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Abstract This paper is concerned with the entropy optimization based filter design for a class of multivariate

dynamic stochastic systems with simultaneous presence of non-Gaussian process noise and measurement noise.

The filter consists of time update and measurement update two steps, where the selection of the filter gain

in the measurement update equation is a key issue to be addressed. Different from the classic Kalman filter

theory, entropy rather than variance is employed as the filtering performance criterion due to the non-Gaussian

characteristic of the estimation error. Following the establishment of the relationship between the probability

density functions of random noises and estimation error, two kinds of entropy based performance indices are

provided. On this basis, the corresponding optimal filter gains are obtained respectively by using the gradient

optimization technique. Finally, some numerical simulations are provided to demonstrate the effectiveness of

the proposed filtering algorithms.

Keywords non-Gaussian systems, joint probability density function (JPDF), quadratic information potential,

relative entropy, optimal filtering

Citation Tian B, Wang Y, Guo L. Entropy optimization based filtering for non-Gaussian stochastic systems.

Sci China Inf Sci, 2017, 60(12): 120203, doi: 10.1007/s11432-017-9138-6

1 Introduction

State estimation has always been an important research aspect in control, signal processing and commu-

nication communities, and has received considerable attention following the development of the Kalman

filtering theory [1–5]. Under the Gaussian white noise assumption, Kalman filter provides the minimum

variance estimate where the variance of estimation error indicates the filtering performance. However, for

stochastic systems subjected to non-Gaussian noises, Kalman filtering algorithm may not perform well.

Although several techniques such as H∞ filtering [6,7] and quadratic error-constrained filtering [8,9] have

been proposed and proven to be less sensitive to non-Gaussian noise, they may lead to certain restrictions

and conservations because of ignoring the knowledge of noise statistics. As we know, the stochastic prop-

erty of a non-Gaussian variable (especially the one with nonsymmetric distribution) cannot be purely

described by the variance [10]. Therefore, some other performance criteria need to be taken into ac-

count so as to design an appropriate filter. It should be noticed that entropy has been adopted in some

literatures [11, 12].

*Corresponding author (email: w-yan@buaa.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-017-9138-6&domain=pdf&date_stamp=2017-11-8
https://doi.org/10.1007/s11432-017-9138-6
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-017-9138-6


Tian B, et al. Sci China Inf Sci December 2017 Vol. 60 120203:2

Entropy, as a unified probabilistic measure of uncertainty quantification, has been widely used in

information theory. And it has also been introduced into the modeling, control and estimation fields [13–

18]. It should be pointed out that some efforts have been made to employ the entropy as the performance

index in the filter design for general non-Gaussian stochastic systems. The corresponding minimum

entropy filtering algorithm was firstly proposed in [11]. After establishing several new concepts including

hybrid random vector, hybrid probability and hybrid entropy, the probability density function (PDF)

of estimation error was formulated in terms of the noise PDF and the filter gain matrix. Using the

entropy based performance index, a recursive optimal filtering algorithm was put forward such that the

hybrid entropy of the estimation error was minimized and the local stability of the error dynamics was

guaranteed as well. Besides, a relative entropy based optimal tracking filter was developed for non-

Gaussian stochastic systems in [12]. The key idea was to ensure the characteristic function of estimation

error to follow closely a target characteristic function. For this purpose, the relationship between the

hybrid characteristic functions of stochastic input and estimation error was set up. Based on the minimum

relative entropy criterion, an optimal filtering algorithmwith a compact form was then provided. However,

it is worth mentioning that there are still some problems remained to be solved in the above two papers.

Firstly, the filters proposed in [11, 12] have no explicit steps of time update and measurement update.

It lacks of the detailed analysis of the statistical properties of priori and posteriori estimates. Secondly,

little attention is paid to the system with simultaneous presence of process noise and measurement noise.

Only the process noise is considered in [11], and the study in [12] does not make full use of the statistical

property of the measurement noise.

