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Abstract Network anomaly analysis is an emerging subtopic of network security. Network anomaly refers

to the unusual behavior of network devices or suspicious network status. A number of intelligent visual tools

are developed to enhance the ability of network security analysts in understanding the original data, ultimately

solving network security problems. This paper surveys current progress and trends in network anomaly visual-

ization. By providing an overview of network anomaly data, visualization tasks, and applications, we further

elaborate on existing methods to depict various data features of network alerts, anomalous traffic, and attack

patterns data. Directions for future studies are outlined at the end of this paper.
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1 Introduction

In recent years, the rapid development of network communication techniques is increasingly exerting rig-

orous and scalable requirements on network security awareness [1]. Thus, analysis of network monitoring

data plays a key role for both researchers and network service providers.

In the field of network data analysis, analyzing network anomaly data is one of the most significant

challenges. Network anomaly refers to the unusual behavior of network devices or suspicious network

status, which can either be malicious or benign and can be attributed to network attacks or failure of

network devices, such as abnormal network flows, unauthorized access of resources, and suspicious host

behavior [2]. Network attack brings an outbreak of vicious abnormal activities whereas network failure

causes harmless abnormal behavior.

Analyzing network anomaly is of great significance and value. Understanding the difference between

normal network events and anomalous activities is essential for monitoring network security, thereby sug-

gesting the behavior of potential security risks and presenting network conditions. In this way, detecting

and reasoning of network anomaly can ensure damage mitigation and future prevention of possible net-

work attack or network failure. Understanding network anomaly can benefit network security analysis in

an intuitive way.
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Table 1 Classification of network anomaly data and relevant visualization tasks

Data type Data properties
Visualization tasks

Detection &

identification

Correlation &

classification

Awareness &

assessment

Network alerts

Temporal [3] [4–6] [7, 8]

Tabular [9, 10] [11, 12] [13, 14]

High-dimensional [15] [16]

Topological [17–20] [21, 22]

Anomalous traffic

Host

Temporal [23–26]

Tabular [27–30] [31]

Topological [32, 33]

Port Temporal [34, 35] [36]

Multi-level
Topological [37–42] [2, 43]

Tabular [44, 45]

Attack patterns
Tabular [46]

Topological [47]

Others
Spatial [48] [49]

High-dimensional [50]

From the aspect of network security analysts, visualization tools are extensively adopted in a variety of

areas such as real-time monitoring, offline log analysis, and attack detection. Visualization methods turn

inflexible network anomaly data into graphical representations and provide interactive analysis modes,

which completely enhance human perception. By leveraging statistical charts or specifically-designed

visual summarization and representation, complex abnormal patterns from massive network datasets are

visually presented and obtained by human analysts for further decision making.

This paper aims to fill the gap between network security analysis and information visualization and

summarize the state-of-the-art network security visualization. First, we provide a summarization and

categorization of data types and features in Section 2 with their corresponding analytical tasks and

network security applications from the aspect of visualization in Section 3. In the following sections, we

classify the existing work on network anomaly visualization based on the three categories of data types

presented in Table 1, which includes network alerts (Section 4), anomalous traffics (Section 5) and attack

patterns (Section 6). Finally, we identify the challenges for future research in Section 7.

2 Data

Different types of network anomaly data are used to obtain different purposes with regard to the network

security community. Table 1 summarizes the most commonly used data types and their properties

correlated with potential visualization tasks.

2.1 Network anomaly data

Network anomaly data refer to unusual network events and trends recorded in network traces or detected

by automated network defense devices. The anomaly data that draw the most attention of the network

security community can be roughly categorized into the following three categories [31, 43].

• Network alerts. Network defense devices, e.g., intrusion detection systems, firewalls, anti-virus

software, and others, generate alert events by automating matching algorithms based on a fundamental

network information, such as network status and traffic data [51]. Each generated alert contains at least

three kinds of information, as follows: time stamp occurrence, alert type, and involved devices (always

in the form of source and destination IP addresses).

