has occurred essentially puts user data at risk, a practice that could pose real economic and

security concerns. Through the experimental evaluation presented in the paper, a more proactive and

efficient framework of software security auditing at each level of the SDLC is encouraged for cloud service

providers.

To the best of our knowledge, there has been very limited effort in the documentation of such large-scale

security auditing work and when such work has been presented, data is extracted through experimental

simulations that are designed and realized in controlled laboratory environments. The work in this paper

on the contrary covers 70 live infrastructures that are online and accessible to the general public. The

remainder of the paper is thus organized. The research background pertaining to the work presented in

this paper is presented in the Section 3. The experimental security evaluation scheme is put forward and

described in the Section 4, which is followed by the Section 5 where the experimentally derived data is

presented and analyzed. Preventive and mitigation schemes for web and cloud services are presented in

the latter parts of this section. The paper concludes in Section 5.

3 Research background

The rapid growth of the Internet and the its accompanying XaaS solutions has drawn attention from

researchers from various fields with application layer security being at the heart of concerns in recent

years. In the area of cloud security, there are also various sub areas that literature has focused on. While

some literature has addressed the issue of cloud security in a generalized manner [6], others have attempted

to examine emerging security challenges that accompany cloud infrastructure development [7]. Along the

lines of implementation, other literatures have proposed recommendations and safe practices towards

cloud enterprise security [8,9]. While such work is effective in offering insight and guidelines on how safe

implementation can be achieved, they fail to address true modern-day implementation trends since their

recommendations are not based upon any real experimental data but rather follow general theoretical



Rajeh W, et al. Sci China Inf Sci December 2017 Vol. 60 122102:4

assumptions. The work in this paper however draws from real platform implementation trends that are

acquired through experimental security audits via automated tools and static code analyses that cover

numerous real-time systems. In [10], the Waler tool is proposed and presented as a tool with the capability

of guaranteeing vulnerability reports for each detected bug which may contain violated invariant paths.

The tool offers developers the ability to effectively analyze web applications from a security point of view.

This tool however fails to accurately identify software flaws that are related to FOR loops, SQL queries

and regex forms. Additionally the tool’s capability is only limited to servlet-based web applications.

Another work in the area of tool development is presented in [11].

The tool NetCheck is designed to target the network layer in an attempt to detect vulnerabilities

that have transcended from the application layer. Key capabilities of the tool are associated with its

independence from application and network specifications as well as its documented ability to detect over

95% of network bug trackers within Apache, Ruby and Python. These automated tools however fail to

address application layer software security vulnerabilities. An additional drawback of the NetChecker tool

lies in its inability to detect application-related faults in implementation scenarios where non-socket IPC

is adopted. In the domain of tool implementation and evaluation, the work in [12] presents a review of

eight well known vulnerability scanners and evaluates their performances against common web application

vulnerabilities in order to verify their accuracies in relation to each vulnerability. The evaluated tools

were WVS, HailStorm Pro, WebInspect, Rational AppScan, McAfee SECURE, QA Edition, QualysGuard

PCI and NeXpose.

The literature reported that although a majority of the tools were effective against XSS type 1 and first-

order SQLi, second-order SQLi vulnerability classification proved challenging due to complicated forms of

the vulnerability that are associated with other forms of keywords. The review established that Black-box

scanners offered a useful means by which security auditing could be conducted at lower time and financial

costs compared with static and manual code analyses. The work in this paper however effectively combines

both automated tools and static code analysis into a single integrated auditing framework. More related

to the work presented here in this paper is the background literature that have attempted to scan services

with specific tools with the goal of discovering vulnerabilities within these services and propose means by

which such flaws could be avoided in the future. Examples of such work are seen in [13–15]. In [13], the

authors present a case study that covers penetration testing of a single target application. This is achieved

by means of tools and static code analysis. In [14], instead of targeting a single platform and auditing

it for multiple vulnerabilities, a single vulnerability, SQLi, is selected and a tool is developed towards

its detection. A case study is presented towards an evaluation of the security achieved by multiple open

source CMS. An analysis of some key challenges associated with cloud-aware security implementation is

presented in [16]. Closely related to [17], the work provides some specifications towards the provision of

more efficient security schemes within cloud systems. All such literature have reported interesting data

but while the web continues to evolve in nature and complexity, so does its security state-of-the-art and

the research area merits further and continuous effort. Additionally, while such efforts may effectively

target specific CMS systems, they fail to cover other web development technologies.

