• Supplementary File •

# Generating pairing-friendly elliptic curves with fixed embedding degrees

Liang LI<sup>1</sup>

<sup>1</sup>School of Mathematical Sciences, Fudan University, Shanghai 200433, P. R. China

## Appendix A The Cocks-Pinch method

The Cocks-Pinch method can construct pairing-friendly curves with arbitrary embedding degree k but usually has  $\rho \sim 2$ . It is worked via first fixing a subgroup of order r and a CM discriminant D, then computing a trace t and prime q satisfying the CM equation.

To be specific, give an imaginary quadratic field  $K = \mathbb{Q}(\sqrt{-D})$  where D > 0 is square-free and  $\mathcal{O}$  is the maximal order in K. Take a prime r such that r splits in  $\mathcal{O}$  and k|r-1. Let  $\zeta_k$  be a primitive k-th root of unity in  $(\mathbb{Z}/r\mathbb{Z})^*$ . Set  $t \equiv \zeta_k + 1 \pmod{r}$  and  $y \equiv (t-2)/\sqrt{-D} \pmod{r}$ . Finally test whether  $(t^2 + Dy^2)/4$  is a prime p (or a prime power q). When p (or q) is found, there exists an elliptic curve E over  $\mathbb{F}_p$  (or  $\mathbb{F}_q$ ) with an subgroup of order r and embedding degree k. The equation  $4p = t^2 + Dy^2$  (or  $4q = t^2 + Dy^2$ ) is called CM equation. If  $D < 10^{12}$ , then E can be constructed by the CM method.

## Appendix B Attacking ECDLP by Pohlig-Hellman's method

Let  $E/\mathbb{F}_q$  be an elliptic curve with  $n=\#E(\mathbb{F}_q)$  satisfying  $(n,p)=1,\ n=p_1^{n_1}p_2^{n_2}\cdots p_c^{n_c}$ , where  $p_i$   $(i=1,\cdots,c)$  are different prime numbers and  $n_i\geqslant 1$ . Let k be the embedding degree of n. Denote  $N_i=p_i^{n_i}$  and let  $k_i$  be the embedding degree of  $N_i$ , so  $k=[k_1,k_2,\cdots,k_c]$ . Next we will apply Pohlig-Hellman's method [1] to solve ECDLP. When  $p_i$  is small for all i, this algorithm works fast. When  $p_i$  is large for some i and  $k>k_i$  for all i, we give the detailed process to solve it by Tate-Lichtenbaum pairing [2].

**Lemma 1.**  $\frac{E[n]}{N_i E[n]} \cong E[N_i]$  as group for all i. The map  $\xi_i : \frac{E[n]}{N_i E[n]} \to E[N_i]$  by setting  $\xi_i(\overline{Q}) = \frac{n}{N_i} Q$  is an isomorphism. Proof. Since  $(N_i, p) = 1$ , then  $E[N_i] \cong \mathbb{Z}_{N_i} \times \mathbb{Z}_{N_i}$ . Because  $N_i | n$  and  $N_i \mathbb{Z}_n$  is a subgroup of  $\mathbb{Z}_n$ , we have  $\mathbb{Z}_n / N_i \mathbb{Z}_n \cong \mathbb{Z}_{N_i}$  and  $\frac{E[n]}{N_i E[n]} \cong \mathbb{Z}_{N_i} \times \mathbb{Z}_{N_i}$ . Define a map:

$$\xi_i: \frac{E[n]}{N_i E[n]} \longrightarrow E[N_i]$$

$$\overline{Q} \longmapsto \frac{n}{N_i} Q.$$

It is well defined obviously. Let  $\{A,B\}$  be the base of E[n], for any  $Q \in E[n]$ , Q = aA + bB, where  $a,b \in \mathbb{Z}$ . If  $\xi_i(\overline{Q}) = 0$ , i.e.  $\frac{an}{N_i}A + \frac{bn}{N_i}B = 0$ , then  $n|\frac{an}{N_i}$  and  $n|\frac{bn}{N_i}$ , so  $N_i|a$  and  $N_i|b$ . Thus we have  $Q \in N_iE[n]$ , then  $\xi_i$  is injective. On the other hand,  $\frac{n}{N_i}A$  and  $\frac{n}{N_i}B$  have the exact order  $N_i$  and they are linearly independent, so  $\xi_i$  is surjective.

