
SCIENCE CHINA
Information Sciences

December 2017, Vol. 60 120204:1–120204:13

doi: 10.1007/s11432-017-9167-3

c© Science China Press and Springer-Verlag Berlin Heidelberg 2017 info.scichina.com link.springer.com

. RESEARCH PAPER .
Special Focus on Analysis and Synthesis for Stochastic Systems

Time-inconsistent stochastic linear quadratic control

for discrete-time systems

Qingyuan QI & Huanshui ZHANG*

School of Control Science and Engineering, Shandong University, Jinan 250061, China

Received April 16, 2017; accepted July 16, 2017; published online November 6, 2017

Abstract This paper is mainly concerned with the time-inconsistent stochastic linear quadratic (LQ) control

problem in a more general formulation for discrete-time systems. The time-inconsistency arises from three

aspects: the coefficient matrices depending on the initial pair, the terminal of the cost function involving the

initial pair together with the nonlinear terms of the conditional expectation. The main contributions are: firstly,

the maximum principle is derived by using variational methods, which forms a flow of forward and backward

stochastic difference equations (FBSDE); secondly, in the case of the system state being one-dimensional, the

equilibrium control is obtained by solving the FBSDE with feedback gain based on several nonsymmetric Riccati

equations; finally, the necessary and sufficient solvability condition for the time-inconsistent LQ control problem

is presented explicitly. The key techniques adopted are the maximum principle and the solution to the FBSDE

developed in this paper.
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1 Introduction

As is well known, the classical stochastic control problem is assumed to be time-consistent in the sense

that the well-celebrated Bellman optimality principle can be applied. Time consistency means that the

optimal control is independent of the initial pair, i.e., if the control is optimal on the full time interval, it is

also optimal on any time subinterval. The Bellman optimality principle from the dynamic programming

methods serves as a basic tool in seeking the optimal control for the time-consistent stochastic control

problems, see [1–5].

However, stochastic control problems may not be time-consistent for real-world systems (or time-

inconsistency) in the sense that the optimal control for a specific initial pair on a later time interval may

not be optimal for that corresponding initial pair [6,7]. The time-inconsistent control problems have vast

potential applications, especially for mathematical finance, such as hyperbolic discounting and mean-

variance portfolio selection problem [8–15]. In [16], the mathematical formulation of time-inconsistent
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problems was first proposed. Following [16], the time-inconsistent control problem has been a hot research

topic and many significant contributions have been made [17–26].

As studied in previous literatures, there are two main approaches to handling time-inconsistent control

problems: pre-committed control method and game theoretic formulation. Pre-commitment means that

the initial pair (τ, x) is fixed and we find control to minimize the cost function starting from time τ , dis-

regarding the fact that the control may not be optimal for any k > τ . Though the pre-committed control

method is reasonable in some practical situations, the time-inconsistency is actually not considered [18].

On the other hand, the time-inconsistency can be dealt with within the game theoretic framework. To be

more specific, the control uk for k > τ can be viewed as the kth player, which controls the system only at

time k. This formulation indicates that the terminal pair (k,Xk) is the initial pair for (k + 1)th player;

each player tries to find an optimal control for his/her own problem, i.e., the control uk is only optimal at

time k in the infinitesimal sense [27]. This kind of control is termed as “equilibrium control”. A precise

definition of equilibrium control was given in [18,19]. In this paper, the time-inconsistent control problem

is investigated in a dynamic manner from the game theoretic perspective. Instead of seeking the “opti-

mal” control, we aim to find the open-loop “equilibrium” control by solving the essentially cooperative

stochastic differential game.

The time-inconsistent stochastic LQ control problem for continuous-time systems was studied in [17,28].

The definition of open-loop equilibrium control was presented. The maximum principle was derived, and

the equilibrium control was obtained by decoupling a flow of forward and backward stochastic difference

equations (FBSDE) in the case of coefficient matrices being deterministic and the system state being

one-dimensional. Finally, a mean-variance portfolio selection example was provided to verify the main

results.

For the discrete-time systems, time-inconsistent control problems were studied in [22] and [24–26,29];

some significant contributions have been made in the past several years. A time-inconsistent control prob-

lem with indefinite weighting matrices was considered in [22, 24], while the mean-field time-inconsistent

control problem for discrete time systems was investigated in [26, 29].

We would like to point out that the time-inconsistent control problem to be solved in this paper is

more general than that in [22, 24–26, 29]. To be specific, the time-inconsistency only arises from the

coefficient matrices and weighting matrices depending on the initial time in [22, 24–26, 29], while, the

terminal terms in the cost function involve the initial state together with the matrices depending on the

initial time result in time-inconsistency in our framework, which brings essential difficulties in exploring

the solvability conditions. Another thing to note is that the FBSDE obtained in [22] cannot be decoupled,

i.e., the explicit equilibrium control is not obtained. However, the open-loop equilibrium control is derived

in a more general formulation investigated in this paper, which is based on several difference equations

and nonsymmetric Riccati difference equations.

Upon the above analysis, the time-inconsistent control problem for discrete-time systems remains to

be studied, although some progress has been made in previous literature. The objectives to be achieved

in this paper can be concluded as: 1) To explore the maximum principle for the considered general time-

inconsistent equilibrium control problem; 2) To provide the explicit necessary and sufficient solvability

conditions for the time-inconsistent control problem and obtain the explicit equilibrium control.

Firstly, by using the variational method, we derive the necessary conditions (i.e., maximum principle)

of the equilibrium control for the general time-inconsistent equilibrium control problem, which is the key

tool in solving the time-inconsistent control problem. Secondly, the solution to an FBSDE composed of

costate and system dynamics is derived using the induction method. Finally, the open-loop equilibrium

control is designed based on nonsymmetric Riccati equations in the case of the system state being one-

dimensional. The necessary and sufficient solvability condition is thus obtained. It should be noted

that the necessary and sufficient solvability condition developed in this paper is based on the positive

definiteness of Υk, which can be easily verified, while this has never been obtained in the aforementioned

studies like [17,22,28] and so forth. The main tools used are the maximum principle and the solution to

the FBSDE.

