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On a given filtrated probability space (Ω,F ,
{Ft}06t6T , P ), we study the following stochas-
tic partial differential equations (SPDEs) of evo-
lutionary type with jump:
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

dX(s) = [A(s)X(s) + b(s,X(s))]ds

+ [B(s)X(s) + g(s,X(s))]dW (s)

+

∫

E

σ(s, e,X(s−))µ̃(de, ds),

X(0) = x, s ∈ [0, T ],

(1)

in a Gelfand triple V ⊂ H = H∗ ⊂ V ∗. Here µ̃ is
a Poisson random martingale measure on a fixed
nonempty Borel measurable subset E of R1 and
W is a one-dimensional Brownian motion, A : Ω×
[0, T ] −→ L (V, V ∗), B : Ω × [0, T ] −→ L (V,H),
b : Ω× [0, T ]×H −→ H , g : Ω× [0, T ]×H −→ H
and σ : Ω × [0, T ] × E ×H −→ H are given ran-
dom mappings. Here L (V, V ∗) denotes the set
of all bounded linear operators of V into V ∗ and
L (V,H) denotes the set of all bounded linear op-
erators of H into V. An adapted solution of (1) is a
V -valued, {Ft}06t6T -adapted process X(·) which
satisfies (1) under some appropriate sense. Such a
model as (1) represents a large classes of stochas-
tic partial differential equations, for instance, the
nonlinear filtering equation and other stochastic
parabolic PDEs, but it is by no means the largest

one. Partial differential equations are too diverse
to be covered by a single model, like ordinary equa-
tions. One of the purposes of our work is to es-
tablish the existence and uniqueness of solutions
to the stochastic evolution equation (1). Most re-
cently, thanks to comprehensive practical applica-
tions, many attentions have been paid to SPDEs
driven by jump processes, (for example, [1–7] and
the references therein). It is worth mentioning
that Röckner and Zhang [3] obtained the unique-
ness and existence results for stochastic evolution
equations of type (1.1) by a successive approxima-
tions, in which case the operator B does not exist.
Another purpose of this paper is to establish the
maximum principle and verification theorem for
the optimal control problem where the state pro-
cess is driven by a controlled stochastic evolution
equation (1). In 2005, Øksendal et al. [8] studied
the optimal control problem of quasilinear semiel-
liptic SPDEs driven by Poisson random measure
and gave sufficient maximum principle results, not
necessary ones. As an application, at last, we will
present a linear quadratic optimal control prob-
lem of a controlled SPDE with jumps which our
theoretical results can solve.

Assumption 1. The operator processes A and
B are weakly predictable; i.e., 〈A(·)x, y〉 and
(B(·)x, y)H are both predictable process for every
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x, y ∈ V, and satisfy the coercive condition, i.e.,
there exist some constants C,α > 0 and λ such
that for any x ∈ V and each (s, ω) ∈ [0, T ]× Ω,

λ||x||H − α||x||V > 〈A(s)x, x〉 + ||Bx||H (2)

and

sup
(ω,s)∈Ω×[0,T ]

‖A(s, ω)‖L (V,V ∗)

+ sup
(ω,s)∈Ω×[0,T ]

‖B(s, ω)‖L (V,H) 6 C.

Assumption 2. The mappings b and g
are both P × B(H)/B(H)-measurable with
b(·, 0), g(·, 0) ∈ M2

F
(0, T ;H); the mapping σ

is P × B(E) × B(H)/B(H)-measurable with
σ(·, ·, 0) ∈ Mν,2

F
([0, T ]× E;H). And there is a con-

stant C such that for a.s.(ω, s) ∈ Ω× [0, T ] and all
x, y ∈ V ,

||b(s, x)− b(s, y)||H + ||g(s, x)− g(s, y)||H

+ ||σ(s, ·, x) − σ(s, ·, y)||Mν,2(E;H)

6 C||x− y||H . (3)

Theorem 1 (Existence and uniqueness theorem of
SEE with jumps). Let Assumptions 1 and 2 be
satisfied by any given coefficients (A,B, b, g, σ) of
the SEE (1). Then for any initial value X(0) = x,
the SEE (1) admits a unique solution X(·) ∈
S2

F
(0, T ;H)

⋂

M2
F
(0, T ;V ).

On a real-valued Hilbert space U, consider a
nonempty convex closed subset U which is our
control domain. A predictable stochastic process
u(·) , {u(t), 0 6 t 6 T } is referred to as an ad-
missible control process if u(·) ∈ M2(0, T ;U) and
u(t) ∈ U , a.e., t ∈ [0, T ], P-a.s.. The set of all
admissible control processes is denoted by A.

