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Abstract In this paper, we first propose a novel generalized power iteration (GPI) method to solve the

quadratic problem on the Stiefel manifold (QPSM) as min
WTW=I

Tr(WTAW − 2WTB) along with the theo-

retical analysis. Accordingly, its special case known as the orthogonal least square regression (OLSR) is under

further investigation. Based on the aforementioned studies, we then majorly focus on solving the unbalanced

orthogonal procrustes problem (UOPP). As a result, not only a general convergent algorithm is derived theo-

retically but the efficiency of the proposed approach is verified empirically as well.
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1 Introduction

The orthogonal procrustes problem (OPP) is the least square problem on the Stiefel manifold. The OPP

originates from the factor analysis in psychometrics during 1950s and 1960s [1, 2]. The major purpose

is to determine an orthogonal matrix that rotates the factor matrix to best fit some hypothesis matrix.

The balanced case of the OPP was surveyed in multiple introductory textbooks such as [3, 4].

Recently, due to the wide applications of the orthogonal regression in computer science, see [5, 6],

solving the unbalanced OPP (UOPP) is under increasing concern. Multiple approaches are proposed

to solve UOPP such as the expansion balanced algorithm (EB), the right hand side and the left hand

side relaxation (RSR), (LSR), the successive projection (SP) and the Lagrangian relaxation (LR). In [7],

the EB method employs the expanded balanced OPP as its objective function. In [8, 9] respectively, the

RSR and the LSR approaches update the solution row by row or column by column iteratively based on

solving the least square regression with a quadratic equality constraint (LSQE). In [10], the SP method

updates the solution column by column by virtue of the projection method combined with correction
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techniques (PMCT) discussed by [11], which is efficient to solve LSQE. In [12], the LR method solves

UOPP by selecting different Lagrangian multipliers.

All the approaches mentioned above could converge to the solution of UOPP successfully, whereas they

deal with more complex procedures, which represent high orders of complexity. Furthermore, all these

methods initialize the parameters deliberately to optimize their proposed algorithms. Last but not least,

all these approaches are unable to deal with a more general problem known as the quadratic problem on

the Stiefel manifold (QPSM).

To address the referred deficiencies, we derive a novel generalized power iteration method (GPI) for

QPSM in order to efficiently solve the orthogonal least square regression (OLSR) and UOPP with a

random initial guess and concise computational steps. In sum, the proposed GPI method can deal with

a more general problem known as QPSM than other approaches. Furthermore, the experimental results

show that the proposed GPI method not only takes much less CPU time for the convergence but becomes

more efficient dealing with the data matrix of large dimension as well.

Notations. For any matrix M , Frobenius norm is defined as ‖M‖2F = Tr(MTM), where Tr(·) is the

trace operator. For any positive integer n, In denotes a n× n identity matrix.

2 Power iteration method revisited

The power iteration method is an iterative algorithm to seek the dominant eigenvalue and the related

eigenvector of any given symmetric matrix A ∈ R
m×m, where the dominant eigenvalue is defined as the

greatest eigenvalue in magnitude. The power iteration can be performed as the following steps:

(1) Initialization. Random initialize a vector w ∈ R
m×1, which has a nonzero component in the

direction of the dominant eigenvector.

(2) Update m← Aw.

(3) Calculate q = m
‖m‖2

.

(4) Update w← q.

(5) Iteratively perform the steps (2)–(4) until convergence.

The power iteration could be further extended to the orthogonal iteration (also called subspace iteration

or simultaneous iteration) method to find the first k (k 6 m) dominant eigenvalues and their associated

eigenvectors for the given matrix A. The orthogonal iteration method could be described as the following

iterative algorithm:

(1) Initialization. Random initialize W ∈ R
m×k.

(2) Update M ← AW .

(3) Calculate QR = M via the compact QR factorization of M , where Q ∈ R
m×k and R ∈ R

k×k.

(4) Update W ← Q.

(5) Iteratively perform the steps (2)–(4) until convergence.

Apparently, the orthogonal iteration method above indicates a normalization process, which is similar

as the normalization in the power iteration method. When the matrix A is positive semi-definite (psd),

the orthogonal iteration method is equivalent to solving the following optimization problem:

max
WTW=Ik

Tr(WTAW ). (1)

Therefore, the orthogonal iteration method is equivalent to the following steps under the psd matrix A:

(1) Initialization. Random initialize W ∈ R
m×k.

(2) Update M ← AW .

(3) Calculate USV T = M via the compact SVD method of M , where U ∈ R
m×k, S ∈ R

k×k and

V ∈ R
k×k.

(4) Update W ← UV T.