• Anomalous traffic. The preceding conventional automated network security systems could fail to

detect all potential anomalies and even occasionally mislead analysts to draw erroneous conclusions [51].
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Table 2 Visualization forms for different data features

Data features & visualization forms Tabular(%) Temporal(%) Topological(%) Spatial(%) High-dimensional(%)

Statistical chart (bar/line chart, etc.) 22.58 46.43 – – –

Node-link diagram 16.13 – 68.75 – 50

Parallel coordinates 9.68 – – – –

Matrix/grid 29.03 21.43 – – 25

Scatter plot 12.90 14.28 – – –

Stack graph – 10.71 – – –

Radial layout 3.23 7.14 18.75 – –

Bundle diagram 3.23 – 6.25 – –

Tree map – – – – 25

Hierarchical tree 3.23 – 6.25 – –

Physical map – – – 100 –

Directly analyzing anomalous network traffic with raw packets or network flow records effectively ad-

dresses this problem by incorporating human perception as well as expertise. Unlike network alert

events, this type of anomaly data is hidden in normal traffic events and is identified with the help of

both visualization methods and human knowledge. Based on the distinguished analysis level of network

traffic, anomalous traffic can be further categorized into three classes, as follows: traffic of hosts, traffic

of ports, and multi-level traffic.

• Attack patterns. Network attack is a more specifically analyzed object of network security

compared with alert events and anomalous traffic, involving a sequence of devices that serve as a way

to reach the ultimate goal of the attacker [47]. The security community is therefore quite generous for

focusing their attention on the attack paths and the respective patterns of complex attacks.

In addition to the preceding three data types, other network anomaly data can also be derived from

network information gathering facilities, such as malware analysis tools and compound results of math-

ematical computing models; for example, previous studies [52–54] focused on single or multiple features

of malware samples to understand the in-depth exploration of malware behavior. Matuszak et al. [49]

calculated network trust by using a mixture of different proportions of availability, detection, and false

alarm values, as well as predictability. Kotenko et al. [50] computed network vulnerability based on

specific scoring systems.

2.2 Data properties

As previously stated, most network anomaly data are originally derived from system logs generated by

security maintaining systems or raw network trace records. This particular kind of data source allows

the coexistence of a certain number of data features (as shown in Table 1), in which each demands

different visualization and analysis methods. Table 2 is a summarization of common visualization forms

for different data features.

• Tabular. Logs and records always appear in the form of tabular format that can be considered as

a series of network events records.

• Temporal. Each record in the entire series contains a time stamp to determine when a message

is generated.

• Topological. The records in the series also contain relation and information transfer between

devices that provides the availability for the entire network topology.

• Spatial. In a few cases, the records in the series may contain spatial property such as locations

to indicate the physical position of each network event, which is complementary to the logical position

in network topology.

• High-dimensional. Apart from the previously stated time and location properties, the records

in the series are also likely to include other information, such as relevant ports, transport protocols, and

so on. Therefore, representing each record as a high-dimensional vector is natural.
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Table 3 Presented data sources in available materials

Data source Tools Dataset

Security events

Firewall
Lee et al. [7] –

Foresti et al. [6] IC-ARDA research projects.

IDS

Shiravi et al. [11] Private Snort dataset.

Abdullah et al. [13] Georgia tech campus alarm logs.

Girardin et al. [15] IES project.

Koike et al. [4] Signature database of NIDS.

Onut et al. [27] DARPA datasets.

Network traces

Netflow records

Ren et al. [23] DNS query logs from a US university.

Yin et al. [25] Cisco.

Taylor et al. [37] SiLK.

Mcpherson et al. [35] Department of energy traffic.

Packets
Ball et al. [28] TCP-dump & Ethereal.

Abdullah et al. [36] TCP-dump and Pcap.

Other Malware Inoue et al. [44] Malware knowledge pool.

2.3 Data sources

Different data sources include different kinds of network anomaly data with various data features. Table 3

is a summarization of presented data sources in the available materials. The sources of security events

include network alert and attack pattern data, whereas sources of network traces include anomalous

traffic data.