In the Gelfand triple (V,H, V ∗), for any admis-
sible control u(·) ∈ A, we consider the following
controlled SEE with jumps:


























dX(s) = [A(s)X(s) + b(t,X(s), u(s))]ds

+[B(s)X(s) + g(t,X(s), u(s))]dW (s)

+

∫

E

σ(s, e,X(s−), u(s))µ̃(de, ds),

X(0) = x, s ∈ [0, T ],

(4)

with the cost functional

J(u(·)) = E

[
∫ T

0

l(s, x(s), u(s))dt+ Φ(x(T ))

]

,(5)

where the coefficients A : [0, T ]×Ω −→ L (V, V ∗),
B : [0, T ] × Ω −→ L (V,H), b, g : [0, T ] × Ω ×
H × U → H, σ : [0, T ]× Ω× E ×H × U −→ H,
l : [0, T ]× Ω ×H × U → R and Φ : Ω ×H → R

are given random mappings satisfying the follow-
ing basic assumptions.

Assumption 3. (i) The operator-valued
stochastic processes A and B satisfy Assump-
tion 1.

(ii) b(·, 0, 0), g(·, 0, 0) ∈ M2
F
(0, T ;H), σ(·, ·, 0, 0)

∈ Mν,2
F

([0, T ] × E;H). Moreover, for almost all
(ω, s, e) ∈ Ω× [0, T ]×E, b, g and σ have continu-
ous bounded Gâteaux derivatives bx, gx, σx, bu, gu
and σu.

(iii) For every (ω, s) ∈ Ω × [0, T ], l has con-
tinuous Gâteaux derivatives lx and lu, and Φ has
continuous Gâteaux derivative Φx. Moreover, for
every (ω, s) ∈ Ω × [0, T ], |l(s, x, u)| 6 K(1 +
‖u‖2U + ‖x‖2H), ‖lx(s, x, u)‖H + ‖lu(s, x, u)‖U 6
K(1 + ‖u‖U + ‖x‖H) and |Φ(x)| 6 K(1 +
‖x‖2H), ‖Φx(x)‖H 6 K(1+ ‖x‖H), (x, u) ∈ H×U ,
where K is some positive constant.

It is easy to check that under Assumption 3,
for any given admissible control process u(·), the
state equation (4) has a unique solution, denoted
by Xu(·) or X(·), if its dependence on u(·) is clear
from the context. In the following, the solution
Xu(·) is referred to as the state process associated
with the control process u(·), and (u(·);X(·)) is
referred to as an admissible pair.

Now we begin to present our optimal control
problem.

Problem 1. Choose an admissible control pro-
cess ū(·) ∈ A satisfies

J(ū(·)) = inf
u(·)∈A

J(u(·)). (6)

The admissible control process ū(·) satisfying
the above (6) and the corresponding state pro-
cess X̄(·) are said to be an optimal control pro-
cess and an optimal state process of Problem 1,
respectively. Then (ū(·); X̄(·)) is referred to as an
optimal pair of Problem 1. For any admissible pair
(ū(·); X̄(·)), the corresponding adjoint processes
are defined as a triple (p̄(·), q̄(·), r̄(·, ·)) of stochas-
tic processes, which is a solution to the following
backward stochastic evolution equation (BSEE for
short) with jump, called the adjoint equation,






















dp̄(s) = −

[

A∗(s)p̄(s) +B(s)∗q̄(s) + H̄x(s)

]

ds

+q̄(s)dW (s) +

∫

E

r̄(s, e)µ̃(de, ds),

p̄(S) = Φx(X̄(T )),

(7)

where we define the Hamiltonian H(s, x, u, p, q,
r(·)) := (b, p)H +(g, q)H +

∫

E
(σ, r)H ν(de)+ l, and

denote

H̄(s) , H(t, X̄(s), ū(s), p̄(s), q̄(s), r̄(s, ·)). (8)

Now we are in position to state the maximum prin-
ciple and the verification theorem for Problem 1,
respectively.
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Theorem 2 (Maximum principle). Let As-
sumption 3 be satisfied. Let (ū(·); X̄(·))
be an optimal pair of Problem 1 associ-
ated with the adjoint processes (p̄(·), q̄(·), r̄(·, ·)).
Then for all v ∈ U , a.e., (ω, s) ∈ Ω ×
[0, T ], the following minimum value condition
holds:

(

Hu(s, X̄(s−), ū(s), p̄(s−), q̄(s), r̄(s, ·)), v −

ū(s)
)

U
> 0.