4 Experimental methodology

Through real-time security auditing with automated tools and manual static code analysis, the paper

addresses application layer security in practical and experimental manner. Contrary to previous work

that target a single platform within controlled experimental environments, the paper selects 70 public

and critical domain web services in Saudi Arabia towards the realization of a case study that covers

numerous web application technologies with numerous real-time implementation schemes. Additionally,

the target platforms are scanned over a period of 3 months, allowing for their application layer conditions

to be captured under varying traffic conditions. While the paper does not claim novelty in the manner

in which these automated scans and static code analyses are conducted, the work presents one of the

largest scale and most diversified real-time web application security data captured on live cloud platforms.



Rajeh W, et al. Sci China Inf Sci December 2017 Vol. 60 122102:5

Furthermore, while such experiments have been conducted for different scenarios in the past, the data

they report is out of date as of the time of this paper and the platforms they cover are much smaller in

scale compared to the work in this paper.

Drawing from the results attained from this wide-scale, real-time security audit, the paper proceeds

to propose some proactive means by which service providers can ensure software security at low im-

plementation costs at each level of the SDLC. Contrary to some previous work that blindly propose

“safe-practices” in the development of web services, this paper draws from real-time live and experimen-

tal data and therefore offers strong insight into current practical scenarios.

4.1 Criteria for target and tool selection

In order to ensure diversity and reliability of the data obtained from the targets, the selection of the

targets is made to incorporate 14 targets from each of the 5 economic sectors namely:

• Primary—educational industries.

• Secondary—healthcare industries.

• Tertiary—financial industries.

• Quaternary—manufacturing industries.

• Quinary—governmental services industries.

Additionally, no two targets are selected from the same web domain in order to ensure that the data

captures a large and diversified scope. Here in this paper, for the security and privacy of the platforms

contained within the experimental case study, the true domain names of platforms are not referenced.

Platforms running beta versions are not included in the experimental dataset and neither are platforms

that have not been open to the general public for more than a period of 6 months prior to the conducting

of the experiments. These measures are considered sufficient in eliminating bias in the experimental

evaluation.

Since automated tool scans are a core component of the experimental evaluation scheme carried out

in the paper, the selection of these tools is a crucial component in ensuring the integrity of the acquired

results and strong emphasis is therefore placed on this step. The selection of the tools applied in auto-

mated platform security audit is strongly guided by the OWASP top 10 security threat list. While at

the moment of writing this paper, there exists not a single tool capable of recognizing vulnerabilities and

identifying them in line with the OWASP list, certain well established tools prove highly efficient in pro-

viding a reference point for judging vulnerabilities in line with the OWASP list. In realizing automated

target evaluation, the three tools relied upon are as follows.

• Acunetix [18]: The Acunetix vulnerability scanner offers a cloud-based solution to web security au-

diting. It operates by crawling a target website and automatically scans it with an extensive vulnerability

database. While the tool has the potential of detecting a wide range of vulnerabilities, it is known to be

highly effective in the detection of SQLi and XSS vulnerabilities.

• Nikto [19]: The Nikto tool comes in the form of an open source Common Gateway Interface (CGI)

script scanner. Core features of the tool are its evasiveness and capability to operate stealthily. This

evasive feature is highly effective when working with a large set of targets since experiments progress

seamlessly without setting off penetration detection routines on the target platform.

