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Abstract Cooperation in packet forwarding among users and operators of a distributed wireless network has

been widely studied. However, because of the limited computational resources, users in wireless communication

do not prefer to cooperate with others unless cooperation may improve their own performance. Therefore, the

key problem in cooperation enforcement must be solved first to enable a wireless network to be efficient. Yet,

most of the existing game-theoretic cooperation stimulation approaches assume that the interactions between

any pair of players (users) are long-lasting. In this paper, we apply game theory to optimize the communication

efficiency of a distributed wireless network with finite number of interactions between any pair of players. Based

on the mechanism of indirect reciprocity, we theoretically analyze the optimal action rule with the method of

dynamic programming, and derive the approximate threshold of benefit-to-cost ratio to achieve the optimal

action rule. Furthermore, we adopt the replicator dynamics to assess the evolutionary stability of the optimal

action rule against the perturbation effect. Numerical illustrations verify the performance of the proposed

method on wireless cooperation.
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1 Introduction

Over the past decade, we have witnessed tremendous development in distributed wireless networks,

where all the networking functions rely on the contribution of the participants [1]. Meanwhile, the

increasing and diversified demand of wireless services nowadays requires high spectrum efficiency and

data rate transmission. As an example, the users of a network must make mutual contribution to packet

forwarding ensuring an operable communication of the network. However, since the users usually have

limited computational resources (such as battery, memory and processing capacity), selfish users may

refuse to be cooperative [2]. It is well-known in the literature that the performance of an entire system
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can be degraded dramatically by these selfish behaviors [3, 4]. Additionally, punishing and identifying

selfish users will decrease the throughput of cooperative users, which triggers the complete network

disconnection [5]. Therefore, a key problem in distributed wireless networks is how to optimize the

communication efficiency of the networks, i.e., developing incentive mechanisms to ensure cooperative

packet forwarding among selfish users.

Many approaches have been proposed to stimulate cooperation in the services of distributed wireless

networks. One is to adopt the payment-based scheme to stimulate cooperation [6–10], where a selfish user

can be paid by another user given that the former helps forward the packets for the latter. The payments

can be points, money, or objects of similar value. Even if the payment-based schemes can stimulate

users to be cooperative, their potential applications have been greatly limited by the requirement of

tamper-proof hardware or central billing services. Another approach is to adopt the reputation-based

scheme to enforce cooperation [11–14]. The basic goal of reputation-based schemes is to evaluate each

user’s trustworthiness based on his behaviors, and distinguish misbehaving users from cooperative users

according to their reputations. With the reputation-based schemes, each user can maintain a table

recording of the reputation values, but it cannot reward high reputation users or punish low reputation

users at different reputation levels.

Subsequent efforts have not deviated far from the above two approaches but have tried to use game

theory [15–20], in which each vertex is regarded as an intelligent rational agent, and chooses his own

action only with local information. In [21], Srinivasan et al. used generous “TIT-FOR-TAT” strategy to

study cooperation among selfish users. While in [22], Félegyházi et al. developed a packet forwarding

game model in autonomous mobile ad hoc networks, and derived the conditions for the Nash equilibrium

of cooperation users. The authors of [23] proposed a two-player packet forwarding game model to analyze

cooperation stimulation in autonomous mobile ad hoc networks, and derived the cheat-proof packet for-

warding strategies. Ref. [24] proposed the solution to cooperatively deliver packets, where they presented

a distributed algorithm to obtain the stable coalitions and evaluated the stable coalitional structures.

In [25], the authors proposed a zero-determinant strategy for resource sharing in wireless cooperation,

and found the maximum social welfare that the administrator of cooperation (AoC) can achieve with

existence of participants of cooperation (PoCs). Besides, in [26–30], the authors employed game theory

to analyze cooperation enforcement among selfish users, and poured attention to the updating interaction

strategies of individuals with the behaviors of others. A thorough review of this topic can be referred

to [31–33].