These datasets vary in format, but all contain crucial information that plays a significant role in

visualization and analysis, such as time stamp, type of protocols (e.g., TCP, UDP, and others), type of

service (e.g., FTP, DNS, Web, and others), source and destination of IP address and port, and detailed

information of a certain event. These data contribute to the foundation of the analysis system and the

analysis process.

In most cases, visualization systems are based on a single data source to avoid the problem of the

time-consuming heterogeneous data processing, whereas incorporating several data sources into a single

system allows analysts to obtain a richer insight by integrating all kinds of data and data features.

3 Visualization tasks, applications and pipeline

Visualization methods are extensively applied in the analysis process of network anomaly data to support

the needs of network security.

3.1 Tasks of visualization

The tasks of visualization analysis, which includes detection and identification, correlation and classi-

fication, as well as awareness and assessment, are designed accordingly in order to fulfill the various

requirements of network anomaly research.

• Detection and identification. Network anomaly analysis cannot be conducted without targets.

The first step of anomaly analysis is to identify all suspicious anomalous events, thereby earning visu-

alization tasks of anomaly detection and identification an essential position. Instead of only displaying

anomaly generated by automated detection methods, visualization tasks require graphical representations

of fundamental network information, such as network traffic, to help analysts distinguish anomalous net-

work behaviors from a substantial volume of normal status [51].

• Correlation and classification. Network anomalies vary in forms and involve numerous devices

(or network entries of a certain device). Classifying these two aspects and discovering correlating patterns

between different classification groups through visualization methods are actually necessary. In this way,

security operators are capable of determining more harmful anomaly groups that cause greater damage
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Figure 1 Partnerships between user-involved visualization and visualization tasks.

and locate more vulnerable device groups, which are easily destroyed by a specific kind of attack. Such

visualization tasks require displaying information of different groups together in one or multiple views to

assist with comparison and correlation.

• Awareness and assessment. Another kind of visualization aimed at raising the overall awareness

of network anomalous state, including the temporal distribution and the varying trend. Therefore,

assessment of a specific anomaly can be created based on its severity, frequency, and effects. Such

visualization tasks generally require visual displays of multi levels and multi-dimensions to provide an

overview-to-detail analysis mode.

These tasks are all supported by user-involved visualization, as shown in Figure 1. The tasks of

raising awareness and creating an assessment is a relatively more comprehensive goal of network anomaly

visualization and is occasionally performed with the assistance of detection results as well as correlation

and classification analysis. Moreover, the task of detecting and identifying anomaly can also provide the

foundation for correlation and classification. A complex visualization system may be designed to fulfill

two or more tasks among these three in order to support a multi-stage analysis process.

3.2 Applications of visualization

Three visualization tasks provide different levels of security maintaining purposes, thereby serving for

the same goal that is applied to specific security use cases. Visualization of all kinds of network anomaly

data can be applied to analyze various network security problems with an attempt to alleviate or even

solve the problem.

For example, Lee et al. [7] present visual firewall that accurately depicts patterns of distributed denial

of service attack by visualizing network alerts of intrusion detection system logs and other network

information altogether.

SVision [27] uses anomalous network traffic recorded in packet trace to distinguish the victims and the

attacker of a Nachi worm attack. The goal of SVision is to integrate visualization with human knowledge

to develop beneficial means for security operators to ease the tedious process of mitigating the worm.

Yelizarov and Gamayunov [46] design a visualization tool to display complex attacks. Therefore,

complicated security problems such as distributed network scanning can be analyzed in a more interactive

and understandable way.

