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On a given filtrated probability space (2,.%,
{F#}o<i<r, P), we study the following stochas-
tic partial differential equations (SPDEs) of evo-
lutionary type with jump:
dX(s) = [A(s)X(s) + b(s, X(s))]ds
[B(s)X(5) + g(s, X (5))] AWV (s)

+[B(s)
_i_/lsa(sje,x(s—))ﬂ(de,ds),

X(0) = =,

(1)

s € 0,77,

in a Gelfand triple V.C H = H* C V*. Here [1 is
a Poisson random martingale measure on a fixed
nonempty Borel measurable subset E of R! and
W is a one-dimensional Brownian motion, A :  x
0,T] — Z(V,V*), B: Qx[0,T] — Z(V,H),
b:Ox[0,T)xH—H,g:Qx[0,T]xH — H
and o : Q x [0,7] x E x H — H are given ran-
dom mappings. Here Z(V,V*) denotes the set
of all bounded linear operators of V' into V* and
Z(V, H) denotes the set of all bounded linear op-
erators of H into V. An adapted solution of (1) is a
V-valued, {.%; }o<i<r-adapted process X (-) which
satisfies (1) under some appropriate sense. Such a
model as (1) represents a large classes of stochas-
tic partial differential equations, for instance, the
nonlinear filtering equation and other stochastic
parabolic PDEs, but it is by no means the largest
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one. Partial differential equations are too diverse
to be covered by a single model, like ordinary equa-
tions. One of the purposes of our work is to es-
tablish the existence and uniqueness of solutions
to the stochastic evolution equation (1). Most re-
cently, thanks to comprehensive practical applica-
tions, many attentions have been paid to SPDEs
driven by jump processes, (for example, [1-7] and
the references therein). It is worth mentioning
that Rockner and Zhang [3] obtained the unique-
ness and existence results for stochastic evolution
equations of type (1.1) by a successive approxima-
tions, in which case the operator B does not exist.
Another purpose of this paper is to establish the
maximum principle and verification theorem for
the optimal control problem where the state pro-
cess is driven by a controlled stochastic evolution
equation (1). In 2005, Oksendal et al. [8] studied
the optimal control problem of quasilinear semiel-
liptic SPDEs driven by Poisson random measure
and gave sufficient maximum principle results, not
necessary ones. As an application, at last, we will
present a linear quadratic optimal control prob-
lem of a controlled SPDE with jumps which our
theoretical results can solve.

Assumption 1. The operator processes A and
B are weakly predictable; i.e., (A(-)z,y) and
(B(-)x,y) g are both predictable process for every
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z,y € V, and satisfy the coercive condition, i.e.,
there exist some constants C,a > 0 and A such
that for any € V and each (s,w) € [0,7] x ,

Mzl = ollz|lv = (A(s)z, ) + [|Bzllm (2)
and

sup  [JA(s,w)ll2v,ve
(w,8)€2x[0,T

+ sup

| B(s,w)ll.2v,m < C.
(,5)EQX[0,T]

Assumption 2. The mappings b and g
are both & x B(H)/PB(H)-measurable with
b(-,0),9(-,0) € MZ%(0,T;H); the mapping o
is & x B(E) x B(H)/PA(H)-measurable with
o(-,-,0) € M}Q([O,T] x FE; H). And there is a con-
stant C' such that for a.s.(w, s) € Q x [0,T] and all
z,y eV,

[1b(s, ) = b(s, y)|[mr + llg(s, ) = g(s,y)l|a
+ ||U(57 -,.ﬁ) - 0(57 '7y)||M"*2(E;H)
< Clle = ylla- (3)

Theorem 1 (Existence and uniqueness theorem of
SEE with jumps). Let Assumptions 1 and 2 be
satisfied by any given coefficients (A, B, b, g,0) of
the SEE (1). Then for any initial value X (0) = =,
the SEE (1) admits a unique solution X(:) €
§%(0,T; H) M3 (0, T; V).

On a real-valued Hilbert space U, consider a
nonempty convex closed subset % which is our
control domain. A predictable stochastic process
u(-) = {u(t),0 < t < T} is referred to as an ad-
missible control process if u(-) € M?(0,T;U) and
u(t) € %, ae., t € [0,T], P-a.s.. The set of all
admissible control processes is denoted by A.

In the Gelfand triple (V, H,V*), for any admis-
sible control u(-) € A, we consider the following
controlled SEE with jumps:

dX(s) = [A(s)X (s) + b{t, X (s), u(s))]ds
+[B(5) X (5) + g(t, X (5), u(s))]dW (s)

+Af@aX@%MwM®d%M)

X(0)= =z, s€][0,7T],

with the cost functional

J(u() :EUO (s, 2(s), u(s))dt + ®(x(T))| (5)

where the coefficients A : [0,T] x Q — Z(V, V™),
B :[0,T] xQ — Z(V,H), bjg : [0,T] x 2 x
Hx% — H,0:[0,T|xQx ExHxXx% — H,
1[0, T|xQxHX%Z - Rand ®: Qx H— R
are given random mappings satisfying the follow-
ing basic assumptions.
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Assumption 3. (i) The operator-valued
stochastic processes A and B satisfy Assump-
tion 1.

(ii) b(-,0,0),9(-,0,0) € M%(0,T;H),o(-,-,0,0)
€ M%([0,T) x E; H). Moreover, for almost all
(w,s,e) € Q2x[0,T] x E, b, g and o have continu-
ous bounded Gateaux derivatives by, gz, 04, by, Gu
and oy,.