The following notations will be used throughout this paper: Rn denotes the n-dimensional Euclidean
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space; Real symmetric matrix A > 0 (> 0) means A is positive definite (positive semi-definite). N is

used to indicate {0, 1, . . . , N} and Nl = {l, l + 1, . . . , N}. B′ is the transpose of the real matrix B,

and C−1 represents the inverse of matrix C. {Ω,F ,P , {Fk}Nk=0} is a complete probability space with

natural filtration Fk generated by {x0, w0, . . . , wk}. El[·] = E[·|Fl] denotes the conditional mathematical

expectation with respect to Fl and F−1 = {φ,Ω} with φ being the empty set.

The remainder of this paper is organized as follows. In Section 2, the time-inconsistent equilibrium

control problem for discrete-time systems is formulated. The main results are presented in Section 3,

where the maximum principle is developed and the necessary and sufficient solvability condition is ex-

plored. A numerical example is provided in Section 4 to illustrate the main results obtained in this paper.

Finally, the paper is concluded in Section 5.

2 Problem formulation

The following linear controlled discrete-time system is considered:

{

Xτ
k+1 = (Ak,τ + wkĀk,τ )X

τ
k + (Bk,τ + wkB̄k,τ )uk + fk,τ + wkf̄k,τ ,

Xτ = x,
(1)

where Xτ
k ∈ Rn is the system state, uk ∈ Rm is the control, {wk}Nk=0 is the scalar-valued Gaussian white

noise with zero mean and covariance 1, Ak,τ , Āk,τ ∈ Rn×n, Bk,τ , B̄k,τ ∈ Rn×m, and the non-homogeneous

terms fk,τ , f̄k,τ ∈ Rn are given deterministic functions for any k ∈ Nτ depending on the initial time τ .

The initial state Xτ = x and (τ, x) is called the initial pair.

For an arbitrary initial pair (τ, x), the cost function associated with (1) is given as

J(τ, x;u) =

N
∑

k=τ

Eτ−1[(X
τ
k )

′Qk,τX
τ
k + u′

kRk,τuk] + Eτ−1[(X
τ
N+1)

′PN+1,τX
τ
N+1]

+ (Eτ−1X
τ
N+1)

′ΓN+1,τEτ−1X
τ
N+1 + 2X ′

τMN+1,τEτ−1X
τ
N+1+2Φ

′
N+1,τEτ−1X

τ
N+1, (2)

where Eτ−1 denotes E[·|Fτ−1], {Fk} is the natural filtration generated by {x0, w0, . . . , wk} and F−1 =

{∅,Ω}. The weighting matrices Qk,τ ∈ Rn×n, Rk,τ ∈ Rm×m, PN+1,τ ∈ Rn×n,ΓN+1,τ ∈ Rn×n and

are symmetric, and MN+1,τ ∈ Rn×n, ΦN+1,τ ∈ Rn. All the coefficient matrices are deterministic and

bounded. The initial time τ in the matrices and the state is to indicate that the matrices and state may

change with τ .

Firstly, we define the admissible control set for the time-inconsistent control problem as below:

Uτ={uk ∈ Rm, τ 6 k 6 N |uk is Fk−1-measurable, E(u′
kuk) < ∞}. (3)

Any uk ∈ Uτ is called admissible control.

Remark 1. The time-inconsistency investigated in this paper arises from three aspects: 1) With the

passage of time τ , the coefficient matrices and weighting matrices in (1) and (2) are changing accordingly;

2) The coefficient matrices of the first three terms in (2) depend on initial time τ ; 3) The last three

terms in (2) also result in the time-inconsistency. To be specific, (Eτ−1X
τ
N+1)

′ΓN+1,τEτ−1X
τ
N+1 is

from the mean-variance portfolio selection problem which can be viewed as the risk [11, 30]. The term

2X ′
τMN+1,τEτ−1X

τ
N+1+2Φ′

N+1,τEτ−1X
τ
N+1 is motivated by the utility function in mathematical finance,

which involves the initial state [7, 31].

In this paper, the following LQ control problem is mainly investigated:

Problem 1. For system (1) associated with cost function (2) and initial pair (τ, x), to seek u∗
k ∈ Uτ ,

τ 6 k 6 N , such that cost function (2) is minimized, i.e.,

J(τ, x;u∗
k) = inf

uk∈Uτ

J(τ, x;uk), τ 6 k 6 N. (4)
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As analyzed in Section 1, the pre-committed control methods will not be adopted to solve Problem 1

in this paper, which will be dealt with in a dynamic manner instead. To be explicit, we aim to find the

open-loop equilibrium control for Problem 1, which is optimal in an infinitesimal sense.

Firstly, by following from [17], we give the definition of open-loop equilibrium control as below.

Definition 1. For the initial pair (τ, x), the control uτ,x,∗
k ∈ Uτ , and X

τ,x,∗
k is the state corresponding

to u
τ,x,∗
k , then u

τ,x,∗
k is called the equilibrium control if Xτ,x,∗

τ = x, and for any uk ∈ Uτ , there holds

J(k,Xτ,x,∗
k ;uτ,x,∗|Nk

) 6 J(k,Xτ,x,∗
k ; (uk, u

τ,x,∗|Nk+1
)), (5)

where uτ,x,∗|Nk
means the restrictions of control uτ,x,∗ on Nk = {k, . . . , N}.

Remark 2. It is noted from Definition 1 that the equilibrium control is local optimal. Specifically, from

(5) we see that uτ,x,∗|Nk
differs with (uk, u

τ,x,∗|Nk+1
) only at time k. On the other hand, the perturbation

of equilibrium control uk will not change the control uk+1, . . . , uN . In this sense, the equilibrium control

given in Definition 1 is defined within the class of open-loop controls.

To guarantee the solvability of Problem 1, we make the following standard assumption on weighting

matrices of (2).

Assumption 1. For k ∈ Nτ and l ∈ Nk, the weighting matrices in (2) satisfy: Ql,k > 0, Rl,k > 0 and

PN+1,l > 0.

3 Main results

3.1 Maximum principle

To solve Problem 1, the necessary conditions (maximum principle) for the existence of the open-loop

equilibrium control will be derived first. Clearly, from (3) we know that the control set in this paper

is a convex and closed subset of Rm, then the method adopted in this paper is the convex variational

method, see [32,33]. For the case of the control set being non-convex, the corresponding results can also

be derived by using spike variation, which will not be discussed in this paper, see [34].