In addition to the three preceding security problems (network scanning, DOS attack and worm attack),

other application scenarios are also seen in network anomaly visualization. Table 4 provides a rough

summarization of common security applications of each type of anomaly data.
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Table 4 Different applications of all kinds of network anomaly data, including network alerts, anomalous traffic, attach

patterns, and other data

Applications
Network alerts

visualization

Anomalous traffic

visualization

Attack patterns

visualization

Other

visualization

Port and network scanning [3, 6, 7, 9, 11, 15, 16] [9, 24, 28, 30, 33–37, 45] [12, 46, 47] [55]

DOS attack [6, 7, 18, 20] [25, 27, 34, 37, 43] [2, 46]

Viruses/Worms/Trojans attack [4, 6–8, 13, 20, 36] [25, 27, 29] [2]

IP spoofing/swapping [13, 15] [37] [14]

Backdoors and rootkits [9, 18] [36, 37]

Propagate spam [5, 8, 19, 21]

Misuse of computer networks [29, 30, 44] [22]

Zombie networks [23]

Malware infections [31, 33, 43] [50]

Raw data Data
pre-processing

Processed
data

Visual

mapping
Visual

symbols

View generation

& coordination
Views

Human interaction

Figure 2 Conceptual pipeline of network anomaly visualization.

3.3 Pipeline of visualization

Visualization of network anomaly data usually follows a general visualization pipeline [56], as depicted

in Figure 2.

Raw data derived from systems logs or network records may contain a variety of errors and invalid items;

therefore, employing a series of data pre-processing operations, including data cleaning, data aggregation,

data transformation, and others is necessary. These operations not only remove the redundancy of raw

data but also process data into a structured format for the next stages.

Once the datasets are ready, the visual mapping is applied to convert data objects into visual symbols.

Visual symbols with targeted designs are required to adapt to the need of displaying different data

features for network alert, traffic, and attack data. Effective visual designs ensure the participation of

human perception and enhance the ability to obtain insights.

Finally, the visual symbols are integrated into single or multiple views to fulfill analysis demands.

Meanwhile, interaction is available during each stage. Typical interactions include choosing, dragging,

zooming, adjusting color mapping and data mapping ways, and level-of-detail control. Intelligible and

intuitive interactions allow analysts to participate in the entire visualization pipeline and make the biggest

use of their expertise by adjusting the parameters of data processing procedures, selecting different visual

mapping methods, or manipulating visual representatives. The entire pipeline and the feedback loop

increase the possibility of uncovering hidden patterns in the data and generating beneficial knowledge of

the target network system.

4 Network alerts visualization

Visualization of network alert data are mostly aimed at fulfilling tasks of correlation and classification, as

well as awareness and assessment. Multiple data features (as illustrated in Section 2) are used to support

this procedure. This section describes the visualization techniques specially designed for temporal data,

tabular data, high-dimensional data and topological data in network alerts.

4.1 Temporal data

With regard to time periodicity, temporal data can be classified into linear time and cyclic time [57].

Temporal feature visualization of network alerts allows analysts to discover the anomalous trend, anomaly
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occurrence frequency as well as periodicity, and others.

4.1.1 Linear time

Linear time uses a linear time domain to interpret time elements from a starting to an ending point [57].

The linear feature of linear time perfectly suits the visual representation of elements along a linear

axis [58–69].

For example, SnortView represents time along the horizontal axis and aligns the source IP along the

vertical axis. The entire coordinate system is therefore divided into numerous small cells in which multiple

glyphs of varying shapes and colors depict different services and protocols of NIDS alarms. Different from

SnortView, Foresti et al. projected time to a linear axis along the radius direction and proposed the W
3

visualization concept that stands for where, when, and what. A node-link diagram in the inner circle

indicates the entire network topology, which is linked with dark dots on the outer rings to represent

different types of network alerts. In this way, correlations between various alerts can be identified by

filtering alerts and investigating different time stages. However, only alerts occurring in the latest history

period are shown in the system to avoid visual clutter attributed to complex situations. As a result, this

visualization method may work well with a short time period but is not appropriate for long time periods.

Another effective visualization form for linear time is stack graph, which displays multiple values

of different aspects of a specific time stamp. EvoRiver [70] and CiteRivers [71] used a stack graph-

based theme river to show topic and citation coopetition dynamics during a certain linear time period.

Unfortunately, stack graph is rarely seen in network anomaly visualization in spite of its excellence.

4.1.2 Cyclic time

Cyclic time refers to time variables that vary periodically (for example, 24 hours of each day [72], four

seasons of each year). Radial visualization designs are obviously more appropriate for a cyclic time.