(5) Iteratively perform the steps (2)–(4) until convergence.

From the observation, the solution of the above algorithm as WK differs from the solution of the

orthogonal iteration method as W by the form, where KKT = Ik. However, the difference between
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the solutions of these two algorithms does not affect the objective value of the problem (1) due to the

following derivation:

Tr((WK)TAWK) = Tr(WTAWKKT) = Tr(WTAW ).

3 Quadratic problem on the Stiefel manifold

The Stiefel manifold νm,k is a set of the matrices W ∈ R
m×k, which have orthonormal columns as

νm,k = {W ∈ R
m×k : WTW = Ik}.

In this section, a novel approach is derived to unravel the following QPSM [13] as

min
WTW=Ik

Tr(WTAW − 2WTB), (2)

where W ∈ R
m×k, B ∈ R

m×k and the symmetric matrix A ∈ R
m×m. In order to solve the problem (2),

QPSM in (2) can be further relaxed into

max
WTW=Ik

Tr(WTÃW ) + 2Tr(WTB), (3)

where Ã = αIm − A ∈ R
m×m. The relaxation parameter α is an arbitrary constant such that Ã is a

positive definite (pd) matrix. To be more specific, the relaxation parameter α could be easily set as the

dominant eigenvalue of A, which could be fast obtained by the power method discussed in the previous

section. Instead of the method of the Lagrangian multipliers to deal with an optimization problem with

orthogonal constraints, one may use a geometric optimization algorithm tailored to the Stiefel manifold,

such as, for example, the one surveyed in [14].

Accordingly, the Lagrangian function for the problem (3) can be written as

L1(W,Λ) = Tr(WTÃW ) + 2Tr(WTB)− Tr(Λ(WTW − Ik)). (4)

From Eq. (4), we could obtain the KKT condition for the problem (3) as

∂L1

∂W
= 2ÃW + 2B − 2WΛ = 0, (5)

which is difficult to solve directly. Thus, motivated by [15] and the power iteration method mentioned in

Section 2, we could propose the following iterative algorithm:

(1) Initialization. Random initialize W ∈ R
m×k such that WTW = Ik.

(2) Update M ∈ R
m×k ← 2ÃW + 2B.

(3) Calculate W ∗ by solving the following problem:

max
WTW=Ik

Tr(WTM). (6)

(4) Update W ←W ∗.

(5) Iteratively perform the steps (2)–(4) until convergence.

Besides, a closed form solution of the problem (6) can be achieved by the following derivation.

Suppose the full SVD of M is M = UΣVT with U ∈ R
m×m, Σ ∈ R

m×k and V ∈ R
k×k, then we have

Tr(WTM) = Tr(WT
UΣVT) = Tr(ΣVTWT

U) = Tr(ΣZ) =

k
∑

i=1

σiizii,

where Z = V
TWT

U ∈ R
k×m with zii and σii being the (i, i)-th elements of the matrix Z and Σ,

respectively.
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Note that ZZT = Ik, thus |zii| 6 1. On the other hand, σii > 0 since σii is a singular value of the

matrix M . Therefore, we have

Tr(WTM) =

k
∑

i=1

ziiσii 6

k
∑

i=1

σii.

Apparently, the equality holds when zii = 1, (1 6 i 6 k). That is to say, Tr(WTM) reaches the

maximum when the matrix Z = [Ik, 0] ∈ R
k×m. Recall that Z = V

TWT
U, thus the optimal solution to

the problem (6) can be represented as

W = UZT
V

T = U[Ik; 0]V
T. (7)

Since Eq. (7) is based upon the full SVD of the matrix M , Eq. (7) can be rewritten as W = UV T via

the compact SVD of the matrix M , where M = USV T with U ∈ R
m×k, S ∈ R

k×k and V ∈ R
k×k.

Based on the above analysis, the GPI can be summarized in Algorithm 1.

We will prove that the proposed Algorithm 1 converges monotonically to the local minimum of

QPSM (2).

Algorithm 1 Generalized power iteration method (GPI)

Input: The symmetric matrix A ∈ Rm×m and the matrix B ∈ Rm×k .

Initialize a random W ∈ Rm×k satisfying WTW = Ik and α via power method such that Ã = αIm − A ∈ Rm×m is a

positive definite matrix.

(1) Update M ← 2ÃW + 2B.

(2) Calculate USV T = M via the compact SVD method of M where U ∈ Rm×k , S ∈ Rk×k and V ∈ Rk×k.

(3) Update W ← UV T.

Iteratively perform the steps (1)–(3) until the algorithm converges.