Theorem 1. For initial pair (τ, x), the equilibrium control uτ,x,∗
k satisfies the stationary relationship:

0 = Rk,ku
τ,x,∗
k + E[(Bk,k + wkB̄k,k)

′λ
k,τ,x
k |Fk−1], k ∈ Nτ , (6)

where the costate λ
k,τ,x
k can be calculated from the adjoint equation as below:

λ
k,τ,x
l−1 =Ql,kX

k,τ,x
l + E[(Al,k + wlĀl,k)

′λ
k,τ,x
l |Fl−1], l ∈ Nk, (7)

with final condition

λ
k,τ,x
N = PN+1,kX

k,τ,x
N+1 + ΓN+1,kEk−1(X

k,τ,x
N+1 ) +MN+1,kX

τ,x,∗
k +ΦN+1,k, (8)

and PN+1,k, ΓN+1,k, MN+1,k and ΦN+1,k are given in (2).

Proof. Since the control set Uτ defined in (3) is convex, if we choose ul, δul ∈ Uτ for l ∈ Nτ , then

uε
l = ul + εδul ∈ Uτ for any ε ∈ (0, 1) can be developed. Accordingly, J(k,Xτ,x,∗

k ;ul|Nk
) and X

k,τ,x
l are

the cost function and state trajectory, respectively, with control ul, and Jε(k,Xτ,x,∗
k ;uε

l |Nk
) and X

ε,k,τ,x
l

represent the cost function associated with uε
k.

It is noted that the variation of the initial Xτ,x,∗
k is zero, i.e., δXτ,x,∗

k = 0. Thus, it holds from (1) that

δX
k,τ,x
l+1 = X

ε,k,τ,x
l+1 −X

k,τ,x
l+1 = (Al,k + wlĀl,k)δX

k,τ,x
l + (Bl,k + wlB̄l,k)εδul

= FX(l, k)δXτ,x,∗
k +

l
∑

j=k

FX(l, j + 1)(Bj,k + wjB̄j,k)εδuj

=

l
∑

j=k

FX(l, j + 1)(Bj,k + wjB̄j,k)εδuj, (9)
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where FX(l, j) = (Al,k + wlĀl,k) · · · (Aj,k + wjĀj,k), and FX(l, l + 1) = I.

Since the coefficient matrices in (1) are deterministic and E(w2
j ) is finite for any k 6 j 6 N , Then

δJ = Jε(k,Xτ,x,∗
k ;uε

l |Nk
)− J(k,Xτ,x,∗

k ;ul|Nk
) can be calculated from cost function (2) as

δJ = 2E

{

[PN+1,kX
k,τ,x
N+1 + ΓN+1,kEk−1X

k,τ,x
N+1 +MN+1,kX

τ,x,∗
k +ΦN+1,k]

′δX
k,τ,x
N+1

+

N
∑

l=k

[

(Xk,τ,x
l )′Ql,kδX

k,τ,x
l + u′

lRl,kεδul

] ∣

∣

∣
Fk−1

}

+ o(ε)

= 2E

{

(λk,τ,x
N )′δXk,τ,x

N+1 +

N
∑

l=k

[

(Xk,τ,x
l )′Ql,kδX

k,τ,x
l + u′

lRl,kεδul

] ∣

∣

∣
Fk−1

}

+ o(ε), (10)

where o(ε) means that an infinitesimal of the higher order with ε and (8) has been used.

Now substituting (9) in (10), we have

δJ = 2E

{

(λk,τ,x
N )′

[

N
∑

j=k

FX(N, j + 1)(Bj,k + wjB̄j,k)εδuj

]

+

N
∑

l=k

(Xk,τ,x
l )′Ql,k

[

l−1
∑

j=k

FX(l − 1, j + 1)(Bj,k + wjB̄j,k)εδuj

]

+

N
∑

l=k

u′
lRl,kεδul|Fk−1

}

+ o(ε)

= 2E

{

[

(λk,τ,x
N )′(BN,k + wN B̄N,k) + u′

NRN,k

]

εδuN

+
N−1
∑

j=k

[

u′
jRj,k +

N
∑

l=j+1

(Xk,τ,x
l )′Ql,kFX(l − 1, j + 1)(Bj,k + wjB̄j,k)

]

εδuj

+

N−1
∑

j=k

[

(λk,τ,x
N )′FX(N, j + 1)(Bj,k + wjB̄j,k)

]

εδuj

∣

∣Fk−1

}

+ o(ε)

= 2E{G(N + 1, N)εδuN |Fk−1}+ 2E

{

N−1
∑

j=k

G(j + 1, N)εδuj|Fk−1

}

+ o(ε), (11)

where the following fact has been used

N
∑

l=k

(Xk,τ,x
l )′Ql,k

[

l−1
∑

j=k

FX(l − 1, j + 1)(Bj,k + wjB̄j,k)εδuj

]

=
N−1
∑

j=k

[

N
∑

l=j+1

(Xk,τ,x
l )′Ql,kFX(l − 1, j + 1)(Bj,k + wjB̄j,k)

]

εδuj, (12)

and G(N + 1, N) and G(j + 1, N) are respectively given as

G(N + 1, N) = (λk,τ,x
N )′(BN,k + wN B̄N,k) + u′

NRN,k, (13)

G(j + 1, N) = (λk,τ,x
N )′FX(N, j + 1)(Bj,k + wjB̄j,k)

+ u′
jRj,k +

N
∑

l=j+1

(Xk,τ,x
l )′Ql,kFX(l − 1, j + 1)(Bj,k + wjB̄j,k). (14)

Furthermore, it is noted that (11) can be rewritten as

δJ = 2Ek−1 {E [G(N + 1, N) | FN−1] εδuN}+ 2Ek−1

{

N−1
∑

j=k

E [G(j + 1, N) | Fj−1] εδuj

}

+ o(ε), (15)
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where

Ek−1{{G(N + 1, N)− E[G(N + 1, N)|FN−1]}εδuN} = 0,

Ek−1

{

N−1
∑

j=k

{G(j + 1, N)− E[G(j + 1, N)|Fj−1]}εδuj

}

= 0

has been inserted into (15).

Since δuk is arbitrary, and the equilibrium control uτ,x,∗
k is optimal only at time k, from (15) we know

that the following relationship should be satisfied

E{G(k + 1, N) | Fk−1} = 0. (16)

Next, we will show that (6) and (7) are the necessary condition (16).