SpiralView [5] applies a spiral time axis to highlight the periodical alerts. In this layout, a circle

represents a day, and each circle is divided into 24 parts depicting 24 hours. Therefore, analysts can

easily notice the periodical alerts that last longer than the others. However, although radial layouts

clearly display periodic patterns, they cannot avoid the problem of space wasting [73].

Visualization methods designed for cyclic time are more suitable for periodically regular data with the

aim of discovering abnormal patterns. In contrast, analysts benefit from linear time representations that

appear more intuitive in indicating attribute values. Deviant values and sudden changes of attributes are

more obvious in a linear time display.

4.2 Tabular data

As previously stated, alert data are always recorded as a series of events in network logs, thereby il-

lustrating what is happening to the target network. Based on the aggregation level of network alerts,

visualization of tabular alert data can be categorized into a single event based visualization and group

based visualization.

4.2.1 Single event based visualization

Single event based visualization considers recorded events of network alerts as separate individuals and

uses consistent visual elements to present these events one after another. Popular visualization forms are

the list, scatterplot, pixel map, and so on.

For example, Lamagna proposed a pixel-map-based heat map design to visualize network log alarms [9],

as shown in Figure 3. Each block in the heat map represents a record in a log file, arranged in a day (Y

axis) to hour (X axis) way with varying colors indicating different sources of logs files. Another example

of pixel map design is the system developed by Nicklaus et al. [10], which include a bivariate geomap

view, a scatterplot view, a parallel coordinate plots view, and a histogram view. Alert frequency and

types are clearly described in this design.
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Figure 3 (Color online) An integrated visualization on network events [9] @ copyright 2011 IEEE.

Single event based visualization in most cases involves a massive number of alerts. The advantage of a

single event based visualization is that it offers an overview of all recorded network alerts and shows the

distribution pattern of alerts in the entire event series.

4.2.2 Group based visualization

Group based visualization techniques are designed to display network alerts in aggregated groups. Alert

types and network attributes are commonly used as classification rules.

IDS RainStorm [13] is an example of supervising the alerts of departmental networks by aggregating

data based on both IP address and time to reduce overlaps.

Shiravi et al. [11] implemented Avisa, a security visualization system that is aimed at enhancing the

capability of analysts to correlate different types of alerts. IDS alerts are categorized into groups at

the top left corner and the curves connect relevant hosts to corresponding alert types. By correlating

prioritized hosts to intrusion alerts, Avisa makes it possible for analysts to compare hosts confronted

with different network intrusions and distinguish which intrusion types deserve the main concern.

Comparing groups and determining correlations between groups can be achieved by group-based visu-

alization. Analysts can identify the alert type or the vulnerable network and prioritize which should be

handled first.

4.3 High-dimensional data

The coordinate system is suitable for two or three-dimensional data by projecting each attribute to

each axis [74–76]; however, it can hardly handle high-dimensional data with four or more dimensions.

Visualization of high-dimensional data aims at displaying high-dimensional data in low-dimensional spaces

(always in two-dimensional spaces). Common techniques are icon displaying and spatial mapping [77].

4.3.1 Icon displaying

Specifically designed icons, which use various visual elements of the icon to represent different attributes

of the data object, are popular in displaying high-dimensional data.

Radar chart (or star plot) is an typical example of these icons [68,78,79]. Data attributes are valued by

axes radially arranged along the circle sharing the same starting point and lines connecting neighboring

attributes to show the overall state of data. Ref. [78] summarizes anomalous communication features of

network users.

Radar chart provides a compact visualization form to display high-dimensional data; however, this

chart is inappropriate when the dataset becomes larger in volume rather than dimension.
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4.3.2 Spatial mapping

Fortunately, spatial mapping methods can cover the drawback of icons. Spatial mapping methods use

two-dimensional spatial location to display attributes as well as correlations between substantial amounts

of high-dimensional data.