For  $Q,Q'\in E(\mathbb{F}_q)$ , we need to find an m such that Q'=mQ. Obviously,  $Q',Q\in E[n]$ . Let  $\overline{Q},\ \overline{Q'}\in \frac{E[n]}{N_iE[n]}$ . If  $p_i$  is large for some i and  $k>k_i$  for all i, we can apply Tate-Lichtenbaum pairing to solve this discrete logarithm problem in the extension field  $\mathbb{F}_{q^di}$ . Then we can obtain  $\widetilde{Q'}=m_i\widetilde{Q}$  where  $\widetilde{Q'},\widetilde{Q}\in \frac{E(\mathbb{F}_q)}{N_iE(\mathbb{F}_q)}$ . Hence  $\overline{Q'}=m_i\overline{Q}$  for  $E(\mathbb{F}_q)\subseteq E[n]$ , so  $\xi_i(\overline{Q'})=m_i\xi_i(\overline{Q})$ . We need to solve the equations

$$x \equiv m_i \pmod{N_i}$$
.

Let  $M_i = \frac{n}{N_i}$  we have  $M_i M_i^{-1} \equiv 1 \pmod{N_i}$  since  $(M_i, N_i) = 1$ . Set

$$m = \sum_{i=1}^{c} M_i M_i^{-1} m_i.$$

Email: liangli11@fudan.edu.cn

We have  $m \equiv M_i M_i^{-1} m_i \equiv m_i \pmod{N_i}$  for all  $1 \leqslant i \leqslant c$ . So  $\xi_i(\overline{Q'}) = m \xi_i(\overline{Q})$  for all i. For  $(\frac{n}{N_1}, \dots, \frac{n}{N_c}) = 1$ , then we have Q' = mQ.

## Appendix C The proof of Theorem 1

Proof.  $g(x) \in \mathbb{Z}[x]$  has positive leading coefficient, then  $g_i(x) \in \mathbb{Z}[x]$  is nonconstant, irreducible, and integer-valued and has positive leading coefficient for all i. Let  $t(x) = g(x) + 1 + u(x)[f(x)^2 + d(x)s(x)^2] = g(x) + 1 + u(x)h(x)\prod_{j \in I} r_j(x)$  for some  $u(x) \in \mathbb{Q}[x]$ .  $\Phi_k(t(x) - 1) = \Phi_k(g(x) + u(x)h(x)\prod_{j \in I} r_j(x))$ , then  $r_j(x)|\Phi_k(t(x) - 1)$  for  $\forall j \in I$ . In the ring A, we have

$$\begin{split} q(x) + 1 - t(x) &= \frac{1}{4} [t(x)^2 + d(x)y(x)^2] - g(x) \\ &= \frac{1}{4} \{t(x)^2 + d(x)[a(x) - b(x)f(x)]^2 s(x)^2 [g(x) - 1]^2 - 4g(x)\} \\ &= \frac{1}{4} \{t(x)^2 - f(x)^2 [a(x) - b(x)f(x)]^2 [g(x) - 1]^2 - 4g(x)\} \\ &= \frac{1}{4} \{t(x)^2 - [g(x) - 1]^2 - 4g(x)\} \\ &= \frac{1}{4} [t(x) - g(x) - 1][t(x) + g(x) + 1] \\ &= 0, \end{split}$$

i.e.  $r_j(x)|q(x)+1-t(x)$  for all  $j \in I$ .

#### Appendix D The proof of Proposition 1

*Proof.* Suppose the condition (1) holds, let d(x) = ax + b with  $a \in \mathbb{Z}^*$ ,  $b \in \mathbb{Z}$ . Choose  $x_0$  such that  $ax_0 + b = Dy_0^2$  where D is a square-free integer. For all  $s \in \mathbb{Z}$ ,  $(Das^2 + 2Dsy_0 + x_0, as + y_0)$  are the solutions to the equation  $Dy^2 = ax + b$ . If the condition (2) holds, analogously, choose  $x_0$  such that  $x_0^2 + c = Dy_0^2$  where D > 1 is a square-free integer. Then the equation  $x^2 - Dy^2 = -c$  has a solution  $(x_0, y_0)$ , so it has infinitely many integer solutions.