• Netsparker [20]: The highly versatile tool has the potential to sniff out vulnerabilities from multiple

web scripting languages. While the tools vulnerability database is not as vast as that of Acunetix, it has

the capability of reporting vulnerabilities with a high level confidence.

The parameters adopted in the operation of the various automated tools are detailed in Tables 1–3.

While automated tools have the potential of offering high speeds of evaluation, previous work [13, 15]

has demonstrated that static code analysis offers a fail-safe mechanism by which false positive results can

be removed from experimental results while further allowing for context to be detected in some security

paradigms in a way that is presently unavailable in automated tools. Static code analysis remains an

integral part of the Security Development Lifecycle (SDL) of most institutions and the research community

and provides a white-box means of which code can be analyzed for security loopholes. In the experiments



Rajeh W, et al. Sci China Inf Sci December 2017 Vol. 60 122102:6

Table 1 Operation parameters of Acunetix vulnerability scanner

Parameter Details

1. Profile Default

2. Vulnerability scanner Enabled

a. Site crawler

b. Subdomain scanner

c. Blind SQL injection

3. Additional tools d. HTTP editor

e. HTTP sniffer

f. HTTP fuzzer

g. Authentication tester

Table 2 Operation parameters of Netsparker vulnerability scanner

Parameter Details

1. Scan policy All security checks

2. Crawling Enabled

3. Crawl properties a. Find and follow new links

b. Enable crawl and attack at the same time

Table 3 Operation parameters of Nikto vulnerability scanner

Parameter Details

1. Evasion technique 147AB

2. Pause duration 1

3. Timeout 10

4. Configuration profile Default

presented in the paper, static code analysis is relied upon as a follow-up mechanism for isolating and

confirmation vulnerabilities that have already been qualitatively detected by the automated tools.

4.2 Experimental data acquisition

While within the scope of this paper, web services are solely evaluated at the application layer, there is

the need to ensure that network layer firewalls and penetration detection systems on the target platforms

do not interfere with the experiments, leading to some spurious results. This is an issue for concern in

conducting such cross domain experiments because some target platforms may apply IP address screening

protocols in order to limit application access only to IP addresses originating from within the Saudi Ara-

bian domain. In addressing such IP screening and restriction mechanisms, two experimental evaluation

test beds are designed in order to ensure that all target platforms are effectively scanned in an exhaustive

manner. The direct scan test bed which is illustrated in Figure 2 is applied to targets where IP screening

routines are absent, thereby allowing for probe packets to originate and terminate from within the China

Education and Research Network (CERNET).

Such direct scans allow for the evaluation command terminal to originate and terminate probe packets.

On the other hand, the indirect evaluation test bed, depicted in Figure 3 is applied to targets that present

with IP screening routines. The mechanism for detecting such routines is realized through a simple ping

script that pings each target with 56 bytes of data and listens for a response. If a ping timeout is received,

IP screening is considered present and the indirect probe approach is applied for the target evaluation.

In indirect target evaluation scenarios, the security tools which are deposited remotely on a Saudi

domain PC terminal are executed via a python script which resides on the CERNET terminal. This

uses the remote Saudi terminal as an unwitting VPN host in reaching the target platform for security

evaluation.

Furthermore, since multiple probe packets originating from a single IP source may be regarded as

Denial of Service Attacks (DOS) by security mechanisms present on some target infrastructure, a 30-



Rajeh W, et al. Sci China Inf Sci December 2017 Vol. 60 122102:7

CERENT gateway server

Command
terminal

VNC

Probe packetsResponse data

Target service

Figure 2 A direct setup toward vulnerability assessment.

CERENT gateway server

Command
terminal

Saudi domain
proxy

VNC

4. Probe packets

6. R
esponse data

3. E
sta

blis
h proxy connectio

n

5. Response data

2
. 
R

ef
u
se

 r
es

p
o
n
se

1
. 
P

ro
b
e 

p
ac

k
et

s

Target service

Figure 3 An indirect setup toward vulnerability assessment.

minute interval is allowed between consecutive scans in order not to trigger any anti-DOS mechanisms

on the target platforms.