Parallel coordinates [80–85] and scatterplot [86–88] matrix are two of the extensively used spatial map-

ping techniques. Each axis in parallel coordinates represents a single attribute. Lines passing through all

axes correspond to data objects. Scatterplot matrix visualized N -dimensional data with N
2 scatterplots

in an N ×N matrix, with each one indicating the correlation between a certain pair of attributes.

However, all the preceding visualization techniques may lose their efficacy once the data dimension

becomes extremely high. In such cases, dimension reduction methods like principal component analysis

(PCA) [89,90] and multidimensional scaling (MDS) [91–93] are required to project high-dimensional data

into a low-dimensional space by either linear or nonlinear transformation.

NIVA [16] projects the four segments of IP address into three-dimensional Cartesian coordinate system

by IP-Space algorithm based on MDS. In addition, a dimension reduction method for visualization that

is called self-organizing map (SOM) algorithm is applied to the system proposed by Girardin [15]. SOM,

which was invented by Kohonen [94], is a technique for reducing dimensions and displaying similarities

and dissimilarities. The main difference between MDS and SOM is that classical MDS achieves the goals

via eigenvalue decomposition whereas SOM is a kind of unsupervised learning algorithm.

Unlike icon-based techniques whose efficacy lies in presenting different attributes of single objects,

spatial mapping techniques are capable of not only revealing the distribution characteristics of multiple

objects in a single view but also effectively explaining the relationship between two attributes. As a

result, spatial mapping techniques are always expected to provide a big picture of a dataset.

4.4 Topological data

Visualization of topological alert data displays alerts based on network structure. Employing a node-link

diagram is a common technique to achieve this goal, in which each node represents an anomaly object

and links connecting pairs of nodes to indicate some kind of relationship.

Maltego [17] used an optimized node-link layout to display clustering of online and network information

to reveal potential events that threaten the operation environments of a certain organization. Ocelot [21]

is a novel hybrid hierarchical node-link visualization that employs a packing technique called Petri dish,

as shown in Figure 4. A convenient network visualization system can always meet the requirements of

filtering, searching, selecting, and other interactions to facilitate the exploration of the network. Petri

dish enables users to not only explore the topological structure but also freely group entities by selecting

nodes. Hence, Ocelot can be applied to detect the anomaly and flexibly create related responses.

5 Anomalous network traffic visualization

Visualization of anomalous network traffic are mostly designed for tasks of detecting and identifying

anomalous behaviors. This section introduces visualization techniques designed for temporal, tabular,

and topological features of anomalous traffic data.

5.1 Temporal data

Visualization designs tend to focus on the varying trends of linear time rather than periodicity with

regard to anomalous traffic data. The following examples introduce both conventional and novel ways of

displaying linear time of traffic data.

Hosts serve as access to the network. When an anomaly occurs, host traffic immediately becomes

strange, thereby making host traffic visualization significant. Ren et al. [23] presented a visualization

system depicting dynamic DNS traffic on the host level by employing animation methods. Zhou et al. [26]

proposed and implemented ENTVis to extend the entropy-based traffic analysis from the temporal space
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Figure 4 (Color online) The Petri dish of Ocelot [21] @ copyright 2015 IEEE.

to the visual clustering space, thereby quickly identify linear time spans when similar network traffic

features occurred. TNV [24] lists time along the horizontal direction of the matrix and hosts along the

vertical direction. One of the main ideas of TNV is to display host activities and their connections over

time. Interactions, such as selecting areas of interest and filtering links, facilitate the exploration of

network traffic to support anomalous behavior detection process. Provided with a certain time period

and suspicious hosts, analysts are able to deduce problem hosts (both internal and external) involved

in the attack based on the discovered prolonged packets sending strange-looking activities and inactive

host behavior.

Ports are used as notations to identify different network processes of a single host. Port traffic serving

as data transmission entries offers another anomaly detection mode similar to host traffic. Abdullah

et al. [36] employed stacked histograms with horizontal time axes to visualize the number of packets

delivered from different ports by various protocols. Similarly, IDGraphs [34] and PortVis [35] display port

traffic data in a 2D space that aligns linear time information in the vertical or horizontal direction and

another attribute in the opposite direction. Conventional statistical graphs such as these offer an entry to

the analysis process by providing an overview of the entire traffic situation, thereby allowing exploration

of temporal similarities and patterns. In this way, analysts can immediately identify and investigate

suspicious ports in the port detail view, which interpret all available information of the selected port.