In fact, following from (7) and (8), we can obtain

λ
k,τ,x
k = Qk+1,kX

τ,x,∗
k + E[(Ak+1,k + wk+1Āk+1,k)

′λ
k,τ,x
k+1 |Fk−1]

= Qk+1,kX
τ,x,∗
k + E

{

(Ak+1,k + wk+1Āk+1,k)
′[Qk+2,kX

k,τ,x
k+1

+ E[(Ak+2,k + wk+2Āk+2,k)
′λ

k,τ,x
k+2 |Fk]]|Fk−1

}

= E{Qk+1,kX
τ,x,∗
k + (Ak+1,k + wk+1Āk+1,k)

′[Qk+2,kX
k,τ,x
k+1 +(Ak+2,k + wk+2Āk+2,k)

′λ
k,τ,x
k+2 ]|Fk−1}

= E

{

N
∑

j=k+1

F ′
X(j − 1, k + 1)Qj,kX

k,τ,x
j + F ′

X(N, k + 1)λk,τ,x
N

∣

∣

∣
Fk−1

}

. (17)

Substituting (17) into (6), one has

0 = Rk,ku
τ,x,∗
k + E

{

(Bk,k + wkB̄k,k)
′

N
∑

j=k+1

F ′
X(j − 1, k + 1)Qj,kX

k,τ,x
j

+ (Bk,k + wkB̄k,k)
′F ′

X(N, k + 1)(λk,τ,x
N )′|Fk−1

}

, (18)

which is indeed the relationship (16). The proof is complete.

Remark 3. It is noted that (7) is the costate equation (backward) with final condition (8), associated

with the system (forward) below:

{

X
k,τ,x
l+1 = (Al,k + wlĀl,k)X

k,τ,x
l + (Bl,k + wlB̄l,k)u

τ,x,∗
k + fl,k + wlf̄l,k,

X
k,τ,x
k = X

τ,x,∗
k , l ∈ Nk,

(19)

which forms a flow of the FBSDE system. The equilibrium control uτ,x,∗
k can be calculated by decoupling

the FBSDE system with the stationary condition (6).

Remark 4. The proposed maximum principle in Theorem 1 and the solution to the FBSDE serve as

the key tools for the time-inconsistent equilibrium control problem investigated in this paper, as well as

other stochastic control problems [32, 33]. It is stressed that the derivation methods in Theorem 1 differ

from those in previous work on time-inconsistent control problems [22, 24].

3.2 Solution to Problem 1

Time-inconsistent control problems usually arise in financial applications, like the mean-variance portfolio

selection problem. In these cases, the wealth of the investor is scalar-valued. Therefore, we mainly

investigate the n = 1 case in this section, i.e., the state of system (1) is one-dimensional. By using the

maximum principle and the solution to the FBSDE developed in Theorem 1, we will explore the necessary

and sufficient solvability conditions of Problem 1.

The main results of this section can be stated as follows.
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Theorem 2. Under Assumption 1, Problem 1 is uniquely solved if and only if Υk, k ∈ Nτ as given

below are all positive definite.

In this case, for any τ 6 k 6 N , the equilibrium control can be given as

u
τ,x,∗
k = −Υ−1

k ∆kX
τ,x,∗
k −Υ−1

k Πk, (20)

where Υk,∆k,Πk follow the relationship as below:

Υk = Rk,k + (Pk+1,k + Γk+1,k)B
′
k,kBk,k + Pk+1,kB̄

′
k,kB̄k,k, (21)

∆k = (Pk+1,k + Γk+1,k)B
′
k,kAk,k + Pk+1,kB̄

′
k,kĀk,k +B′

k,kMk+1,k, (22)

Πk = (Pk+1,k + Γk+1,k)B
′
k,kfk,k + Pk+1,kB̄

′
k,kf̄k,k +B′

k,kΦk+1,k, (23)

in which Pk+1,k, Γk+1,k can be calculated from the following nonsymmetric Riccati equations for l ∈ Nk+1,

Pl,k = Ql,k + (A2
l,k + Ā2

l,k)Pl+1,k − (Al,kPl+1,kBl,k + Āl,kPl+1,kB̄l,k)Υ
−1
l ∆l, (24)

Γl,k = A2
l,kΓl+1,k −Al,kΓl+1,kBl,kΥ

−1
l ∆l, (25)

with final condition PN+1,k and ΓN+1,k given by cost function (2).

Moreover, Mk+1,k, Φk+1,k satisfy the difference equations for l ∈ Nk+1 as below:

Ml,k = Al,kMl+1,k, (26)

Φl,k = (Pl+1,k + Γl+1,k)Al,kfl,k + Āl,kPl+1,kf̄l,k +Al,kΦl+1,k

−
[

(Pl+1,k + Γl+1,k)Al,kBl,k + Āl,kPl+1,kB̄l,k

]

Υ−1
l Πl, (27)

while MN+1,k and ΦN+1,k are as in (2).

In this case, the system state Xk,τ,x
l and costate λk,τ,x

l have the following relationship (the solution to

the FBSDE developed in Theorem 1):

λ
k,τ,x
l = Pl+1,kX

k,τ,x
l+1 + Γl+1,kEk−1X

k,τ,x
l+1 +Ml+1,kX

τ,x,∗
k +Φl+1,k, (28)

where Pl+1,k, Γl+1,k, Ml+1,k, Φl+1,k can be calculated by (24)–(27), respectively.

Proof. “Sufficiency”: Suppose Υk, k ∈ Nτ are strictly positive definite. We will show that Problem 1

is uniquely solvable.

In fact, for simplicity, we denote

V
(1)
l,k , Ek−1[Pl,k(X

k,τ,x
l )2], V

(2)
l,k , Γl,k(Ek−1X

k,τ,x
l )2,

V
(3)
l,k , Ek−1(X

τ,x,∗
k Ml,kX

k,τ,x
l ), V

(4)
l,k , Φl,kEk−1X

k,τ,x
l , (29)

Vl,k , V
(1)
l,k + V

(2)
l,k + 2V

(3)
l,k + 2V

(4)
l,k , (30)

where Pl,k and Γl,k satisfy Riccati equations (24) and (25), and Ml,k and Φl,k satisfy (26) and (27),

respectively.