5 Experimental data analysis and discussion

5.1 Experimental analysis

This section presents an analysis of the data acquired through the experimental methodology illustrated

in Section 4. Of all the 70 platforms targeted in this web security case study, 67 of them yielded successful

and complete evaluation results while 3 targets within the academic research sector appeared to implement

persistent anti-penetration schemes that significantly hindered and interfered with automated tool scans.

In line with the OWASP 2015 list, the vulnerabilities detected are sorted and presented as in Subsec-

tion 2.1. Figure 4 graphically depicts this categorization. It is crucial to point out that although the

vulnerabilities are reported under these categories, the tools applied in the security evaluation do not

always report the vulnerabilities with such labels. This grouping into the above categories is conducted

in order to standardize the results and allow for easy comparison with previous related work. For ease

of presentation, Table 4 summarizes the results by illustrating the 2 most vulnerable platforms within

each sector against their vulnerability count in reference to each security vulnerability category. The vul-

nerability counts represent the number of independent and unrelated instances detected for each specific

vulnerability.

The results depicted in Table 4 stress the criticality of the security conditions associated with the

infrastructure. The infrastructure selected from the primary sector present with the highest security

threat level with the target 1 being the most vulnerable of all the 70 targeted platforms. On the contrary,

the lowest security threat levels are encountered within the tertiary and quaternary sectors, a result in

line with preliminary analysis that suggested high security awareness within the sector as a result of



Rajeh W, et al. Sci China Inf Sci December 2017 Vol. 60 122102:8

N
u
m

b
er

 o
f 

in
st

an
ce

s

Detected vulnerabilities

Figure 4 An overall illustration of Saudi platforms vs. vulnerabilities.

Table 4 An illustration of the target platforms and their associated vulnerability prevalence

Target
Vulnerability

CSRF SQLI SDE XSS SM UCKV BASM IDOR URF MFLAC

Primary
Tgt1 – – 102 1 55 – 6 – – 3

Tgt2 2 3 – – 1 – 5 2 – 2

Secondary
Tgt1 4 1 3 – – – 3 1 2 –

Tgt2 – 3 2 7 1 – 3 – 1 –

Tertiary
Tgt1 – – 1 1 1 – – – – –

Tgt2 1 – 3 2 1 7 – – 6 –

Quantery
Tgt1 2 1 – 1 1 – – 3 1 2

Tgt2 2 – 1 2 0 1 – – 3 6

Quinary
Tgt1 18 1 4 3 – 2 1 3 – 10

Tgt2 2 – – – 5 8 – 2 1 2

the presence of penetration detection systems which hampered and in some cases, fully halted remote

automated security probes.

While the most vulnerable web platform presents sensitive data exposure as the most prevalent flaw,

security misconfiguration remains the most widespread and prevalent application level vulnerability

amongst all platforms. In order to establish a reliable parameter in explaining the criticality of each

of the application layer software vulnerabilities contained within this experimental study, prevalence p is

applied and defined within the context of this paper as

p =
vulnerability instances

number of targeted platforms
. (1)

Eq. (1) presents a means of handling each application layer security vulnerability in terms of p and

this yields the data extrapolated in Table 4.

The quantitative data presented in Table 5 suggests that security misconfiguration is indeed the most

prevalent security threat to the web and cloud platforms applied in the experimental study presented

in the paper. This is a trend that further holds in Figure 4 below which illustrates the total number

of experimental platforms against the overall number of detected vulnerabilities. As earlier claimed in

the paper, software security is a requirement that is not completely satisfied through programming skill

only. This claim is supported by the high prevalence rate attained by security misconfiguration since

this security vulnerability has no direct correlation with software programming or design. We prove that

through security conscious practices and routines at each level of the SDLC, such security threats could

be tackled and cut down to a significant level.

Some common practical security misconfigurations encountered in software implementations of some

of the most vulnerable target platforms are as follows.

• Web server session disclosure.