5.2 Tabular data

Different from network alert data, emphasizing the network traffic that flows from one device to another

is necessary for visualization of tabular traffic data.

5.2.1 Single event based visualization

For single event based visualization of traffic data, directed lines and adjacency matrix are popular ways

to indicate both the source and the destination of a traffic record.

VISUAL [28] and NICTER [44] are typical examples that display information transfer between hosts
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(a) (b)

Figure 5 (Color online) Visualization design for tabular and topological traffic data. (a) Dissimilarity matrix designed

by Hao et al. [31] @ copyright 2015 IEEE; (b) a node-link-based heat map design [39] @ copyright 2014 IEEE.

by directed lines. Distinguished spatial positions, such as inner and outer space as well as left and right

space, are applied to differentiate the source devices from the destination devices.

Intuitively detecting an anomaly of hosts at a certain time point it not easy because of such visualization

forms; however, these forms can hardly depict the dynamic change of traffic of a time period. Animation

design is an alternative choice to improve these forms; however, brings memorial burden.

5.2.2 Group based visualization

Group based visualization of traffic data aims at comparing various groups of traffic to identify the

outliers. Hao et al. [31] defined the dissimilarity of flow ensembles with regard to several aspects such as

duration, density, and distribution. Figure 5(a) shows the dissimilarity matrix in which a darker color

refers to the ensembles with higher dissimilarity. This visualization design allows analysts to focus on a

small and manageable subset of network flow for follow-up analysis.

5.3 Topological data

The network topology is significant in visualization of traffic data. Analysts can easily identify groups

of hosts that continuously communicate with each other, as well as the specific host that plays a central

role by analyzing the topological structure.

DAEDALUS-VIZ [43] offers a highly flexible and tangible visualization system for darknet traffic.

DAEDALUS-VIZ also employs animation to exhibit traffic events in real-time and 3D visualization to

illustrate the complicated topological structure. As shown in Figure 6 in Ref. [43], the sphere in the

center represents a complete IPv4 address space and the surrounding rings represent the organization

under the surveillance of DAEDALUS. These lines and points between the sphere and the rings show the

transmission of darknet packets. Furthermore, a variety of filters can be applied in this system, thereby

allowing users to find significant information in a short time.

3D visualization is proven to be effective in facilitating the completion of complex tasks [95]. However,

the basic interactions of 3D view always include 3D navigation, which is recognized as a kind of time-

consuming and inaccurate interaction [96]. 2D visualization systems with appropriate designs with the

purpose of visualizing anomalous network traffic are preferred by the visualization community.

Based on conventional node-link diagrams, Liao et al. [32] improved the node design by presenting

informative nodes that include various anomaly events. Cortese et al. [41] enhanced the simple node-

link BGPlay system by employing a topographic map that clearly shows ASes traversing tiers. Zhao

et al. [39] developed a node-link-based heat map design for assessing global network security situation

as shown in Figure 5(b), leading to a gateway of displaying the real-time active extent of host activities

based on network topology. Locate active hosts and discovering subnet structures, together with long

time observation that provides the possibility of detecting abnormal host activities, is quite convenient

for analysts because of combined heat map and node-link diagram.
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(a) (b)

Figure 6 (Color online) Visualization design for network attack patterns. (a) Displaying multistep attacks in Ref. [46] @

copyright 2009 IEEE; (b) the PERCIVAL system relying on attack graph [47] @ copyright 2015 IEEE.