Step (3) of Algorithm 1 is an instance of a class of methods, called manifold retractions, to update a

matrix on the Stiefel manifold, that were discussed in details in [16].

Lemma 1. If the symmetric matrix Ã ∈ R
m×m is positive definite (pd), then

Tr(W̃TÃW̃ )− 2Tr(W̃TÃW ) + Tr(WTÃW ) > 0,

where W̃ ∈ R
m×k and W ∈ R

m×k are arbitrary matrices.

Proof. Since the matrix Ã is positive definite (pd), we could rewrite Ã = LTL via Cholesky factorization.

Therefore, we have the following proof for Lemma 1 as

‖LW̃ − LW‖2F > 0

⇒ Tr(W̃TÃW̃ )− 2Tr(W̃TÃW ) + Tr(WTÃW ) > 0.

Theorem 1. The Algorithm 1 decreases the value of the objective function in (2) monotonically in

each iteration until it converges.

Proof. Suppose the updated W is W̃ in Algorithm 1, then we have

Tr(W̃TM) > Tr(WTM), (8)

since W̃ is the optimal solution of the problem (6). Based on the fact that M = 2ÃW +2B, Eq. (8) can

be further illustrated as

2Tr(W̃TÃW ) + 2Tr(W̃TB) > 2Tr(WTÃW ) + 2Tr(WTB). (9)

Based on Lemma 1 and Eq. (9), we could infer that

Tr(W̃TÃW̃ ) + 2Tr(W̃TB) > Tr(WTÃW ) + 2Tr(WTB)

⇒ Tr(W̃TAW̃ )− 2Tr(W̃TB) 6 Tr(WTAW )− 2Tr(WTB),

which indicates that Algorithm 1 decreases the objective value of QPSM in (2) in each iteration until the

algorithm converges.
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Theorem 2. Algorithm 1 converges to a local minimum of the QPSM problem (2).

Proof. Since Algorithm 1 performs based on solving the problem (6) in each iteration, the Lagrangian

function for the solution of Algorithm 1 can be represented as

L2(W,Λ) = Tr(WTM)− Tr(Λ(WTW − Ik)). (10)

Therefore, the solution of Algorithm 1 satisfies the following KKT condition:

∂L2

∂W
= M − 2WΛ = 0. (11)

Generally speaking, the matrix M will be updated by W̃ in each iteration under Algorithm 1. Since

Algorithm 1 converges to the optimal solution W , i.e., W̃ = W due to Theorem 1, Eq. (11) can be

further formulated by substituting M = 2ÃW + 2B as

∂L2

∂W
= 2ÃW + 2B − 2WΛ = 0. (12)

By comparing (5) and (12), we could draw the conclusion that the solution of Algorithm 1 and the

problem (3) satisfy the same KKT condition.

Therefore, Algorithm 1 converges to a local minimum of QPSM (2) since the problems (2) and (3) are

equivalent.

Besides, the problem (6) has an unique solution under full column-rank matrixM due to the uniqueness

of the SVD method. On the other hand, the experimental results in Section 5 represent that the proposed

GPI method uniformly converges to the same objective value with a large amount of random initial

guesses. Based on the unique solution of the problem (6) and the associated experimental results, it is

rational to conjecture that the proposed GPI method converges to the global minimum of QPSM.

4 Two special cases of quadratic problem on the Stiefel manifold

4.1 Orthogonal least square regression

The orthogonal least square regression (OLSR) can be written as

min
WTW=Ik,b

‖XTW + 1bT − Y ‖2F , (13)

where the data matrix X ∈ R
m×n and the hypothesis matrix Y ∈ R

n×k with 1 = (1, 1, . . . , 1)T ∈ R
n×1.

Moreover, W ∈ R
m×k is the regression matrix and b ∈ R

k×1 is the bias vector. Obviously, b is free from

any constraint. By virtue of the extreme value condition with regard to b, we can derive as

∂‖XTW + 1bT − Y ‖2F
∂b

= 0

⇒WTX1+ b1T1− Y T1 = 0

⇒ b =
1

n
(Y T1−WTX1).

By substituting the above result as b = 1
n
(Y T1−WTX1), Eq. (13) can be simplified to

min
WTW=Ik

‖H(XTW − Y )‖2F , (14)

where H = In −
1
n
11T.

Accordingly, the problem (14) can be further reformulated into

min
WTW=Ik

Tr(WTAW − 2WTB), (15)
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in which
{

A = XHXT,

B = XHY.

Apparently, Eq. (15) is in the exact same form as QPSM in (2). Therefore, OLSR in (13) can be solved

via Algorithm 1.