Nevertheless, most of the available game theoretical frameworks stand on the assumption that the

channels of wireless communication are perfect. In reality, one of the prominent properties of channels

in wireless communication is that the channels are unreliable. During the forwarding process, a link

breakage or transmission errors may lead to dropped packets even if other players are willing to forward

the packets [34, 35]. Accordingly, how to enforce cooperation among selfish users in the scenarios with

unreliable channels is still open in wireless communication. Furthermore, another inadequacy in the

aforementioned game theoretical frameworks lies that they assume fixed partners for the players in the

game. With the famous Prisoner’s Dilemma, the optimal strategy in such a situation is always to defect.

Consequently, one mechanism for cooperation stimulation is the direct reciprocity, in which the action

of each player towards his/her opponent is purely determined by the actions of the opponent. Yet, the

optimal action is not effective against the “trembling hands” or “fuzzy minds”. In fact, players will

periodically update their partners for better performance due to mobility and variation of environment.

Apparently, within such a scenario, there are no incentives for all players to take the cooperative action

as their behaviors will not be evaluated by other players except their opponents.

Consequently, “indirect reciprocity” is proposed to stimulate the players playing cooperatively in the

scenario where the interactions are limited with unreliable channels in wireless communication. Indirect

reciprocity is captured in the principle: “I help you not because you have helped me but because you have

helped others” [36]. In [37], the authors proposed a game modelling of indirect reciprocity for cooperation

enforcement in cognitive networks. They formulated the problem to find the optimal action rule as a

Markov Decision Process (MDP), showing the optimal action rule to be an evolutionarily stable strategy
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(ESS) with an appropriate cost-to-gain ratio. However, they only gave the numerical solution of the

cost-to-gain ratio with extensive simulations. Furthermore, they did not discuss the unreliable properties

of channels during the forwarding process. Ref. [38] dealt with the enforcement cooperation of packet

forwarding game for the unreliable wireless channels with the indirect reciprocity mechanism. However,

the packet forwarding model they used is a peer-to-peer game between the two users, who forwards the

packet for each other at each time slot, while the event of packet forwarding is not bilateral in reality.

Besides, they only discussed the packet forwarding problem from the viewpoint of the evolutionary

stability, and ignored the optimal strategy chosen by the self-interest players during the process of packet

forwarding. The contributions of this paper are as follows.

• We model the packet forwarding process as a game for the scenario with a limited number of interac-

tions between any pair of players, and stimulate cooperation among selfish players in unreliable wireless

communications with the indirect reciprocity scheme.

• We theoretically analyze the optimal action rule based on the method of dynamic programming, and

derive the approximate threshold of benefit-to-cost ratio to achieve the optimal action rule.

• We adopt the replicator dynamics to evaluate the evolutionary stability of the optimal action rule

against the perturbation effect. We also show that the optimal action will quickly spread over the whole

population when the benefit-to-cost ratio exceeds the certain threshold, and once the whole population

uses it, there will be no deviation.

• We verify the performance of the optimal action with the indirect reciprocity scheme through a

multitude of simulations. Also, the network throughput performance is offered with different channel loss

probabilities and reputation updating errors.

The organization of the rest part is as follows. Section 2 models the packet forwarding problem as an

indirect reciprocity game, and introduces some preliminaries of the paper. In Section 3, we analyze the

stationary reputation distribution of the whole population, and figure out the threshold of benefit-to-cost

ratio to reach the optimal action rule. Besides, we analyze the evolutionary stability of the optimal action

rule using the replicator dynamics. Section 4 presents numerical simulations to illustrate the efficiency

and effectiveness of the optimal action rule. Finally, Section 5 concludes the paper.