Rajeh W, et al. Sci China Inf Sci December 2017 Vol. 60 122102:9

Table 5 The prevalence (p) of each security vulnerability across all target platforms

Vulnerability p

CSRF 0.6

SQLi 0.5

SDE 2.1

XSS 7.6

SM 10.3

UCKV 0.5

BASM 5.6

IDOR 0.5

URF 1.3

MFLAC 0.6

• Software (PHP/ASP. NET) version disclosure.

• Outdated PHP /ASP. NET versions.

• HTTP Cookie Disclosure.

• Session cookie scoping to parent domain.

• Session token in URL.

• Deprecated SSL.

With an average prevalence of 2.9, SQLi holds the lowest prevalence of 0.5. While this may appear

to attribute the SQLi security vulnerability with a low criticality, previous related work has shown that

the high exploitability of the SQLi vulnerability along with the impacts of successful exploitation render

it a highly critical vulnerability even with such a low prevalence. Additionally, although SQLi has the

lowest prevalence rate, its presence in some of the web platforms covered in this case study is proof of

the fact that the patch-up approach that is often taken to fixing vulnerabilities that may be perceived

at the network layer fall short of effectively mitigating these vulnerabilities, thereby allowing them to

propagate throughout infrastructure. In-between the highest and lowest prevalence rates are XSS and

BASM. The XSS flaw is the second highest in occurrence and the third most critical whereas the BASM

is the third most occurring but the second most critical, according to the work in [4]. The vulnerabilities

have associated occurrences of 523 and 378 respectively across all platforms. Some practical BASM flaws

encountered at the web application layer through static code analysis are as follows.

• Session Cookie without secure flag set.

• Session Cookie without HTTP flag set.

• Rails Cookie persistence.

• User credential storage in cleat text.

While some of these application level security risks can be attributed to programming skill, sound

security routines at various levels of the SDLC are still sufficient in detecting and mitigating such security

loop holes and safeguard critical user data and privacy.

Drawing from the overall data obtained in this case study as well the correlation presented in Figure 5,

it can be concluded that web application vulnerabilities remain a major threat to organizations regardless

of their size or business model. Furthermore, because most of the highly severe vulnerabilities could be

attributed to programming skill and practice, the pressure placed upon development teams could be a

factor contributing to the high prevalence rate of web vulnerabilities.

In conclusion, although the web interface is only one of the exploitable components of an infrastruc-

ture, due to the nature in which this interface is openly placed within the public domain, it becomes

therefore very unchallenging for attacks on it to become rapidly spread into some other components of

the organization’s infrastructure. While this is a well known fact within the web development and secu-

rity community, the results presented here in the case study suggest that little is being done to protect

this sensitive web interface. This phenomenon could be attributed to the fact that web development

teams are often excessively focused on the realization and implementation of algorithms and engineering

solutions for the web, with very tight deadlines, leading to an oversight in the security aspect of these



Rajeh W, et al. Sci China Inf Sci December 2017 Vol. 60 122102:10

Detected vulnerabilities

N
u
m

b
er

 o
f 

in
st

an
ce

s

Figure 5 An illustration of the most vulnerable (blue) and least vulnerable (red) platforms. All values are off-set with

10 points for clarity of illustration.

Design specifications and 
requirements

Design

Testing

Programming

1. Specification of 

security requirements

2. Analysis of potential 
risks

1. Design evaluation

1. Risk-based blackbox 
testing

Beta testing and user 

feedback

1. Whitebox testing and 
static code analysis

1. Live penetration 
testing

Figure 6 A straight-forward approach to security-oriented SDLC. Green components represent proposed additional op-

erations.

web applications. That is to say that more emphasis is being placed on design rather than on security.

The role of automated security audit, such as the ones carried out here in this case study could therefore

not be exaggerated. While these automated audits do not offer a one-stop solution to web security, they

provide a cost-effective and scalable approach to security awareness. This awareness, coupled with sound

routines at each layer of the SDLC, provides a robust strategy in ensuring web application security.