Through simple calculation, we can obtain

V
(1)
l,k − V

(1)
l+1,k = Ek−1

[

(Pl,k − Pl+1,kA
2
l,k − Pl+1,kĀ

2
l,k)(X

k,τ,x
l )2

− 2Xk,τ,x
l (Al,kPl+1,kBl,k + Āl,kPl+1,kB̄l,k)ul

− 2Xk,τ,x
l (Al,kPl+1,kfl,k + Āl,kPl+1,kf̄l,k)− u′

l[Pl+1,k(B
′
l,kBl,k + B̄′

l,kB̄l,k)]ul

− 2u′
l(B

′
l,kPl+1,kfl,k + B̄′

l,kPl+1,kf̄l,k)− Pl+1,k(f
2
l,k + f̄2

l,k)
]

, (31)

V
(2)
l,k − V

(2)
l+1,k = (Ek−1X

k,τ,x
l )(Γl,k −A2

l,kΓl+1,k)Ek−1X
k,τ,x
l

− Ek−1

(

2u′
lB

′
l,kΓl+1,kAl,kX

k,τ,x
l + u′

lΓl+1,kB
′
l,kBl,kul
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+ 2Al,kΓl+1,kfl,kX
k,τ,x
l + 2u′

lB
′
l,kΓl+1,kfl,k + f2

l,kΓl+1,k

)

, (32)

V
(3)
l,k − V

(3)
l+1,k = Ek−1

[

X
τ,x,∗
k (Ml,k −Ml+1,kAl,k)X

k,τ,x
l −X

τ,x,∗
k Ml+1,kBl,kul −X

τ,x,∗
k Ml+1,kfl,k

]

, (33)

V
(4)
l,k − V

(4)
l+1,k = Ek−1

{

(Φl,k − Φl+1,kAl,k)X
k,τ,x
l − Φl+1,kBl,kul − Φl+1,kfl,k

}

. (34)

Thus, combining (31)–(34) yields

Vl,k − Vl+1,k = Ek−1

{

(Pl,k −A2
l,kPl+1,k − Ā2

l,kPl+1,k)(X
k,τ,x
l )2

− 2u′
l(B

′
l,kPl+1,kAl,k + B̄′

l,kPl+1,kĀl,k)X
k,τ,x
l

− u′
l[(Pl+1,k + Γl+1,k)B

′
l,kBl,k + Pl+1,kB̄

′
l,kB̄l,k]ul

− 2Xk,τ,x
l

[

Al,kPl+1,kfl,k + Ā′
l,kPl+1,kf̄l,k +A′

l,kΓl+1,kfl,k

+ (Al,kMl+1,k −Ml,k)X
τ,x,∗
k +Al,kΦl+1,k − Φl,k

]

− 2u′
l

(

B′
l,kΓl+1,kAl,kEk−1X

k,τ,x
l +B′

l,kPl+1,kfl,k + B̄′
l,kPl+1,kf̄l,k +B′

l,kΓl+1,kfl,k

+B′
l,kMl+1,kX

τ,x,∗
k +B′

l,kΦl+1,k

)

+ Ek−1(X
k,τ,x
l )(Γl,k −Al,kΓl+1,kAl,k)Ek−1X

k,τ,x
l

−
[

2Xτ,x,∗
k Ml+1,kfl,k + fl,kPl+1,kfl,k + f̄l,kPl+1,kf̄l,k + fl,kΓl+1,kfl,k + 2Φl+1,kfl,k

]}

.

(35)

Especially, noticing (24)–(27), (35) indicates that

Vk,k − Vk+1,k = u′
kRk,kuk +Qk,k(X

τ,x,∗
k )2 − [uk +Υ−1

k (∆kX
τ,x,∗
k +Πk)]

′Υk[uk +Υ−1
k (∆kX

τ,x,∗
k +Πk)]

+
[

Pk,k −Qk,k −A2
k,kPk+1,k − Ā2

k,kPk+1,k

+ (Ak,kPk+1,kBk,k + Āk,kPk+1,kB̄k,k)Υ
−1
k ∆k

]

(Xτ,x,∗
k )2 + 2(Mk,k −AkMk+1,k)(X

τ,x,∗
k )2

+
(

Γk,k −A2
k,kΓk+1,k +Ak,kΓk+1,kBk,kΥ

−1
k ∆k

)

(Xτ,x,∗
k )2

+ 2Xτ,x,∗
k

[

Φk,k −Ak,kΦk+1,k −Ak,kPk+1,kfk,k −Ak,kΓk+1,kfk,k − Āk,kPk+1,k f̄k,k

+ (Ak,kΓk+1,kBk,k +Ak,kPk+1,kBk,k + Āk,kPk+1,kB̄k,k)Υ
−1
k Πk

]

−
(

2Xτ,x,∗
k Mk+1,kfk,k + fk,kPk+1,kfk,k + f̄k,kPk+1,k f̄k,k

+ f ′
k,kΓk+1,kfk,k + 2fk,kΦk+1,k −Mk+1,kBk,kΥ

−1
k ∆k(X

τ,x,∗
k )2

− 2Xτ,x,∗
k Mk+1,kBk,kΥ

−1
k Πk −Π′

kΥ
−1
k Πk

)

= u′
kRk,kuk +Qk,k(X

τ,x,∗
k )2 − [uk +Υ−1

k (∆kX
τ,x,∗
k +Πk)]

′Υk[uk +Υ−1
k (∆kX

τ,x,∗
k +Πk)]

−
[

2Xτ,x,∗
k Mk+1,kfk,k + f2

k,kPk+1,k + f̄2
k,kPk+1,k + f2

k,kΓk+1,k + 2fk,kΦk+1,k

− (Xτ,x,∗
k )2Mk+1,kBk,kΥ

−1
k ∆k − 2Xτ,x,∗

k Mk+1,kBk,kΥ
−1
k Πk − Π′

kΥ
−1
k Πk

]

. (36)

Taking summation on both sides of (35) from l to N and using (36), we can obtain

Vk,k − VN+1,k = u′
kRk,kuk +Qk,k(X

τ,x,∗
k )2 + Ek−1

{

N
∑

l=k+1

[uk,τ,x
l Rl,kul +Ql,k(X

k,τ,x
l )2]

}

− [uk +Υ−1
k (∆kX

τ,x,∗
k +Πk)]

′Υk[uk +Υ−1
k (∆kX

τ,x,∗
k +Πk)] + Ωk +Ψk, (37)

where X
k,τ,x
l is the regulated state with equilibrium control ul as given in (20) for l ∈ Nk+1, and Φk and