2 Game modelling for packet forwarding with indirect reciprocity

2.1 Problem formulation

Consider a distributed wireless network with a sufficiently large number of players (nodes). Due to the

limited communication range, the service of source providers cannot arrive directly at the destination,

i.e., the communication relies on the packet forwarding by other intermediate players (see Figure 1). At

each time slot, one player will act as a service provider, and the communication needs the relay player

to forward the provider’s packet to its destination. During the process of communication, the relay will

choose his strategy, X , from the strategy set S = {F,D}, where F and D are packet forwarding and

dropping, respectively. We summarize the notations in Table 1.

As a result of channel noise, there are imperfect observations usually in such wireless communication

networks, where each player launches some traffic monitoring mechanisms to track strategies of its neigh-

bors [12]. Consider that the receiver of each player catches a private signal from the set Θ = {f, d},

where f and d are the observations of packet forwarding and dropping, respectively. With imperfect

observation, the forwarding strategy F of one player may be observed as signal d by the other player

because of the link breakage or transmission errors. Such a channel loss probability is denoted as pe.

As shown in Figure 1, node Sj forwards the packet for Si to destination node Di, but the channel noise

might fail the forwarding strategy. Accordingly, the probability for the receiver Di to observe the signal

of node Sj to be f is 1− pe, or d with probability pe. While the observed signal of node Sj from Di is d

with Sj dropping the packet.

Since most of the devices of wireless communication network are assumed to rely on limited computation

resources, players are reluctant to packet forwarding for other players. Such behaviors can be a serious
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Figure 1 (Color online) The illustration of the packet forwarding on distributed wireless network. At each time slot, the

packets of the provider will be forwarded or dropped by the relay to the receiver depending on the providers reputation

under channel loss probability pe. Afterwards, reputation of the relay will get updated with the observed receiver signal

under reputation updating error µ. Then, the relays reputation is spread through a channel of noisy gossip from the receiver

and the observers to the whole network. After the interaction, each participant returns to the network with probability ω,

or leaves the network with probability 1− ω without return.

threat to the efficient communication of a network [3,4], which is captured by the story of the Prisoner’s

Dilemma (PD) [34, 35]. After one round of communication, the gain of a provider is b given that the

packets are successfully delivered to its destination with probability 1 − pe. Meanwhile, the forwarding

effort of relay players will increase a certain cost, denoted as c. Thus, the payoff matrix M between F

and D is described as

(

F D

F b(1− pe)− c −c

D b(1− pe) 0

)

. (1)

The payoff structure yields a unique Nash equilibrium (NE). When the external stimulation is absent,

no matter what strategy of the opponent is, the best choice of each player is not to forward the packets,

i.e., both players will not forward the packet for others.

2.2 Indirect reciprocity mechanism

Most of the studies concerning the wireless cooperation based on the mechanism of direct reciprocity, in

which the action of a relay towards a provider is decided only by the recorded ways whose opponents

treats to him/her. It is obvious that under such a scenario, all relays get no motive to transform packets

since their behaviors will not be assessed by other players except their opponents. To stimulate the

cooperation among the selfish players in the wireless communication network described in Figure 1, we

use the mechanism of indirect reciprocity for cooperation enforcement [36]. The essential concept of

indirect reciprocity is: “I help you and somebody else helps me”. In the context of indirect reciprocity,

an action between one player and its opponent is observed by a subset of the population. Therefore,

a crucial problem in the indirect reciprocity mechanism is to establish the reputation system, which is

based on the history of players’ actions.

In this paper, we consider a binary reputation system, in which a binary reputation (good (G) and bad

(B)) is endowed to each player. As shown in Figure 1, the packets of the provider will be forwarded or

dropped by the relay to the receiver depending on the providers’ reputation with probability pe. After the

interaction, reputation of the relay will be updated with the observed receiver signal, while the reputation

of the provider remains the same. In some cases, the traffic monitoring mechanism of reputation collection
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Table 1 Notations in the paper

