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Appendix A The Cocks-Pinch method

The Cocks-Pinch method can construct pairing-friendly curves with arbitrary embedding degree k but usually has p ~ 2. It
is worked via first fixing a subgroup of order r and a CM discriminant D, then computing a trace ¢ and prime ¢ satisfying
the CM equation.

To be specific, give an imaginary quadratic field K = Q(v/—D) where D > 0 is square-free and O is the maximal order
in K. Take a prime r such that r splits in O and k|r — 1. Let {3 be a primitive k-th root of unity in (Z/rZ)*. Set
t = ( + 1(mod 7) and y = (t — 2)/v/—D(mod 7). Finally test whether (t? + Dy?)/4 is a prime p (or a prime power q).
When p (or g) is found, there exists an elliptic curve E over Fj, (or F,) with an subgroup of order r and embedding degree
k. The equation 4p = t2 4+ Dy? (or 4q = t2 + Dy?) is called CM equation. If D < 102, then E can be constructed by the
CM method.

Appendix B Attacking ECDLP by Pohlig-Hellman’s method

Let E/Fq be an elliptic curve with n = #E(F,) satisfying (n,p) = 1, n = p'*ps? - - - pc¢, where p; (i = 1,--- ,¢) are

different prime numbers and n; > 1. Let k be the embedding degree of n. Denote N; = p?’ and let k; be the embedding
degree of N;, so k = [k1, k2, -, ke]. Next we will apply Pohlig-Hellman’s method 1| to solve ECDLP. When p; is small for
all 4, this algorithm works fast. When p; is large for some ¢ and k > k; for all i, we give the detailed process to solve it by
Tate-Lichtenbaum pairing |2|.

NE}[E[L] = E[N;] as group for all ¢. The map &; : [] — E[N;] by setting &(Q) = NliQ is an isomorphism.

Proof.  Since (N;,p) =1, then E[N;] = Zn, X Zy, . Because N In and N;Zy, is a subgroup of Zp, we have Z, /N;Zn = Zy;,

[n[]n] = 7N, X Zp,. Define a map:

Lemma 1.

and

Eln]
P E[N;
& N; En] (Vi)
— n

— —Q.

Q N, Q
It is Well defined obviously. Let {4, B} be the base of E[n], for any Q € E[n], Q = aA + bB, where a,b € Z. If £(Q) = 0,
A + % bn B — 0, then n| 4 and n\ﬁ, so N;|a and N;|b. Thus we have Q € N, E[n], then &; is injective. On the other
hand A and —B have the exact order N; and they are linearly independent, so &; is surjective. O

For Q Q' € E(Fq) we need to find an m such that Q' = mQ. Obviously, Q’,Q € E[n]. Let Q, Q' € NE][;[]"]. If p; is
large for some ¢ and k > k; for all 4, we can apply Tate-Lichtenbaum pairing to solve this discrete logarithm problem in
the extension field qu,l Then we can obtain Q’ = mzé where Q Q € ) Hence Q" = m;Q for E(Fy) C E[n], so

N E(Fq)"
&(Q') = mi&;(Q). We need to solve the equations
z = m;i(mod N;).
Let M; = NL7 we have MiMi_1 = 1(mod N;) since (M;, N;) = 1. Set

c
m=Y_ M;M  m,.
=1
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We have m = MiMi_lmi =m; (mod N;) for all 1 < i < ¢ So &(Q") = m&;(Q) for all i. For (Nil, e Nlc) =1, then we
have Q' = mQ.

Appendix C The proof of Theorem 1

Proof.  g(z) € Z[z] has positive leading coefficient, then g;(x) € Z[z] is nonconstant, irreducible, and integer-valued and
has positive leading coefficient for all i. Let t(z) = g(z) + 1 + u(z)[f(x)? + d(z)s(x)?] = g(z) + 1 + u(z)h(z) [I;erri(z) for
some u(z) € Qz]. ®x(t(z) — 1) = ®x(g(z) + u(z)h(z)[1;c; rj(2)), then rj(z)|Px(t(x) — 1) for V j € I. In the ring A, we
have

@)+ 1= 1() = [1@)? + d@)y(2)?] - g()
= H{H@)? + d(@)[a@) — b(@) f@)Ps(@) (@) — 11 — 49(2)}
= {1 — F@)la@) — b(@) f@)Plg(@) — 1 — 4g(a)}
= (1) ~ [g@) — 1 — 4g(a)}
=1 18@) — 9(x) — 1][t@) + (&) + 1]
L,
ice. j(x)|q(x) + 1 — t(x) for all j € 1. O

Appendix D The proof of Proposition 1

Proof.  Suppose the condition (1) holds, let d(z) = ax +b with a € Z*, b € Z. Choose x¢ such that axg +b = Dyg? where
D is a square-free integer. For all s € Z, (Das? + 2Dsyo + x0,as + yo) are the solutions to the equation Dy? = ax + b. If
the condition (2) holds, analogously, choose xg such that 202 + ¢ = Dyo? where D > 1 is a square-free integer. Then the
equation 22 — Dy? = —c has a solution (z0,Y0), so it has infinitely many integer solutions. O

Appendix E Some supplementary of the constructions
Appendix E.1 k=4 in Construction 1

When k = 4, we have

f(z) ==,
D=d(z)=1,
s(z) =1,
tx)=oz+1,

= 2
sy = EHD?

2

When z is chosen as 2¢ — 1 for e € N*, ¢ will be the power of 2. Let n(z) = ¢q(z) + 1 — t(z) = m22+1 = @47(1), then
(t(z),n(x), q(x), 1) parameterizes a complete family of elliptic curves with embedding degree 4 and they are supersingular
elliptic curves of prime order. It is the same case of Miyaji-Nakabayashi-Takano |3|. From the point of view of |4|, the only
possible such curves are
E/F, P ry=a2+2
and
E/F, :y2+y:x3+x+1.

Appendix E.2 k=6 in Construction 2

When k = 6, we have

flz) =2z -1,
D =d(z) =3,
s(z) =1,
tx)=oz+1,

= 2
gta) = LI

When z is chosen as 3¢ — 1 for e € N*, ¢ will be the power of 3. Let n(z) = ¢(z) + 1 — t(z) = @ = ‘1’57(05)7 then
(t(z),n(x), q(x), 1) parameterizes a complete family of elliptic curves with embedding degree 6 and they are supersingular
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elliptic curves of prime order. It is the same case of Miyaji-Nakabayashi-Takano. According to |5, the only possible such
curves are
E/Fg:y?>=a3—x+6
and
E/Fy:y?> =23 —x -3,
where 6 € F, with Tr]Fq/]Fgé =1.

Appendix F The p-values of the constructions of embedding degree £k < 36

Table F1 The p-values of the constructions of embedding degree k < 36

Embedding degree k cH1 C2 C3 Cc4 C5 C6
12 2 3 - - - 1
16 ; - ; : : :
15 : : : : g :
20 3 - - - - -
24 : i : z : :
28 2 - - - - -
30 - 3 - - - -
» : : : : : :
3 : : : :

In this table, we list the p-values of our constructions.
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