Based on the experimental results obtained through the diversified case study conducted within Saudi

Arabia, some recommendations and mitigation schemes are proposed towards safe and reliable security-

conscious software development for web and cloud services.

5.2 Safeguarding cloud software security and integrity

The SDLC is a mechanism sufficient in guaranteeing the security of software developed at the application

layer for both web and cloud services. The paper argues that by ensuring security awareness at each stage

within the SDLC, cloud service providers become more efficient in safeguarding user data and service

integrity within their online frameworks. Figure 6 presents a modified SDLC structure with proposed

additional components introduced at each stage in the pipeline towards ensuring overall service quality

and integrity that propagates all the way through the design stage and continues to hold even for deployed

online systems.

The following mechanisms are proposed towards ensuring security and integrity within web and cloud

service frameworks.



Rajeh W, et al. Sci China Inf Sci December 2017 Vol. 60 122102:11

5.2.1 Security awareness

The first and most crucial step in safeguarding security at each step of the SDLC is the through a well

engrained security awareness within the organizational operation. With security at the fore-mind of

each staff within the development team, security-oriented development of software becomes the order of

business in an environment where security becomes the benchmark of all operations. With this condi-

tion satisfied, it can be expected that all staff within a development will act consciously to safeguard

web service security and in situations where the skills required in ensuring security are absent, security

consultants need to be engaged to supplement the efforts of the already security aware development team.

5.2.2 Application-centered development

With the growing complexity of web and cloud services, there has been an accompanying growth in the

various technologies and scripts that are relied upon in the realization of such complex systems. For

this reason, in the development of new systems or in the extension of already existent ones, a thorough

understanding of both underlying technology as well as new potential technology needs to be attained.

Priority needs to be placed on the application development goals and purposes in order to allow for

efficient and workable security oriented SDLC routines to be realized at each level. The integration of

new components into already complex systems needs to be performed in a manner that does not further

introduce security flaws into current infrastructure.

5.2.3 Reliable threat modeling

While threat modeling has been a well explored security mitigation scheme in recent years, the need for

reliable and well representative threat models is still an issue that merits further effort. Reliable models

need to provide a perspective of which security threats and loopholes could be encountered in both pre-

deployment and post-deployment stages of web software development. In attaining reliable models for

web and cloud software design, the need for effective categorization schemes such as the OWASP scheme

adopted in the work in this paper are crucial. Such categorization schemes help in modeling threats

in an efficient manner, thereby aiding in the forecast of potential security threats that may surface in

an accidental or motivated manner. Accidental threats may include the accidental discovery of bugs

and sensitive software information while motivated threats may include script kiddies or organized crime

syndicates.

Conscious and well established threat modeling has the benefit of becoming more robust over time as

it builds upon well established and tested threat models with newly emerging ones. In the area of threat

modeling, the OWASP [4] model remains one of the most efficient and highly effective points of reference.

5.2.4 Post deployment security auditing

In modern day systems, the launch of a platform does not constitute the end of the development life cycle

but a new stage in the evolution of the software since online updates and modifications of the already

launched system are common ways of extending platform features without suffering service downtime.

For this reason, post-deployment security audit has become one of the most common means by which

security is ensured within the enterprise ecosystem.

In contrast to the design stage where data flows and code analysis are heavily relied upon, the most

effective means of ensuring post-deployment security remains penetration testing [21]. Penetration testing

could either be realized through the use of automated tools or via static code analysis, in line with the work

presented here in the paper. While static code analysis relies heavily on the skill of development of security

audit personnel, automated penetration testing is easily realized by means of tools and scripts including

but not limited to those that are applied in the realization of the experimental case study presented here

in this paper. Acunetix [18], Netsparker [20] and Nikto [19] are very good examples of automated tools

that are applicable in realizing sound and effective penetration testing in the post-deployment stages of



Rajeh W, et al. Sci China Inf Sci December 2017 Vol. 60 122102:12

web and cloud software development. The choice of tools however bears a strong correlation with the

target platform properties as well as monetary resources available towards the realization of the task.