Notation Physical meaning

S The strategy set of packet forwarding

F The strategy forwarding

D The strategy dropping

Θ The set of observed signal

f The observations of packet forwarding

d The observations of packet dropping

b Gain of a player as a provider

c Cost of a player as a relay

i(j) The index of player

I(J) The reputation of player

G(B) The player with good (bad) reputation

pe The channel loss probability

µ The reputation updating error

ω The discounting factor of the furture

A The action rule of relay

sG(sB) The strategy for a relay towards a good (bad) provider

Q The social norm

qiJ The reputation assigned to a relay who has taken the

strategy i towards a provider whose reputation is J

q The social resolution of players

R′(R,X) The new reputation of a relay who takes the strategy

X towards a provider with reputation R

N The set of all game players

xg The frequency of good players

WI,J Maximum payoff of a player can gain from this interaction to

future, I is currently reputation and J is a reputation of opponent

λ Advantage of being a good player

m Index of action rule (m=1,2,3)

xm Frequency of strategy m

η Scale factor of dynamical evolution

Pm Expected payoff of action rule m

P̄ Average payoff of three action rules

cannot be reliable, resulting in false reports occasionally [27]. Therefore, the reputation system must be

fault tolerant. In our model, the parameter µ (0 6 µ 6 1/2) is introduced to capture this uncertainty,

i.e., a correct reputation is assigned with probability 1 − µ; an incorrect reputation is assigned with

probability µ. Finally, the relay’s reputation spreads through a channel of noisy gossip from the receiver

and the observers to the whole network.

Besides, due to mobility and changes of environment, the players will periodically update their partners

to achieve a better performance, i.e., the number of interactions between any pair of players is finite.

After the interactions, each participant returns to the network with probability ω, or leaves the network

with probability 1− ω without return. Here, the parameter ω reflects a discounting factor of the future.

In exchange for each player leaving the network, a new player enters with either a good or bad reputation

depending on the proportion of reputation in the current network. Thus, the total network size remains

unchanged.

2.3 Social norms

A matrix Q used for updating the reputation of players is called as a social norm. In the social norm,

each element qiJ stands for the reputation assigned to a relay taking strategy i toward a provider with

reputation J . Thus, the norm is second-order, which means that all matters are the pairs between the
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action of the relay and the reputation of the provider. That is to say, even when players are equipped

with higher cognitive capacities, they rely on a simple norm as a key for evolutionary success. Without

loss of generality, we assume all players in the population sharing the same norm. To simplify the

analysis, we only consider the case of two strategies of relay (i = {F,D}) and binary reputation of

provider (J = {G,B}). Certainly, the results can be extended to the case of multi-strategies and multi-

reputations.

It is intuitional that forwarding packets to the provider with good reputation or dropping packets to

the provider with bad reputation set up a good reputation, and will be rewarded by others. In this paper,

we adopt a binary reputation system which is called stern-judging [39], which is in accord with the above

intuition. Under the social norm of stern-judging, helping a good player and refusing to help a bad one

lead to a good reputation, whereas refusing to help a good individual and helping a bad one leads to a

bad reputation. Therefore, the reputation updating of relay is given as the following rule:

G B

F G B

D B G.

(2)

Here, a new reputation R′(R,X) (abbreviated representationR′, R′ ∈ {G,B}) of a relay with the strategy

X (X ∈ {F,D}) towards a provider with reputation R (R ∈ {G,B}) will be assigned. The success and

simplicity of stern-judging social norm relies on never being morally dubious: for each type of encounter,

there are one G reputation and one B reputation. Moreover, it is always possible for anyone to be

promoted to the best standard possible in a single reputation. Therefore, the stern-judging can promote

cooperation effectively under indirect reciprocity [40].