4.2 Unbalanced orthogonal procrustes problem

Definition 1. With Q ∈ R
m×k, E ∈ R

n×m and G ∈ R
n×k, we name the optimization problem

min
QTQ=Ik

‖EQ−G‖2F (16)

(1) balanced OPP if and only if m = k;

(2) unbalanced orthogonal procrustes problem (UOPP) if and only if m > k. Especially when Q serves

as a column vector (k = 1), the problem (16) degenerates to

min
qTq=1

‖Eq − g‖22, (17)

which is known as the least square problem with a LSQE. In [17, 18], LSQE in (17) can be solved with

the closed form solution.

4.2.1 Balanced orthogonal procrustes problem revisited

To solve the balanced OPP (m = k), we could expand Eq. (16) into

min
QTQ=Ik

‖EQ−G‖2F ⇒ min
QTQ=Ik

‖E‖2F + ‖G‖2F − 2Tr(QTETG)⇒ max
QTQ=Ik

Tr(QTETG),

which is same as the problem (6) with treating ETG = M .

Thus, the balanced OPP has the analytical solution of the closed form (7).

4.2.2 Unbalanced orthogonal procrustes problem

When m > k, UOPP (16) can be expanded into

min
QTQ=Ik

‖EQ−G‖2F ⇒ min
QTQ=Ik

Tr(QTETEQ− 2QTETG). (18)

Denote ETE = A and ETG = B, then Eq. (18) is in the exact same form as QPSM (2). Based on

Algorithm 1, Algorithm 2 can be proposed to converge to a local minimum of UOPP monotonically due

to the theoretical supports proved in Section 3.

Algorithm 2 GPI for solving UOPP in (16)

Input: The matrix E ∈ R
n×m and the matrix G ∈ R

n×k where m > k.

Initialize Q ∈ Rm×k and γ such that QTQ = Ik and the matrix γIm − ETE is positive definite, respectively.

While not converge do

(1) Update matrix M ← 2(γIm − ETE)Q+ 2ETG.

(2) Calculate U ∈ R
m×k and V ∈ R

k×k via the compact SVD of M as M = USV T.

(3) Update Q← UV T.

End while

Return Q.

Generally speaking, QPSM cannot be reformulated into UOPP while UOPP could always be rewritten

into QPSM. Therefore, the GPI method is more general than other approaches, which can only cope with

UOPP. Based on the experimental results involved in the next section, the proposed GPI method takes

much less time to converge to the solution of UOPP.
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Figure 1 (Color online) Comparisons of 6 different values of δ are performed under the GPI method with 3 different data

matrices. (a) (50, 100, 30); (b) (80, 170, 80); (c) (40, 120, 60).

5 Experimental results

In this section, we analyze and report the numerical results of the GPI method represented by both

Algorithms 1 and 2. We randomly choose the test data matrix with normally distributed singular values.

Besides, the computer we use is MacBook Air, whose CPU is 1.4 GHz Intel Core i5, RAM is 4 GB

1600 MHz DDR3 and operating system is OS X Yosemite 10.10.5.

Case 1 (parameter dependence): Firstly, we try to investigate the GPI method in Algorithm 2 via

varying the relaxation parameter γ. Suppose le is the largest eigenvalue of ETE, then we can let γ = δle

such that γIm − ETE is a positive definite matrix, where δ is an arbitrary constant.

From Figure 1, we can further notice that although the convergence rate for Algorithm 2 is inversely

proportional to the value of γ, the relaxation parameter γ does not affect the uniform convergence of the

GPI method.

Case 2 (CPU time comparison for solving UOPP): Secondly, we further investigate the proposed GPI

method in Algorithm 2 by comparing it with five existing approaches mentioned in Section 1 as EB [7],

RSR [8], LSR [9], SP [10] and LR [12].

Based on solving LSQE problem, RSR [8] and LSR [9] respectively update the solution row by row

and column by column iteratively. EB [7] utilizes the expanded balanced OPP as the objective function.

SP [10] employs the projection method combined with correction techniques (PMCT) [11]. LR [12] solves

UOPP by fixing different Lagrangian multipliers. The proposed GPI method includes two terms as ETE

outside the loop and ÃW within the loop, whose orders of complexity are m2n and m2k, respectively.
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Table 1 Orders of complexity for 6 algorithmsa)

RSR [8] LSR [9] SP [10]

Order of the complexity O(mnk +m3kt) O(mnk +m3kt) O(mnk + (m2n+m3)t)

LR [12] EB [7] GPI (ours)

Order of the complexity O(m2n+ nk2 +m2kt) O(m3 + (m2n+m3)t) O(m2n+m2kt)

a) t stands for the iteration number and (n,m, k) stands for the dimension.