Ψk are as given below:

Ωk = −
[

2Xτ,x,∗
k Mk+1,kfk,k + f2

k,kPk+1,k + f̄2
k,kPk+1,k + f2

k,kΓk+1,k + 2fk,kΦk+1,k
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− (Xτ,x,∗
k )2Mk+1,kBk,kΥ

−1
k ∆k − 2Xτ,x,∗

k Mk+1,kBk,kΥ
−1
k Πk −Π′

kΥ
−1
k Πk

]

, (38)

Ψk =

N
∑

l=k+1

Ek−1

{

(Pl,k −Ql,k −A2
l,kPl+1,k − Ā2

l,kPl+1,k)(X
k,τ,x
l )2

− 2u′
l(B

′
l,kPl+1,kAl,k + B̄′

l,kPl+1,kĀl,k)X
k,τ,x
l

− u′
l(Rl,k +B′

l,kPl+1,kBl,k + B̄′
l,kPl+1,kB̄l,k +B′

l,kΓl+1,kBl,k)ul

− 2
[

Al,kPl+1,kfl,k + Āl,kPl+1,kf̄l,k +Al,kΓl+1,kfl,k

+ (Al,kMl+1,k −Ml,k)X
τ,x,∗
k +Al,kΦl+1,k − Φl,k

]

X
k,τ,x
l

− 2u′
l

(

B′
l,kΓl+1,kAl,kEk−1X

k,τ,x
l +B′

l,kPl+1,kfl,k + B̄′
l,kPl+1,kf̄l,k +B′

l,kΓl+1,kfl,k

+B′
l,kMl+1,kX

τ,x,∗
k +B′

l,kΦl+1,k

)

+ (Γl,k −Al,kΓl+1,kAl,k)(Ek−1X
k,τ,x
l )2

− (2Xτ,x,∗
k Ml+1,kfl,k+fl,kPl+1,kfl,k + f̄l,kPl+1,kf̄l,k + fl,kΓl+1,kfl,k + 2Φl+1,kfl,k)

}

. (39)

From (36)–(39), the cost function (2) can be rewritten as:

J(k,Xτ,x,∗
k ; (uk, u

τ,x,∗|Nk+1
)) = Pk,k(X

τ,x,∗
k )2 + Γk,k(X

τ,x,∗
k )2 + 2Mk,k(X

τ,x,∗
k )2 + 2Φk,kX

τ,x,∗
k − Ωk −Ψk

+ [uk +Υ−1
k (∆kX

τ,x,∗
k +Πk)]

′Υk[uk +Υ−1
k (∆kX

τ,x,∗
k +Πk)]. (40)

It is stressed that ul for l ∈ Nk+1 in (37)–(40) is the equilibrium control given by (20), which is fixed,

though unknown (see (19)). From Definition 1 of the equilibrium control and Remark 2, we know that

uk is the local optimal only at time k.

Moreover, since it is assumed that Υk > 0, from (40) we can conclude that equilibrium control uk

satisfies (20) for k ∈ Nτ . The optimal cost function is as below:

J(k,Xτ,x,∗
k ;uτ,x,∗|Nk

) = Pk,k(X
τ,x,∗
k )2 + Γk,k(X

τ,x,∗
k )2 + 2Mk,k(X

τ,x,∗
k )2 + 2Φk,kX

τ,x,∗
k − Ωk −Ψk, (41)

where Ωk,Ψk satisfy (38) and (39), respectively.

“Necessity”: For the initial pair (τ, x), suppose Problem 1 is uniquely solvable. We will show Υk > 0

for k ∈ Nτ .

Firstly, we will show ΥN > 0. From Definition 1 and Remark 2 we know uN is only optimal at time

N , i.e., uN minimizes J(N,X
τ,x,∗
N ;uN). Moreover, we know J(N,X

τ,x,∗
N ;uN ) can be calculated as:

J(N,X
τ,x,∗
N ;uN ) = EN−1[QN,N(Xτ,x,∗

N )2 + u′
NRN,NuN + PN+1,N (XN,τ,x

N+1 )2]

+ ΓN+1,N (EN−1X
N,τ,x
N+1 )2 + 2(MN+1,NX

τ,x,∗
N +ΦN+1,N )EN−1X

N,τ,x
N+1

= ΓN+1,NA2
N,N(Xτ,x,∗

N )2 + (QN,N + PN+1,NA2
N,N + PN+1,N Ā2

N,N)(Xτ,x,∗
N )2

+ 2Xτ,x,∗
N [AN,N(PN+1,N + ΓN+1,N)BN,N + ĀN,NPN+1,N B̄N,N ]uN

+ u′
N [RN,N +B′

N,N(PN+1,N + ΓN+1,N)BN,N + B̄′
N,NPN+1,N B̄N,N ]uN

+ 2Xτ,x,∗
N [AN,N(PN+1,N + ΓN+1,N)fN,N + ĀN,NPN+1,N f̄N,N ]

+ 2u′
N [B′

N,N(PN+1,N + ΓN+1,N)fN,N + B̄′
N,NPN+1,N f̄N,N ]

+ (PN+1,N + ΓN+1,N)f2
N,N + PN+1,N f̄2

N,N

+ 2(MN+1,NX
τ,x,∗
N +ΦN+1,N)(AN,NX

τ,x,∗
N +BN,NuN + fN,N). (42)

Since Problem 1 is uniquely solvable, i.e., J(N,X
τ,x,∗
N ;uN) is minimized with a unique equilibrium

control uτ,x,∗
N . In what follows, we set X

τ,x,∗
N = 0 and ΦN+1,N = fN,N = f̄N,N = 0, so that (42)

reduces to

J(N,X
τ,x,∗
N ;uN ) = u′

NΥNuN , (43)

where ΥN obeys (21) for k = N .



Qi Q Y, et al. Sci China Inf Sci December 2017 Vol. 60 120204:10

It is noted that the equilibrium control uτ,x,∗
N is unique; thus for the case of Xτ,x,∗

N = 0 and ΦN+1,N =

fN,N = f̄N,N = 0, Problem 1 is also uniquely solvable.

In this case, we choose λ to be any fixed eigenvalue of ΥN . We will show λ > 0. Otherwise, λ < 0, we

choose vλ to be a unit eigenvector associated with λ satisfying v′λvλ = 1. Then |λ|−1Υvλ = −vλ holds.