While automated tools offer a rapid, cost effect and reliable means of detecting vulnerabilities within

complex platforms in a black-box approach, the deficiency associated with these tools remains an on-

going research effort and one that merits further research. While a thorough modeling of the draw-backs

associated with these tools falls outside the scope of this paper, we address some general modeling of the

drawback problem. Firstly, the efficiency of these automated tools is linearly correlated with the stage of

platform development. This correlation is established by the fact that, while automated tools may be used

to establish the security state of a platform in its early stages of development, future platform upgrades

and patches may open up the platform to vulnerabilities in new ways that were otherwise not present in

early stages. In relying on automated tools, it is therefore necessary to perform security audits at each

stage of development. Secondly, automated tools, while more efficient than manual analysis, still require a

thorough capability and know-how regarding cloud and web security. For this reason, automated security

audits may completely fail to secure a platform if they are simply executed in a plug-and-play manner

without a thorough understanding of the target platform and the various vulnerabilities that it may likely

be suffering from. Finally, since automated tools are software development projects themselves, they need

to be kept up to date in order to maintain their operational efficiencies. As zero-day vulnerabilities are

detected, an automated tool will require a timely update in order to acquire vulnerability signatures or

will otherwise simply fail. Unfortunately, within current trends, trade-offs are made at various stages

within the SDLC that impair the efficiencies of these tools which are immensely relied upon in platform

security auditing.

Regardless what tools are adopted, static code analysis in white-box environments is strongly recom-

mended towards a cross-verification and supplementation of the security state of online systems. An

approach that strongly compensates for draw-backs in automated tools.

6 Conclusion

Critical web and cloud application quality is inseparable from application security. Security remains a

core component of cloud services as more services continue to migrate to such environments. The growing

scale and complexities of web platforms has been accompanied by an equally growing and unrelenting

effort to breach and compromise user data that is entrusted in the hands of these online platforms. While

some of these breaches could be attributed to other factors including insider data and access leaks, the

lack of quality and efficient security-oriented standards along the SDLC is to blame for a majority of these

security compromises in modern day ecosystems. Towards addressing the issue, the work in this paper

conducts an experimental case study targeting 70 web services in Saudi Arabia. Automated tools and

static code analysis are applied towards an online evaluation of the security conditions of these platforms

in direct and indirect test bed approaches. The results obtained through these highly diversified online

experiments suggest that, while some security mechanisms can be achieved through programming skills

and models, the greater aspect of application layer software security flaws are strongly linked with the

lack of stringent and efficient security standards throughout the SDLC of these services.

Drawing from the experimental results, the paper proposes straight-forward and effective mechanisms

through which application security can be safeguarded through-out the entire development life cycle. A

core contribution of this paper lies in its thoroughness in applying real-time experimental data in extrap-

olating the true security conditions of a large number of platforms. This highly diversified experimental

approach to web and cloud security analysis facilitates the efficient proposal of highly effective and eas-

ily applicable mitigation and preventive schemes. Unlike previous work that propose highly theoretical

and unpractical solutions, the proposals put forward in this paper are highly practical and in line with

modern day cloud development trends. While this paper mainly focuses on vulnerabilities and tools are

adopted as a means of detection and mitigation, future work will focus on the automated security tools

themselves in a way that deeply analyzes the tool behavior. This back-end analytical information on the



Rajeh W, et al. Sci China Inf Sci December 2017 Vol. 60 122102:13

tools will be beneficial to the security and research community by providing a deep understanding on

why certain security vulnerabilities may be missed in early stages of platform development, as well as

what the leading factors that drive false-positive tool reports may be.

Acknowledgements This work was supported by Ministry of Higher Education in Saudi Arabia and National

Basic Research Program of China (Grant No. 2014CB340600). Many thanks to the team from Cluster and Grid

Computing Lab at Huazhong University and the staff from the Saudi Culture Mission in China for their immense

support towards this research work.