#### Appendix E Some supplementary of the constructions

#### Appendix E.1 k=4 in Construction 1

When k = 4, we have

$$f(x) = x,$$

$$D = d(x) = 1,$$

$$s(x) = 1,$$

$$t(x) = x + 1,$$

$$q(x) = \frac{(x+1)^2}{2}.$$

When x is chosen as  $2^e - 1$  for  $e \in \mathbb{N}^*$ , q will be the power of 2. Let  $n(x) = q(x) + 1 - t(x) = \frac{x^2 + 1}{2} = \frac{\Phi_4(x)}{2}$ , then (t(x), n(x), q(x), 1) parameterizes a complete family of elliptic curves with embedding degree 4 and they are supersingular elliptic curves of prime order. It is the same case of Miyaji-Nakabayashi-Takano [3]. From the point of view of [4], the only possible such curves are

$$E/\mathbb{F}_q: y^2 + y = x^3 + x$$

and

$$E/\mathbb{F}_q: y^2 + y = x^3 + x + 1.$$

## Appendix E.2 k = 6 in Construction 2

When k = 6, we have

$$f(x) = 2x - 1,$$
  

$$D = d(x) = 3,$$
  

$$s(x) = 1,$$
  

$$t(x) = x + 1,$$
  

$$q(x) = \frac{(x+1)^2}{3}.$$

When x is chosen as  $3^e - 1$  for  $e \in \mathbb{N}^*$ , q will be the power of 3. Let  $n(x) = q(x) + 1 - t(x) = \frac{x^2 - x + 1}{3} = \frac{\Phi_6(x)}{3}$ , then (t(x), n(x), q(x), 1) parameterizes a complete family of elliptic curves with embedding degree 6 and they are supersingular

elliptic curves of prime order. It is the same case of Miyaji-Nakabayashi-Takano. According to [5], the only possible such curves are

$$E/\mathbb{F}_q: y^2 = x^3 - x + \delta$$

and

$$E/\mathbb{F}_q: y^2 = x^3 - x - \delta,$$

where  $\delta \in \mathbb{F}_q$  with  $Tr_{\mathbb{F}_q/\mathbb{F}_3}\delta = 1$ .

## Appendix F The $\rho$ -values of the constructions of embedding degree $k \leq 36$

**Table F1** The  $\rho$ -values of the constructions of embedding degree  $k \leq 36$ 

| Embedding degree $k$ | $C^{1)}1$     | C2            | C3            | C4            | C5      | C6 |  |
|----------------------|---------------|---------------|---------------|---------------|---------|----|--|
| 8                    | $\frac{3}{2}$ | -             | $\frac{3}{2}$ | -             | -       | -  |  |
| 12                   | 2             | $\frac{3}{2}$ | -             | -             | -       | 1  |  |
| 16                   | $\frac{5}{4}$ | -             | $\frac{5}{4}$ | -             | -       | -  |  |
| 18                   | -             | $\frac{4}{3}$ | -             | -             | 11<br>6 | -  |  |
| 20                   | $\frac{3}{2}$ | -             | -             | -             | -       | -  |  |
| 24                   | $\frac{7}{4}$ | $\frac{5}{4}$ | -             | $\frac{7}{4}$ | -       | -  |  |
| 28                   | $\frac{4}{3}$ | -             | -             | -             | -       | -  |  |
| 30                   | -             | $\frac{3}{2}$ | -             | -             | -       | -  |  |
| 32                   | 98            | -             | 98            | -             | -       | -  |  |
| 36                   | 5<br>3        | $\frac{7}{6}$ | -             | <u>5</u><br>3 | -       | -  |  |

In this table, we list the  $\rho$ -values of our constructions.

### References

- 1 Pohlig S, Hellman M. An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Transactions on Information Theory, 1978(24): 106-110.
- 2 Silverman J H. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, Springer New York, 2009(106).
- 3 Miyaji A, Nakabayashi M, Takano S. New explicit conditions of elliptic curve traces for FR-reduction. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2001(E84-A): 1234-1243.
- 4 Menezes A, Vanstone S. Isomorphism classes of elliptic curves over finite fields of characteristic 2. Utilitas Mathematica, 1990(38): 135-153.
- 5 Morain F. Building cyclic elliptic curves modulo large primes. Advances in Cryptology-EUROCRYPT, the series Lecture Notes in Computer Science, Springer Berlin, 1991(547): 328-336.

<sup>1)</sup> C=Construction.