To distinguish the ability of players between the good and bad players, a parameter q = 1−2µ of social

resolution is introduced. Denoted yG and yB as the fraction of players with a good and bad reputation

in the absence of errors, respectively. And, denoted yg and yb as the perceived fraction of good and bad

players in the presence of errors, respectively. Clearly, yG + yB = 1 and yg + yb = 1. Thus, we have

{

yg = (1− µ)yG + µyB,

yb = µyG + (1− µ)yB.
(3)

From (3), we obtain yg − yb = q(yG − yB). And the perceived difference between good and bad players,

yg − yb, equals q times of the actual difference yG − yB. Therefore, q can be interpreted as the social

resolution between good and bad players. If q = 0, there is no distinction between good and bad players;

while the social resolution is perfect when q = 1.

2.4 Action rules

With the social norm of stern-judging, each player will choose a new action A according to the provider’s

reputation. Formally, an action rule, A, is an action table of the transmitter, i.e., A means that the relay

takes strategy s(G) for a good provider and takes strategy s(B) for a bad one. Each of s(G) and s(B) can

be either F or D. Thus, the action rule, A, has 22 = 4 possible elements: A = {sGsB|FF, FD,DF,DD}.

As an example, FF means that the transmitter adopts strategy F towards a good provider, and also

adopts strategy F towards a bad provider. Since strategy DF is illogical in practice, we only consider

three of these actions in this paper, i.e., FF , FD and DD.

3 Game analysis of optimal action rule

To explore the cooperative and effective character for proposed action rules, we want to find an action

rule that is cooperative and optimal under the above second-order social norm. For a game of N players,

the strategy profile s = (s1, s2, . . . , sN ) describes how different players choose their strategies. si denotes

the strategy of player i which is chosen from the action rule set A. Denote the complemental-strategy
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profile of player i as s−i = (s1, s2, . . . , si−1, si+1, . . . , sN ), so that s = (si, s−i). Let Ui(s) = Ui(si, s−i) be

the player’s utility function of strategy si. The NE describes a “steady state” strategy profile of a game

in which no player can be better off by deviating from it, given the strategies taken by all other players

remain fixed. That is, the best strategy s∗i is the best response of player i to s−i iff for all other si ∈ A,

Ui(s
∗
i , s−i) > Ui(si, s−i). More formally, we have the definition.

Definition 1. A NE is a strategy profile that corresponds to the mutual best response. A strategy

profile s∗ = (s∗1, s
∗
2, . . . , s

∗
N) of a game is an NE if Ui(s

∗
i , s

∗
−i) > Ui(si, s

∗
−i), ∀ i ∈ N and ∀ si 6= s∗i .

Besides, we consider the stability of the optimal action. As an example, the action rule DD is evolu-

tionarily stable, since the best choice of one player is to deny forwarding and choosing strategy D has no

cost against the population with DD action rule. However, DD is not a cooperative action rule as all

game interactions are defection. In this case, the network performance of packet forwarding is damaged

terrifically.

Generally, the stability of the optimal action rule can be depicted by the concept of evolutionarily

stable strategy [41], which is “a strategy such that, if all members of the population adopt it, then no

mutant strategy could invade the population under the influence of natural selection”. In this paper, we

adopt another substitutional evolutionary stability definition.

Definition 2. An action is Cooperative Evolutionarily Stable (CES) iff it satisfies the following two

criteria [42]:

(I) Cooperativity (CO). More than half of the interactions in game are cooperative.

(II) Evolutionary stability (ES). Under the social norm of stern-judging, action ϕ is evolutionarily

stable against any other action φ (ϕ 6= φ).

3.1 Stationary reputation distribution

Denote the fraction of good players as xg. For convenience, we define δG and δB as

δG =

{

1, if R′ = G,

0, if R′ = B,

and

δB =

{

1, if R′ = G,

0, if R′ = B,

where δG (δB) equals one if a player adopting strategy sG (sB) obtains a good reputation after playing

with a good (bad) provider. Otherwise, δG (δB) should be zero.