Motivated by the above observations, this paper is focused on the filtering algorithm design for mul-

tivariate stochastic systems with simultaneous presence of non-Gaussian process noise and measurement

noise by utilizing the entropy based performance criteria. The filter is formed by time update and mea-

surement update these two steps, where the filter gain in the measurement update equation decides the

filtering performance and is a key issue to be designed. In order to measure the filtering performance, the

extended concepts of entropy including quadratic information potential and relative entropy are employed

respectively in this paper. The error JPDFs (joint probability density functions) of priori and posteriori

estimates are represented in terms of the JPDFs of noises and the undetermined filter gain, based on

which the two performance indices are constructed. Following the calculation of optimal filter gain, two

kinds of entropy optimization based filtering algorithms are provided.

The rest of this paper is organized as follows. The problem formulation and some preliminaries are

introduced in Section 2. Section 3 presents the design procedures of the entropy based filtering algorithms.

Numerical examples together with the simulation results are included in Section 4. Finally, we conclude

the paper in Section 5.

The notations used in this paper are standard. In the following, if not stated, matrices are assumed to

have appropriate dimensions. The identity matrix and zero matrix are denoted by I and 0, respectively.

For a symmetric matrix P , the notation P > 0 means that P is positive semidefinite. ∇ denotes the

gradient of a function. E{·} stands for the mathematical expectation of a random variable (vector), and

γ(·) denotes the (joint) probability density function.

2 Problem formulation and preliminaries

Consider the following linear stochastic time-varying system:

{

xk = Ak−1xk−1 + ωk−1,

zk = Ckxk + νk,
(1)

where xk ∈ R
n is the system state, zk ∈ R

m is the measurement output, ωk ∈ R
n and νk ∈ R

m are

the process noise and measurement noise respectively. Ak and Ck are two known time-varying system

matrices. Different from the classic Kalman filtering theory, the noises in the system are arbitrary random

vectors not confined to the Gaussian case. In fact, non-Gaussian noises exist widely in many practical
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systems. A typical example is the integrated navigation system, where the involved noises are often of

non-Gaussian types. Still, it is encouraging that with the development of instrumentation, computer

science and data processing technology, some identification methods have been developed to model the

PDFs of random variables, such as the kernel estimation technique, direct physical measurement, and

other experimental techniques [19, 20]. Thus, the following assumptions are made in this paper, which

can be met in many practical systems.

Assumption 1. The process noise ωk and the measurement noise νk are mutually independent, and

each follows a known probability distribution with zero mean. Their JPDFs are denoted by γωk
(τ) and

γνk(τ), which are defined on [αk, βk]
n and [δk, εk]

m respectively.

Assumption 2. The initial state x0 is independent of ωk and νk, and is with a known JPDF denoted

by γx0
(τ).

Remark 1. The system considered in this paper is subjected to non-Gaussian process noise and non-

Gaussian measurement noise simultaneously. For the system discussed in [11], only process noise is

considered. And the work in [12] only makes use of the statistical property (characteristic function) of

process noise, and no information except the known bounded mean of measurement noise is utilized for

the filter design. In this paper, we investigate the system with simultaneous presence of non-Gaussian

process noise and measurement noise, and such a presence is quite typical in engineering.

The purpose of filter design is to use available information of the system to estimate the state xk. For

the dynamic system given by (1), the filter is proposed with a classic recursive form:

• Time update (predict)

x̂−
k = Ak−1x̂

+
k−1, (2)

• Measurement update (correct)

x̂+
k = x̂−

k + Lk(zk − Ckx̂
−
k ), (3)

where x̂−
k is the priori estimate of xk, x̂

+
k is the posteriori estimate of xk, and Lk ∈ R

n×m is the filter gain

matrix to be determined. Combining (2) and (3) into a single equation yields the one-step filter with the

following form:

x̂+
k = Ak−1x̂

+
k−1 + Lk(zk − CkAk−1x̂

+
k−1)

= (I − LkCk)Ak−1x̂
+
k−1 + Lkzk. (4)

And the estimation of the initial state is taken to be x̂+
0 = E{x0}.

Define the estimation error as ek = xk − x̂+
k . A desired filter should ensure that a measure of ek is

optimized. Due to the non-Gaussian characteristics of input noises, the estimation error ek is also a non-

Gaussian random variable, and the variance is not sufficient to characterize its stochastic property. In this

case, it is nature to consider some other criteria rather than the variance so as to produce the satisfactory

filtering effect. Generally speaking, the filter design objective should be to minimize the randomness of the

estimation error. It has been well known that entropy is a unified probabilistic measure of uncertainty

quantification. Therefore, entropy and its extended concepts (such as information potential, relative

entropy and so on) can be adopted to form the criteria for the filter design for non-Gaussian systems.