(iii) For every (w,s) € Q x [0,T], I has con-
tinuous Gateaux derivatives [, and [,, and ® has
continuous Gateaux derivative ®,. Moreover, for
every (w,s) € Q x [0,T], [l(s,z,u)] < K(1+
lullZ + llzl3), (s 2, W)l + [llu(s, 2 u)llo <
K1 + |ullu + |lz|lg) and |®(z)] < K(1 +
I2l3), |@a(@) | < KA +|2ln), (z,u) € Hx %,
where K is some positive constant.

It is easy to check that under Assumption 3,
for any given admissible control process u(-), the
state equation (4) has a unique solution, denoted
by X*(-) or X(-), if its dependence on u(-) is clear
from the context. In the following, the solution
X"(-) is referred to as the state process associated
with the control process u(-), and (u(-); X()) is
referred to as an admissible pair.

Now we begin to present our optimal control
problem.

Problem 1. Choose an admissible control pro-
cess u(-) € A satisfies

J(u() = nf J(u()). (6)

u(-)eA

The admissible control process @(-) satisfying
the above (6) and the corresponding state pro-
cess X(-) are said to be an optimal control pro-
cess and an optimal state process of Problem 1,
respectively. Then (@(-); X(-)) is referred to as an
optimal pair of Problem 1. For any admissible pair
(u(-); X(+)), the corresponding adjoint processes
are defined as a triple (p(-), q(+),7(+,-)) of stochas-
tic processes, which is a solution to the following
backward stochastic evolution equation (BSEE for

short) with jump, called the adjoint equation,
dp(s) = — [A* (s)p(s) + B(s)*q(s) + Ha(s)|ds

+q(s)dW(s)+/Ef(s,e)g(de,ds), (7)

where we define the Hamiltonian H(s,z,u,p,q,

Q(J) = (b,p) + (9,0 gy + [z (0,7) y v(de) +1, and
enote

7:[(8) éH(th(S)aﬂ(s)aﬁ(s)a(j(s)af(sv)) (8)

Now we are in position to state the maximum prin-
ciple and the verification theorem for Problem 1,
respectively.
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Theorem 2 (Maximum principle).
sumption 3 be satisfied. Let (a(-); X(+))
be an optimal pair of Problem 1 associ-
ated with the adjoint processes (p(-),q(-),7(-,)).
Then for all v € %, ae, (w,s) € O x
[0,7], the following minimum value condition
holds: (H.(s, X (s—),u(s), p(s—),q(s),7(s,")),v —
ﬂ(s))U > 0.

Theorem 3

Let B As-

(Verification  theorem).  As-
sume that Assumption 3 holds. Sup-
pose that (u(-); X(-)) is a given admissible
pair of Problem 1 associated with the ad-
joint processes (p(-),q(-),7(-,-)). Assume that
H(s,x,u,p(s),q(s),7(s,-)) is a convex function
with respect to (z,u), and ®(x) is a convex func-
tion with respect to x. Moreover assume that the
following minimum value condition is satisfied for
almost all (w, s) € 2 x [0,T]:

H(Sa X(Sf) ﬂ(s),ﬁ(s—), q(s)vf(sa ))

= 11}&1@1} Ht, X(S*),u,ﬁ(é@*), q(s),7(s,")).

Then (u(-); X(+)) is an optimal pair of Problem 1.
As an application, we consider a controlled
Cauchy problem:

dy(‘97 Z) = {821 [aij (‘97 z)azj y(87 z)] + bi(‘97 Z)aziy(‘97 Z)
+ (s, 2)y(s, 2) + u(s, 2) }dt + {0.:[n" (s, 2)y(s, 2)]
+ p(s, 2)y(s, z) + u(s, z) }JdW (s) )

+/E[F(s,e,z)y(s,z) + u(s, z)](de, ds),

y(0,2) = £(2) € R,

(z,5) € R? x [0,T].

We define V.= H', H = H°, V* = H~!, where
H' and HO are the classical Sobolev spaces. Then
(V,H,V*) is a Gelfand triple. We assume that
control domain %2 = U = H. The admissible con-
trol set A becomes MZ(0,7;U). For any admis-
sible control process u(-,-) and the corresponding
solution y(-,-) of the state equation (9), the pur-
pose of the optimal control problem is to minimize
the following cost functional:

J(u(-))=E {/}Rd y3(T,z)dz +//[O,T]><]Rdy2(87 2)dsdz

+ // u?(s, z)dsdz].
[0, 7] xR¢

To order to apply our maximum principle and ver-
ification theorem, for the coefficients a, b, ¢, n, p,
T", we need the following basic assumptions.

Assumption 4. The functions a, b, ¢, 1, and p
are 2 x %(R%)-measurable with values in the set of
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real symmetric d x d matrices, R?, R, R? and R, re-
spectively, and are bounded by K. The function I'
is 2 x %B(E) x #(R?)-measurable with value R and
is bounded by K. ¢ € L2(R?). The super-parabolic
condition is satisfied, i.e., kI + (s, z)(n(s, z))* <
2a(s,w,2) < KI,Y(s,w,z) € [0,T] x Q2 xR?, where
K € (1,00) and & € (0,1) are some fixed constants
and I denotes the (d x d)-identity matrix.

Let (u(-); X(+)) be an optimal pair. Under As-
sumption 4, by applying maximum principle, the
optimal control @(-) has the following adjoint rep-
resentation:

1
i(s) = [p(s—) va)+ [ r(s,e)u(de)],
E
where (p(-), q(-),7(-,-)) is the adjoint process cor-
responding to the optimal pair (a(-); X (+)).
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