Theorem 3 (Verification theorem). As-
sume that Assumption 3 holds. Sup-
pose that (ū(·); X̄(·)) is a given admissible
pair of Problem 1 associated with the ad-
joint processes (p̄(·), q̄(·), r̄(·, ·)). Assume that
H(s, x, u, p̄(s), q̄(s), r̄(s, ·)) is a convex function
with respect to (x, u), and Φ(x) is a convex func-
tion with respect to x. Moreover assume that the
following minimum value condition is satisfied for
almost all (ω, s) ∈ Ω× [0, T ]:

H(s, X̄(s−), ū(s), p̄(s−), q̄(s), r̄(s, ·))

= min
u∈U

H(t, X̄(s−), u, p̄(s−), q̄(s), r̄(s, ·)).

Then (ū(·); X̄(·)) is an optimal pair of Problem 1.

As an application, we consider a controlled
Cauchy problem:









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


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














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
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

dy(s, z) =
{

∂zi [a
ij(s, z)∂zjy(s, z)] + b

i(s, z)∂ziy(s, z)

+ c(s, z)y(s, z) + u(s, z)
}

dt+ {∂zi [η
i(s, z)y(s, z)]

+ ρ(s, z)y(s, z) + u(s, z)}dW (s)

+

∫

E

[Γ(s, e, z)y(s, z) + u(s, z)]µ̃(de,ds),

y(0, z) = ξ(z) ∈ R
d
, (z, s) ∈ R

d × [0, T ].

(9)

We define V = H1, H = H0, V ∗ = H−1, where
H1 and H0 are the classical Sobolev spaces. Then
(V,H, V ∗) is a Gelfand triple. We assume that
control domain U = U = H . The admissible con-
trol set A becomes M2

F
(0, T ;U). For any admis-

sible control process u(·, ·) and the corresponding
solution y(·, ·) of the state equation (9), the pur-
pose of the optimal control problem is to minimize
the following cost functional:

J(u(·))=E

[
∫

Rd

y2(T, z)dz +

∫∫

[0,T ]×Rd

y2(s, z)dsdz

+

∫∫

[0,T ]×Rd

u2(s, z)dsdz

]

.

To order to apply our maximum principle and ver-
ification theorem, for the coefficients a, b, c, η, ρ,
Γ, we need the following basic assumptions.

Assumption 4. The functions a, b, c, η, and ρ
areP×B(Rd)-measurable with values in the set of

real symmetric d×d matrices, Rd, R, Rd and R, re-
spectively, and are bounded by K. The function Γ
is P×B(E)×B(Rd)-measurable with value R and
is bounded byK. ξ ∈ L2(Rd). The super-parabolic
condition is satisfied, i.e., κI + η(s, z)(η(s, z))∗ 6
2a(s, ω, z) 6 KI, ∀(s, ω, z) ∈ [0, T ]×Ω×R

d, where
K ∈ (1,∞) and κ ∈ (0, 1) are some fixed constants
and I denotes the (d× d)-identity matrix.

Let (ū(·); X̄(·)) be an optimal pair. Under As-
sumption 4, by applying maximum principle, the
optimal control ū(·) has the following adjoint rep-
resentation:

ū(s) = −
1

2

[

p̄(s−) + q̄(s) +

∫

E

r̄(s, e)ν(de)

]

,

where (p̄(·), q̄(·), r̄(·, ·)) is the adjoint process cor-
responding to the optimal pair (ū(·); X̄(·)).
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3 Röckner M, Zhang T S. Stochastic evolution equations
of jump type: existence, uniqueness and large devia-
tion principles. Potential Anal, 2007, 26: 255–279

4 Sakthivel R, Ren Y. Exponential stability of second-
order stochastic evolution equations with Poisson
jumps. Commun Nonlinear Sci Numer Simul, 2012,
17: 4517–4523

5 Yang X, Zhai J, Zhang T S. Large deviations for
SPDEs of jump type. Stoch Dynam, 2015, 15:
1550026

6 Zhao H, Xu S. Freidlin-Wentzells large deviations for
stochastic evolution equations with Poisson jumps.
Adv Pure Math, 2016, 6: 676

7 Zhai J, Zhang T. Large deviations for 2-D stochastic
Navier-Stokes equations driven by multiplicative Lévy
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