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Awoleye O, Blessing V, Ilori A. Web application vulnerability assessment and policy direction towards a secure smart

government. Government Inf Quarterly, 2014, 31: 118–125

2 Garber L. Security, privacy, and policy roundup. IEEE Secur Priv, 2012, 10: 15–17

3 James T, Khansa L, Cook D, et al. Using network-based text analysis to analyze trends in Microsoft’s security

innovations. Comput Secur, 2013, 36: 49–67

4 Razzaq A, Anwar Z, Ahmad F, et al. Ontology for attack detection: an intelligent approach to web application security.

Comput Secur, 2014, 45: 124–146

5 Zhu Z, Zulkernine M. A model-based aspect-oriented framework for building intrusion-aware software systems. Inf

Softw Tech, 2009, 51: 865–875

6 Armbrust M, Fox A, Griffith R, et al. A view of cloud computing. ACM Commun, 2010, 53: 50–58

7 Ludinard R, Totel E, Tronel F, et al. Detecting attacks against data in web applications. In: Proceedings of the 7th

International Conference on Risk and Security of Internet ans System, Cork, 2012. 1–8

8 Zhang H G, Han W B, Lai X J, et al. Survey on cyberspace security. Sci China Inf Sci, 2015, 58: 110101

9 Ramachandran M, Chang V. Recommendations and best practices for cloud enterprise security. In: Proceedings

of IEEE 6th International Conference on Cloud Computing Technology and Science (CloudCom), Singapore, 2014.

983–988

10 Chess B, McGraw G. Static analysis for security. IEEE Secur Priv, 2004, 2: 76–79

11 Zhuan Y, Gessiou E, Portzer S, et al. Netcheck: network diagnoses from blackbox traces. In: Proceedings of the 11th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), Seattle, 2014. 115–128

12 Dukes L, Yuan X, Akowuah F. A case study on web application security testing with tools and manual testing. In:

Proceedings of IEEE Southeastcon, Jacksonville, 2013. 1–6

13 Mei J J. An approach for sql injection vulnerability detection. In: Proceedings of the 6th International Conference on

Information Technology: New Generations, Las Vegas, 2009. 1411–1414

14 Patel S, Rathod V, Prajapati J. Comparative analysis of web security in open source content management system. In:

Proceedings of International Conference on Intelligent System and Signal Processing, Gujarat, 2013. 344–349

15 Zhang Y, Liu Q, Luo Q, et al. XAS: cross-API scripting attacks in social ecosystems. Sci China Inf Sci, 2014, 58:

012101

16 Hashizume K, Rosado D, Fernández E, et al. An analysis of security issues for cloud computing. J Int Serv Appl,

2013, 4: 1–13

17 Behl A. Emerging security challenges in cloud computing: an insight to cloud security challenges and their mitigation.

In: Proceedings of World Congress on Information and Communication Technologies (WICT), Mumbai, 2011. 217–222

18 Muscat I. Web vulnerabilities: identifying patterns and remedies. Netw Secur, 2016, 2016: 5–10

19 Davies P, Tryfonas T. A lightweight web-based vulnerability scanner for small-scale computer network security assess-

ment. J Netw Comput Appl, 2009, 32: 78–95

20 Saleh A, Rozali N, Buja A, et al. A method for web application vulnerabilities detection by using boyer-moore string

matching algorithm. Procedia Comput Sci, 2015, 72: 112–121

21 Antunes N, Vieira M. Penetration testing for web services. Computer, 2014, 47: 30–36


	Introduction
	Application layer as a security focus
	Research background
	Experimental methodology
	Criteria for target and tool selection
	Experimental data acquisition

	Experimental data analysis and discussion
	Experimental analysis
	Safeguarding cloud software security and integrity
	Security awareness
	Application-centered development
	Reliable threat modeling
	Post deployment security auditing


	Conclusion