The Shannon entropy of ek is defined as follows [21]:

H(ek) = −

∫

[ak,bk]n
γek(τ) ln γek(τ)dτ, (5)

where γek(τ) is the JPDF of the estimation error defined on [ak, bk]
n. Other types of entropy and several

extended concepts will be introduced in the following discussion.

The filter design is performed by optimizing the entropy, which means that the shape of the error PDF

is made as narrow as possible and the randomness of estimation error is minimized. Therefore, the filter

proposed in this paper is called entropy optimization based filter. The specific design procedures and

performance analysis will be presented in the next section.
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3 Main results

3.1 JPDF formulation of estimation error

To start with, we focus on the derivation of the estimation error dynamics. Denote the prediction error

as sk. From (1) and (2), we can get

sk = xk − x̂−
k = Ak−1ek−1 + ωk−1. (6)

Furthermore, we have

ek = xk − x̂+
k

= xk − x̂−
k − Lk(Ckxk + νk − Ckx̂

−
k )

= sk − Lk(Cksk + νk)

= (I − LkCk)sk − Lkνk. (7)

Substituting (6) into (7) yields the dynamics of the estimation error as follows:

ek = (I − LkCk)Ak−1ek−1 + (I − LkCk)ωk−1 − Lkνk. (8)

As e0 = x0 − x̂+
0 = x0 − E{x0}, it is easy to observe that E{e0} = 0 and γe0(τ) = γx0

(τ + E{x0}).

According to Assumptions 1 and 2, we can conclude E{ek} = 0 holds, which means that the estimation

is unbiased.

In order to calculate the entropy, the JPDF of the estimation error should be formulated in advance,

which is presented in the following theorem.

Theorem 1. Under Assumptions 1 and 2, at sample time k, the JPDF of sk is given by

γsk(η) =

∫

[ak−1,bk−1]n
γek−1

(ρ)γωk−1
(η −Ak−1ρ)dρ. (9)

And furthermore, the JPDF of ek can be formulated by

γek(τ) =

∫

[δk,εk]m
γsk

[

(I − LkCk)
−1(τ + Lkσ)

]

γνk(σ)
∣

∣det(I − LkCk)
−1

∣

∣ dσ. (10)

Proof. From (6), we see that the JPDF of sk can be formulated in terms of the JPDFs of ek−1 and

ωk−1. For this purpose, an auxiliary vector is defined as

s̄k =

[

sk

ek−1

]

=

[

Ak−1ek−1 + ωk−1

ek−1

]

=

[

I Ak−1

0 I

][

ωk−1

ek−1

]

. (11)

It can be seen that

γsk(η) =

∫

[ak−1,bk−1]n
γs̄k(η, ρ)dρ, (12)

where [ak−1, bk−1]
n is the interval of ek−1. For the defined auxiliary mapping (11), applying the funda-

mental PDF transformation property leads to

γs̄k(η, ρ) = γωk−1,ek−1
(η −Ak−1ρ, ρ)

∣

∣

∣

∣

∣

det

[

I Ak−1

0 I

]∣

∣

∣

∣

∣

−1

= γωk−1
(η −Ak−1ρ)γek−1

(ρ), (13)

where the second equality is obtained due to the independence of ωk−1 and ek−1. Substituting (13)

into (12) yields the JPDF of sk as shown in (9).
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Next, we can formulate the JPDF of ek in terms of those of sk and νk based on (7). Construct the

following auxiliary vector

ēk =

[

ek

νk

]

=

[

(I − LkCk)sk − Lkνk

νk

]

=

[

I − LkCk −Lk

0 I

][

sk

νk

]

. (14)

Similarly to the above proof process, the JPDF of ek can be obtained as described by (10). This completes

the proof.