Glanfield et al. [38] created a novel network hierarchy presentation to better analyze network flow

by aggregating IP addresses into groups as elements of the hierarchy. Concentric circles are used to

indicate the branch depth of the hierarchy and identify the difference in traffic volume between different

levels of this branch. Analysts are supposed to first locate the abnormal IP hierarchy through the ring-

like overview and then drill down to the detailed IP and volume information by interactively selecting

the target hierarchy. Mansmann et al. [42] compared three space-filling layouts in displaying network

address hierarchy. Therefore, he concluded that the one-dimensional HistoMap is preferable at the AS

level because of its scalability and stability; by contrast, the strip treemaps better fit the IP level analysis

because they maintain the input order of nodes.

However, visualizing intricate traffic in the network topology is challenging because of the tremendous

amount of traffic generated by network devices at any time. Techniques such as edge bundling [40, 97],

graph compression [32], and clustering [98] are used to simplify the graph result to solve the complexity

of the topology.

6 Network attack patterns visualization

Visualization of network attack patterns handles the task of obtaining awareness of attack components

and assessing the evolution pattern of a certain attack. Improving existing network protection measures

or even inventing more consolidated ones against the analyzed attack to build a safer network system is

possible for security operators because of this kind of visualization. Visualizing the attack path is the

core of this kind of visualization.

Yelizarov and Gamayunov [46] used cylinder glyph connected by transparent quadrangles to indicate

attacks at different stages during a complex attack. Varying sizes and colors of each cylinder depict the

severity level and the attack type, respectively, as shown in Figure 6(a).

Angelini et al. presented PERCIVAL [47], a visual analytics tool that assists analysts in obtaining a

better understanding of both static and dynamic risk levels of the network by applying proactive and

reactive modes of the prototype based on the attack graph, as shown in Figure 6(b). Each node of the

attack graph represents an attack step toward a certain device, in which the links between nodes indicate

the transitions between attack steps. In the proactive mode, when the system is not currently under

attack, comparison of computed attack paths analysis and the actual evolution of attack is allowed when

the system is not currently under attack, thereby providing insights on the effectiveness of the adopted

mitigation actions. However, the reactive mode is triggered whenever an attack is detected. The barriers

of mitigation actions, which infer whether the action was successfully completed or not, are placed right

beside the related nodes with different colors.

The attack graph based on the node-link diagram applied in the system displays important links (attack

steps) well based on the entire network topology but fails to solve the visual occlusion problem when the

graph becomes more complicated. Another advantage of PERCIVAL is the the use of multiple coordinated

views. Attacks and the global environment of the network can be dynamic and extremely complicated,
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which requires the integration of multiple visualization methods to support various levels of investigation.

In such cases, association analysis of multiple views is necessary, as presented in Ref. [99–108].

7 Conclusion and future work

Visualization of network anomaly data provides analysts with interactive visual tools to integrate human

perception and knowledge into the analysis process of network security. Visualization also addresses the

problems arising from large-scale and heterogeneous data. This paper provides an overview of relevant

visualization techniques and visual analysis systems with regard to network anomaly data. Fruitful

researches have already been conducted in this field. Nevertheless, studies that have hardly been done

before but are of great value still exist:

• Real-time data analysis. Most existing network anomaly visualization uses data from offline

datasets. However, real-time analysis is actually worth more attention because of the support of timely

response and decision making. Considering the large volume of real-time network anomaly data to be

addressed, meeting the requirements of real-time display and response while remaining functional is quite

challenging for visualization.

• Big screen technique. The amount as well as the content of network anomaly data are increas-

ingly becoming rich in recent years because of the gradually development of malicious network actions. As

a result, the need for simultaneously displaying more network information from different aspects arises.

Under the leading trend of big screen employment, providing big screen technique an opportunity is

worth trying. However, appropriately displaying different network information on each screen is still a

challenge. Analysts could easily become confused when considering too much information.

• Privacy. Network security data, especially network anomaly data, are expected to maintain

privacy and security whereas visualization designs require detailed data information to fulfill analysis

tasks. Problems in balancing privacy needs of anomaly data and visualization demands should be solved.

• Objective verification. Verifications of existing network anomaly visualization systems are

mostly subjective and case-dependent. Therefore, building a consistent and unified verification system

that applies to any possible situation is difficult. This difficulty is holding back the urgent necessity of

creating such an authoritative objective verification system.
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