Choose a fixed constant δ ∈ R, set uN = δ
|λ|1/2

vλ; then from (43) we know J(N,X
τ,x,∗
N ;uN) = −δ2.

By letting δ → ∞, we have J(N,X
τ,x,∗
N ;uN) → −∞, which is a contradiction with Assumption 1 and

the restrictions for weighting matrices of (2). Hence, we have ΥN > 0. On the other hand, since the

equilibrium control is unique, and J(N,X
τ,x,∗
N ;uN) > 0. Thus uτ,x,∗

N = 0 is the unique equilibrium control

of minimizing (43), and ΥN > 0 can be derived.

In what follows, notice (8) and use the system dynamics (1), and letting k = N , it follows from (6)

that

0 = RN,NuN + EN−1[(BN,N + wN B̄N,N)′λN,N ],

= RN,NuN+EN−1[(BN,N+wN B̄N,N)′(PN+1,NX
N,τ,x
N+1 +ΓN+1,NEN−1X

N,τ,x
N+1 +MN+1,NX

τ,x,∗
N +ΦN+1,N)]

= RN,NuN + EN−1[(BN,N + wN B̄N,N)′PN+1,NX
N,τ,x
N+1 ]

+B′
N,NΓN+1,NEN−1X

N,τ,x
N+1 +B′

N,NMN+1,NX
τ,x,∗
N +B′

N,NΦN+1,N

= RN,NuN+EN−1{(BN,N + wN B̄N,N)′PN+1,N [(AN,N + wN ĀN,N)Xτ,x,∗
N + (BN,N + wN B̄N,N)uN

+ fN,N + wN f̄N,N ]}+B′
N,NΓN+1,N (AN,NX

τ,x,∗
N +BN,NuN + fN,N)

+B′
N,NMN+1,NX

τ,x,∗
N +B′

N,NΦN+1,N

= (RN,N+B
′
N,NPN+1,NBN,N+B̄

′
N,NPN+1,N B̄N,N)uN+(B

′
N,NPN+1,NAN,N+B̄

′
N,NPN+1,N ĀN,N)Xτ,x,∗

N

+B′
N,NΓN+1,NAN,NX

τ,x,∗
N +B′

N,NΓN+1,NBN,NuN +B′
N,NΓN+1,NfN,N +B′

N,NPN+1,NfN,N

+ B̄N,NPN+1,N f̄N,N +B′
N,NMN+1,NXN+B

′
N,NΦN+1,N

=
(

RN,N +B′
N,NPN+1,NBN,N + B̄′

N,NPN+1,N B̄N,N +B′
N,NΓN+1,NBN,N

)

uN

+
(

B′
N,NPN+1,NAN,N + B̄′

N,NPN+1,N ĀN,N +B′
N,NΓN+1,NAN,N +B′

N,NMN+1,N

)

X
τ,x,∗
N

+B′
N,NΓN+1,NfN,N +B′

N,NPN+1,NfN,N + B̄′
N,NPN+1,N f̄N,N +B′

N,NΦN+1,N

= ΥNuN +∆NX
τ,x,∗
N +ΠN , (44)

where ΥN , ∆N and ΠN satisfy (21)–(23) for k = N .

Since Problem 1 is solvable and ΥN > 0 has been proved as above, (44) indicates that the equilibrium

control uτ,x,∗
N is

u
τ,x,∗
N = −Υ−1

N (∆NX
τ,x,∗
N +ΠN ), (45)

i.e., the equilibrium control (20) has been verified for k = N .

Next, from (6) we know that to obtain the equilibrium control uτ,x,∗
N−1 for time N−1, we should calculate

λ
N−1,τ,x
N−1 first. In fact, following from (7), we can obtain

λ
N−1,τ,x
N−1 = QN,N−1X

N−1,τ,x
N + EN−1[(AN,N−1 + wN ĀN,N−1)

′λ
N−1,τ,x
N ]

= QN,N−1X
N−1,τ,x
N + EN−1[(AN,N−1 + wN ĀN,N−1)

′

× (PN+1,N−1X
N−1,τ,x
N+1 + ΓN+1,N−1EN−2X

N−1,τ,x
N+1 +MN+1,N−1X

τ,x,∗
N−1 +ΦN+1,N−1)]

= QN,N−1X
N−1,τ,x
N + EN−1{(PN+1,N−1A

2
N,N−1 + PN+1,N−1Ā

2
N,N−1)X

N−1,τ,x
N

+ (AN,N−1PN+1,N−1BN,N−1 + ĀN,N−1PN+1,N−1B̄N,N−1)u
τ,x,∗
N

+AN,N−1PN+1,N−1fN,N−1 + ĀN,N−1PN+1,N−1f̄N,N−1

+ ΓN+1,N−1A
2
N,N−1EN−2X

N−1,τ,x
N + AN,N−1ΓN+1,N−1BN,N−1EN−2u

τ,x,∗
N

+AN,N−1ΓN+1,N−1fN,N−1 +AN,N−1MN+1,N−1X
τ,x,∗
N−1 +AN,N−1ΦN+1,N−1

=
[

QN,N−1 + PN+1,N−1A
2
N,N−1 + PN+1,N−1Ā

2
N,N−1
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− (AN,N−1PN+1,N−1BN,N−1 + ĀN,N−1PN+1,N−1B̄N,N−1)Υ
−1
N ∆N

]

X
N−1,τ,x
N

+
(

ΓN+1,N−1A
2
N,N−1 −AN,N−1ΓN+1,N−1BN,N−1Υ

−1
N ∆N

)

EN−2X
N−1,τ,x
N

+AN,N−1MN+1,N−1X
τ,x,∗
N−1 + [AN,N−1PN+1,N−1fN,N−1

+ ĀN,N−1PN+1,N−1f̄N,N−1 +AN,N−1ΓN+1,N−1fN,N−1

+AN,N+1ΦN+1,N−1 −AN,N−1ΓN+1,N−1BN,N−1Υ
−1
N ΠN

− (AN,N−1PN+1,N−1BN,N−1 + ĀN,N−1PN+1,N−1B̄N,N−1)Υ
−1
N ΠN ]

= PN,N−1X
N−1,τ,x
N + ΓN,N−1EN−2X

N−1,τ,x
N +MN,N−1X

τ,x,∗
N−1 +ΦN,N−1, (46)

where the equilibrium control uτ,x,∗
N in (45) has been inserted.