Remark 2. Theorem 1 presents the JPDFs of the prediction error and the estimation error, which are

denoted as γsk(η) and γek(τ) respectively. It is noted that γek(τ) is actually a conditional JPDF related

to the undetermined filter gain Lk, and thus can be further expressed as γek(τ |Lk). It means that the

stochastic property of the estimation error relies on the selection of the filter gain. Thus, the result given

in Theorem 1 plays a key role in the filtering algorithm design.

3.2 Minimum entropy filter design

Following the formulation of the JPDF, the entropy of estimation error can be calculated. Compared with

the above mentioned Shannon entropy, Renyi’s entropy has the advantage of computational efficiency [22,

23]. The α-order Renyi’s entropy of ek is defined as follows [24]:

Hα(ek) =
1

1− α
ln

∫

[ak,bk]n
γα
ek
(τ)dτ. (15)

In (15), if we select α = 2, it becomes the well-known quadratic Renyi’s entropy,

H2(ek) = − ln

∫

[ak,bk]n
γ2
ek
(τ)dτ = − lnV2(ek), (16)

where V2(ek) =
∫

[ak,bk]n
γ2
ek
(τ)dτ is named quadratic information potential. From (16), it is easy to

observe that the minimization of H2(ek) is equivalent to the maximization of V2(ek). Therefore, in order

to reduce the computational complexity, the quadratic information potential changed of sign will be

employed instead of entropy as the criterion for the filter design.

By minimizing −V2(ek), the optimal filter gain Lk can be solved. When the PDF expressions of

noises and initial state are relatively simple, the explicit analytic expression of the optimal filter gain

may be obtained. However, for the general case, it is indeed difficult to solve this optimization problem

analytically. Similarly to [10, 25], the gradient optimization technique can be adopted in this paper. In

order to use this technique, a stretched column vector lk is defined by

lk =
[

Lk1 · · · Lkn

]T

, (17)

where Lkj(j = 1, . . . , n) is the jth row of filter gain matrix Lk. Furthermore, the following performance

index Jk is considered in this subsection:

Jk = −R1V2(ek) +
1

2
lTk R2lk

= −R1

∫

[ak,bk]n
γ2
ek
(τ)dτ +

1

2
lTk R2lk, (18)

where R1 > 0 and R2 > 0 are two pre-specified weights. In (18), the first term is the negative of quadratic

information potential of the estimation error, and the second term reflects the constraint on the filter

gain.

Remark 3. Since the estimation is unbiased naturally, there is no need to consider the mean term in

the above performance index. Even for the system with noises having non-zero means, unbiasedness can

also be guaranteed by adding the means of noises in the filter equations (2) and (3). Thus, performance
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index (18) considers the entropy of estimation error but no the mean value, which is different from the

discussion in [11].

Once the performance index is established, the optimal filter gain can be obtained by using the following

gradient algorithm:

li+1
k = lik − λk

∂Jk

∂lk

∣

∣

∣

∣

lk=li
k

= lik − λk∇Jk(l
i
k), (19)

where i represents the ith iteration, λk > 0 is a pre-specified step length for the optimization. In this

way, lik can be convergent to l∗k iteratively. Setting the initial value l0k and the accuracy ε > 0, we could

carry out the above algorithm until |∇J(lik)| < ε holds. Then, l∗k can be approximated by lik in the last

iteration. To sum up, we have the following result.

Theorem 2. Under the performance index (18), the optimal filter gain matrix Lk is given by

Lk =
[

l∗k1 · · · l∗kn

]T

, (20)

where l∗kj ∈ R
m (j = 1, . . . , n) represents a sub-vector including the [(j − 1)m+ 1]th–[jm]th elements of

l∗k, and the vector l∗k is provided by the above gradient optimization technique.

Remark 4. From Theorems 1 and 2, it can be seen that the calculation of error PDFs and optimal

filter gain does not depend on the measurement output, but depends only on the system matrices and

the PDFs of noises. It means that the optimal filter gain Lk can be obtained offline and the filtering

performance can also be evaluated before the system operates, which is an important practical aspect of

the proposed filter.

Remark 5. Similar to the form of the classic Kalman filer, the proposed minimum entropy filter can

also be summarized as the following five formulas:

• Time update (predict): (2), (9);

• Measurement update (correct): (20), (3), (10).