Table 2 Comparisons of CPU time (s) under the square matrix E for case 2b)

(n = m = 200) RSR [8] LSR [9] SP [10] LR [12] EB [7] GPI (ours)

k = 10 64.940 23.426 2.386 0.541 0.337 0.228

k = 15 136.020 21.635 3.221 1.134 0.347 0.226

k = 20 229.851 20.560 5.054 1.806 0.445s 0.273

(n = m = 1000) RSR [8] LSR [9] SP [10] LR [12] EB [7] GPI (ours)

k = 10 – 842.849 132.232 3.869 11.440 1.290

k = 15 – 851.231 196.761 5.180 12.534 1.434

k = 20 – 860.746 260.132 7.700 12.625 1.575

b) Iteration stops when ‖EQi−1 −G‖2
F
− ‖EQi −G‖2

F
6 τ where τ = 10−3.

Table 3 Comparisons of CPU time (s) under the general dimension for case 2b)

Dimension (n,m, k) RSR [8] LSR [9] SP [10] LR [12] EB [7] GPI (ours)

(5000, 500, 15) 713.156 528.034 450.028 20.709 16.554 3.581

(10000, 1000, 30) – – – 56.772 191.970 9.384

(3000, 3000, 90) – – – 186.125 395.401 17.320

(30000, 1500, 30) – – – 306.132 1056.311 19.440

(5000, 4000, 100) – – – 405.937 1187.512 30.128

(100000, 3000, 50) – – – – – 215.173

Besides, these two terms have the highest orders of complexity for the proposed GPI method. Besides,

the order of the complexity for each method is shown in Table 1.

The comparative results are based on fixing E as the square matrix at first hand (Table 2) and then

extend E to a more general case (Table 3) afterwards. (Mark ‘–’ in Tables 2 and 3 represents that it

takes too much time to record in the tables.)

(1) From Figure 2, we notice that the existing methods as EB [7], RSR [8], LSR [9], SP [10] LR [12]

and the proposed GPI method converge to the same objective value under the same input data. Besides,

our proposed GPI method converges faster than other approaches during iteration.

(2) From Table 1, the proposed GPI method has the lowest order of complexity due to its succinct

computational process to obtain the optimal solution. During the experiments, we observe that the iter-

ation number t for the LR method is usually very large for the convergence. Thus, the time consumption

for LR method is much larger than that for the proposed GPI method though orders of complexity for

these two approaches seem close. Besides, the GPI method becomes more efficient when n (the number

of data) is large.

(3) From Table 2, the proposed Algorithm 2 (GPI) serves as the most efficient method under the square

matrix case.

(4) From Table 3, we can observe that LSR [9], SP [10] and RSR [8] are unable to compete with LR [12],

EB [7] and GPI due to the complex updating procedures including the expanded OPP and solving LSQE.

Especially when the dimension increases, the superiority of our proposed GPI method would be more

obvious.

Case 3 (CPU time comparison for solving LSQE): Finally, the projection method combined with

correction techniques (PMCT) [11] is compared to the GPI method in Algorithm 2 targeting at solving

the least square regression with a LSQE in (17). Actually, solving LSQE (17) is no different from solving
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Figure 2 (Color online) Comparisons of the convergence rate are performed for 6 approaches including EB [7], RSR [8],

LSR [9], SP [10] LR [12] and our GPI method under 3 different data matrices. (a) (100, 10, 100); (b) (100, 15, 100); (c) (200,

15, 200).
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Figure 3 (Color online) Comparisons of PMCT [11] and GPI are performed over 2 different data matrices. (a) (900,

1000); (b) (2000, 1700).

UOPP (16) under k = 1.

(1) From Figure 3, we can notice that PMCT [11] and Algorithm 2 (GPI) converge to the same objective

value though in terms of the different patterns.

(2) From Figure 4, Algorithm 2 (GPI) takes much less time for convergence than PMCT [11] does.
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6 Concluding remarks

In this paper, we analyze the QPSM by deriving a novel GPI method. Based on the proposed GPI

method, two special and significant cases of QPSM known as the orthogonal least square regression

and the unbalanced orthogonal procrustes problem are under further investigation. With the theoretical

supports, the GPI method decreases the objective value of the QPSM problem monotonically to a local

minimum until convergence. Eventually, the effectiveness and the superiority of the proposed GPI method

are verified empirically. In sum, the proposed GPI method not only takes less CPU time to converge to

the optimal solution with a random initial guess but becomes much more efficient especially for the data

matrix of large dimension as well.
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