From (46) we know that (28) has been verified for l = N − 1, k = N − 1.

To use the induction method, take τ 6 k 6 N , for any j > k + 1, we assume:

• Υj > 0;

• The equilibrium control uj for minimizing J(j,Xτ,x,∗
j ;uj, . . . , uN) satisfies (20);

• The costate λ
k,τ,x
j obeys the relationship (28).

In what follows, we shall show that the above statements are also true for j = k.

Firstly, we will show Υk > 0. In fact, similar to the derivation of (47), by letting X
τ,x,∗
k = 0 and

fk,k = f̄k,k = Φk+1,k = 0, we have

J(k,Xτ,x,∗
k ;uτ,x,∗|Nk

) = u′
kΥkuk −Ψk, (47)

where Ψk is given by (39) with u
τ,x,∗
j satisfying (20) as assumed for k + 1 6 j 6 N .

Similar to the discussion for ΥN of (42)–(43), it follows from (47) that if Problem 1 has a unique

solution, then Υk > 0.

Since Υk > 0 has been shown, from (44)–(46) we know the equilibrium control uk can be given as (20).

Finally, noting that λk,τ,x
j for j ∈ Nk+1 satisfies (28), along the lines of (46), λk,τ,x

k can be derived from

(7) as in (28) for l = k. This ends the necessity proof by using induction method.

Remark 5. The explicit necessary and sufficient condition for the solvability of the time-inconsistent

control problem has been obtained for n = 1 case in Theorem 2, which has never been derived for time-

inconsistent equilibrium control problems. The solvability conditions in previous work like [17, 22, 28]

were based on the solvability of FBSDE, which cannot be easily verified.

The Riccati difference equations given in (24) and (25) are nonsymmetric, but they can be calculated

backwardly. It is noted that the proposed algorithm in Theorem 2 is feasible.

The procedure for calculating the feedback gain matrices Υk,∆k,Πk for k ∈ Nτ can be stated as:

1) From (21)–(23) for k = N , then ΥN ,∆N ,ΠN can be derived;

2) Plugging ΥN ,∆N ,ΠN into (21)–(23) and (24)–(27) for l = N and k = N − 1, we can obtain

ΥN−1,∆N−1,ΠN−1;

3) By repeating the above steps backward iteratively, Υk,∆k,Πk for k ∈ Nτ can be developed.

4 Numerical example

This section provides an example to clarify the results obtained in Theorem 2 and verify the effectiveness

of the procedures proposed in the above algorithm. It is noted that the presented example can be applied

to solve mean-variance portfolio selection problems [11, 17].

We consider system (1) and associated cost function (2) with τ = 0, N = 2 and the coefficients as

below:

A0,0 = 1.5, A1,0 = −2, A2,0 = 1.6, A1,1 = −3.2, A2,1 = 1.5, A2,2 = 2,

B0,0 = 2.5, B1,0 = −4.5, B2,0 = 0.8, B1,1 = 0.9, B2,1 = 1.4, B2,2 = −3,

Ā0,0 = 0.8, Ā1,0 = −1.2, Ā2,0 = 2.6, Ā1,1 = −2, Ā2,1 = 0.5, Ā2,2 = 3.2,
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B̄0,0 = 0.6, B̄1,0 = 8.2, B̄2,0 = −4.7, B̄1,1 = 3.8, B̄2,1 = −2.5, B̄2,2 = 3,

f0,0 = 0.5, f1,0 = 0, f2,0 = 2.4, f1,1 = −1.5, f2,1 = 2, f2,2 = 0,

f̄0,0 = −1.8, f̄1,0 = 5.5, f̄2,0 = 0.2, f̄1,1 = 1.2, f̄2,1 = −0.5, f̄2,2 = −1.5,

Q0,0 = 0, Q1,0 = 2, Q2,0 = 3.5, Q1,1 = 2.8, Q2,1 = 0, Q2,2 = 1,

R0,0 = 1.2, R1,0 = 0, R2,0 = 0, R1,1 = 0, R2,1 = 1.5, R2,2 = 3.6,

P3,0 = 2.3, P3,1 = 1.2, P3,2 = 0, Γ3,0 = 0.8, Γ3,1 = −0.8, Γ3,2 = 2,

M3,0 = 0.3, M3,1 = −2.2, M3,2 = 0, Φ3,0 = −5, Φ3,1 = 2, Φ3,2 = 3.

Firstly, by (21)–(23) for k = N = 2, we have Υ2 = 21.6 > 0, ∆2 = −12, Π2 = −9.

Next, by calculating (24)–(27) with the obtained Υ2,∆2,Π2, there holds

P2,1 = 3.5667, M2,1 = −3.3, Γ2,1 = −2.7333, Φ2,1 = 3.6250,

then Υ1 = 52.1782 > 0, ∆1 = −32.4771, Π1 = 18.4015 can be obtained by solving (21)–(23) for k = 1.

Finally, by plugging Υi,∆i,Πi, i = 1, 2 obtained above, again using (24)–(27), it can be obtained:

P2,0 = 9.2745, M2,0 = 0.48, Γ2,0 = 2.6854, Φ2,0 = 13.6127,

P1,0 = 47.6042, M1,0 = −0.96, Γ1,0 = 25.7848, Φ1,0 = −42.1266.

Then naturally, we have

Υ0 = 477.0188 > 0, ∆0 = 295.6588, Π0 = −64.9928.

In conclusion, the equilibrium control can be calculated from (20) as

u
0,x,∗
2 = 0.5556X0,x,∗

2 + 0.4167, u
0,x,∗
1 = 0.6224X0,x,∗

1 − 0.3527, u
0,x,∗
0 = −0.6198X0,x,∗

0 − 0.1362,

where x is the initial state at initial time τ = 0.

5 Conclusion

The general time-inconsistent equilibrium control problem for discrete-time systems has been studied in

this paper. We have developed the maximum principle by using variational methods, and thus, a flow of

FBSDE is obtained. Based on the established maximum principle and the solution to the FBSDE, the

open-loop equilibrium control of n = 1 case has been derived and the explicit necessary and sufficient

solvability condition has been developed for the first time. For future research, we would like to extend

our work to solve the stabilization problems for time-inconsistent stochastic control.
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