These results, although not concise enough in form, are more applicable to the filtering for general

non-Gaussian stochastic systems.

3.3 Relative entropy based filter design

As mentioned above, the filter design objective should be to minimize the randomness of the estimation

error or to realize a narrowly distributed Gaussian error signal. The former is a minimum entropy

issue which has been presented in the previous subsection, and the latter is in fact a PDF shape control

problem [20]. As the random noises involved in the system are of non-Gaussian type, the estimation error

is also a non-Gaussian signal. In this subsection, another type of filtering algorithm is proposed where our

task is to make the PDF of the estimation error follow closely a target distribution (generally a narrowly

distributed Gaussian PDF with zero mean). It means that the estimation error signal is guaranteed to

have the desired stochastic property by minimizing the distance between the error distribution and the

target one.

In order to measure the distance between the estimation error PDF and the target one, the relative

entropy (also named Kullback-Leibler divergence) is employed in this subsection, which is defined as

follows [12, 26, 27]:

DKL(γek(τ)‖γφ(τ)) =

∫

[ak,bk]n
γek(τ) ln

γek(τ)

γφ(τ)
dτ, (21)

where γφ(τ) is a pre-specified JPDF for the error JPDF γek(τ) to follow. The relative entropy is known

to be non-negative. It is zero for γek(τ) = γφ(τ) almost everywhere, and infinite if there exists a set with

a positive Lebesgue measure on which γφ(τ) ≡ 0 and γek(τ) > 0.

Although it is an effective tool to measure the distance between two distributions, the relative entropy

is not actually a true metric or distance because it does not satisfy the symmetry or the triangle in-

equality [28]. Since we only focus on the optimization problem for the filter design, the exact quantity

of divergence does not matter. Thus, we still adopt the relative entropy (21) for the sake of simplicity.
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By minimizing the relative entropy, the JPDF of the estimation error can be made as close as possible

to the target γφ(τ). Therefore, the corresponding filter is named as relative entropy based filter or PDF

tracking filter.

Similar to (18), the performance index for the PDF tracking filter is formulated as

J̄k = R3DKL(γek(τ)‖γφ(τ)) +
1

2
lTk R4lk

=

∫

[ak,bk]n
R3γek(τ) ln

γek(τ)

γφ(τ)
dτ +

1

2
lTk R4lk, (22)

where R3 > 0 and R4 > 0 are two weights. If the target PDF γφ(τ) is selected as a Gaussian PDF, the

relative entropy is naturally bounded simply because the Lebesgue measure of the set on which Gaussian

function takes zero value is just equal to zero. In this case, the weight R3 is taken to be a positive

constant. Otherwise, for more general case, a weighting function R3(τ) should be designed to guarantee

the boundedness of the first term in performance index (22). The similar problem has been discussed

in [12], and the selection of R3(τ) can refer to it.

Furthermore, the optimal filter gain can be obtained by minimizing the performance index J̄k. The

specific solution algorithm is just similar to the one presented in the previous subsection, which is omitted

here for brevity.

Remark 6. To sum up, two kinds of filtering algorithms including minimum entropy filter and rela-

tive entropy based filter (PDF tracking filter) have both been designed for the non-Gaussian stochastic

system (1). Different from the classic Kalman filter, the entropy optimization based filters are more

applicable for general non-Gaussian systems. Compared with the previous studies [11, 12], this paper

focuses on a wider class of systems and fully analyzes the properties of priori and posteriori estimates.

Therefore, the results provided in this paper are the extensions on previous work.

4 Illustrative examples

4.1 Minimum entropy filtering

To demonstrate the proposed minimum entropy filtering algorithm, we consider a simple model

described by

{

xk = (0.7− 0.1 tan(1 + k)−1)xk−1 + ωk−1,

zk = 0.8xk + νk,

with the initial state x0 assumed to obey

γx0
(τ) =

{

− 3
32 (τ − 3)(τ − 7), τ ∈ [3, 7],

0, otherwise.

Random noises ωk and νk are assumed to be mutually independent, where ωk is subjected to an uniform

distribution defined on the interval [−0.2, 0.2] and the PDF of νk is denoted by

γνk(τ) =

{

−6(τ2 − 0.25), τ ∈ [−0.5, 0.5],

0, otherwise.

Besides, both ωk and νk are independent of x0.

The minimum entropy filter is designed according to Remark 5, with the initial value set to be x̂+
0 = 5.

The weights in performance index (18) are selected as R1 = 1 and R2 = 0. At each sample time, gradient

algorithm (19) is applied, where the initial condition is taken to be l0k = 0.6. The simulation results are

displayed in Figures 1–5.
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Figure 1 (Color online) Filter gain iteration at some sam-

ple times.

Figure 2 (Color online) Optimal filter gain.
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Figure 3 (Color online) System state and its estimation. Figure 4 (Color online) Entropy of the estimation error.
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Figure 5 (Color online) PDF of the estimation error.

Figure 1 shows the solution processes of filter gain at several sample times (k = 1, 2, 3, 5). It can be

seen that at each time the filter gain is convergent to the optimal value under the gradient algorithm.
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Figure 6 (Color online) Filter gain iteration at some sam-

ple times.

Figure 7 (Color online) Optimal filter gain.

Figure 2 shows the sequence of the obtained optimal filter gain. The dynamical responses of system state

xk and estimated state x̂+
k are displayed in Figure 3, which shows that the estimated state can be able to

follow the actual state closely. The entropy and PDF curves of estimation error are presented in Figures 4

and 5, respectively. It can be seen that the estimation error has narrower PDF curve corresponding to

less randomness. All these simulation results demonstrate the validity of the proposed minimum entropy

filtering algorithm.

4.2 Relative entropy based filtering

In this subsection, the relative entropy based filtering (PDF tracking filtering) algorithm is tested. The

system model in the previous subsection is still used, with the initial state assumed to obey an uniform

distribution on the interval [3, 7]. The distribution of the process noise ωk is the same as above, and the

measurement noise νk has a nonsymmetric PDF defined by

γνk(τ) =

{

−12(t+ 24
35 )

5 + 12(t+ 24
35 )

3, τ ∈ [− 24
35 ,

11
35 ],

0, otherwise.

The desired PDF γφ(τ) is supposed to be a Gaussian distribution N(0, 0.122).

In the simulation, the initial estimate is x̂+
0 = 5, the initial value of the filter gain iteration at each

sample time is taken to be l0k = 0.6, and the weights in performance index (22) are set to be R3 = 1 and

R4 = 0. The corresponding simulation results are displayed in Figures 6–10.

Similar to Figures 1 and 2, Figures 6 and 7 show the solution processes of optimal filter gain at

several sample times and the sequence of obtained optimal gain, respectively. Figure 8 displays the time

responses of actual state and estimated state. In Figure 9, the PDFs of estimation error at two sample

times (k = 1, 30) as well as the target PDF γφ(τ) are given. Moreover, the 3D mesh plot of the error PDF

is displayed in Figure 10. It can be seen that the distribution of estimation error can follow the target

distribution closely. In other words, the error PDF has been made as narrow and as Gaussian as possible

under the designed PDF tracking filtering algorithm. From these results, we arrive at the conclusion that

the proposed algorithm has a favorable performance.

5 Conclusion

The filtering problem for multivariate stochastic systems with simultaneous presence of non-Gaussian

process noise and measurement noise is investigated in this paper. The form of the filter consists of time

update and measurement update two steps, and the filter gain in the measurement update equation is
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Figure 8 (Color online) System state and its estimation. Figure 9 (Color online) Comparisons between the error

PDF and the target.
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Figure 10 (Color online) PDF of the estimation error.

designed based on the principle that the randomness of the estimation error should be minimized. For

this purpose, two concepts including quadratic information potential and relative entropy are employed

as the performance criteria respectively. The relationship between the JPDFs of noises and estimation

error is formulated, based on which the two performance indices are established. Following the solution of

optimal filter gain, two kinds of filtering algorithms are obtained, and named minimum entropy filter and

relative entropy based filter respectively. Finally, numerical simulation examples are given to verify the

effectiveness of the proposed algorithms. However, some issues still need to be studied in our future work.

Examples include the the further improvement of the filter performance and the extension to nonlinear

stochastic systems.
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