At each time interval, 2∆t proportion of the players is selected to participate the game, half of which are

providers, and the others are relays. Since only the relay’s reputation will be updated after the interaction,

we only need to consider the reputation evolution of relays. Among the relays, there are xg∆t proportion

with good reputation, (1− xg)∆t proportion with bad reputation. After one interaction, the proportion

of relays with good reputation becomes xg[µ(1− δG)+ (1−µ)δG]∆t+(1− xg)[µ(1− δB)+ (1−µ)δB]∆t.

Each participant stays in the population with probability ω, or leaves the population with probability

1 − ω. In exchange for players who leave the population, (1 − ω)∆t proportion of the players enters

the population. Assume that the proportion of new players with good reputation is the same as the

current reputation proportion, which equals xg. Thus, after ∆t time interaction, the proportion of relay

with good reputation becomes ω[(1− 2µ){xgδG + (1− xg)δB}+ µ]∆t+ (1− ω)xg∆t, which leads to the

differential equation governing the evolution of players with good reputation as

dxg

dt
= ω

[

(1− 2µ)

{

xgδG + (1 − xg)δB

}

+ µ− xg

]

. (4)
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Therefore, the stationary reputation distribution x∗
g of good reputation is the solution to

dxg

dt = 0, which

is calculated as

x∗
g =















1− µ, if (δG, δB) = (1, 1),

1/2, if (δG, δB) = (1, 0) or (0, 1),

µ, if (δG, δB) = (0, 0).

(5)

If x∗
g = 1/2, then a player meets a good provider with probability 1/2 and meets a bad one with

probability 1/2. For seeking the condition of cooperation in CO criterion, the action rule must take

cooperation with both types of providers, i.e., sG = sB = F . This implies that the action rule is FF ,

which is obviously susceptible to the invasion by DD action rule. Thus, it does not satisfy the ES

criterion.

To satisfy the CO criterion, two possibilities are allowable: (i) (δG, δB) = (1, 1) and sG = F , or (ii)

(δG, δB) = (0, 0) and sB = F . Since there is a complete symmetry between two labels, “good” and “bad”,

we can swap them without changing anything. Note that the argument above is theoretically equivalent

to restrict the action rules cooperating with good players, i.e., sG = F . Thus, we only consider the

situation of (δG, δB) = (1, 1), sG = F .

In summary, we have obtained the stationary reputation distribution x∗
g = 1 − µ, which satisfies the

CO criterion. At this point, sG = F , R′(G,F ) = G, and R′(B, sB) = G, which coincides with the social

norm of stern-judging.

3.2 Optimal action rule with dynamic programming

Let us explore the optimal action under the stationary reputation distribution x∗
g = 1 − µ. Consider a

monomorphic population which satisfies s(G) = F and the social norm of stern-judging. According to

the payoff matrix M , the cost of forwarding packet is constant c. Consequently, the cost of the relay

with reputation I (I ∈ {G,B}) adopting strategy X towards a provider with reputation J (J ∈ {G,B})

is given by

α(X) = di · c, (6)

where parameter di = 1 when X = F , and di = 0 when X = D. Similarly, when the packets are

successfully delivered to the destination, a provider gets a benefit b(1− pe), and the gain of the provider

with reputation J is

β(X) = di · b(1− pe). (7)

Denote WI,J as the maximum payoff of a player can get from this interaction to future, where I is the

current reputation and J is a reputation of being matched player.

If the player acts as a relay with reputation I and is matched to a player with reputation J , then the

long-term expected payoff that he/she can obtain by taking strategy X is

f1(X) = −α(X) + ω ·W(1−µ)R′+µR′,(1−µ)G+µB. (8)

Conveniently, we introduce the notation, G = B, B = G, and Wy1G+y2B,z1G+z2B = y1z1WG,G +

y1z2WG,B + y2z1WB,G + y2z2WB,B. In (8), the first term −α(X) stands for the immediate cost of

relay incurred by taking strategy X , and the second term W(1−µ)R′+µR′,(1−µ)G+µB represents the gains

of relay that he/she can obtain in the future with a discounting factor ω. After the interactions, the

relay stays in the population with probability ω. Besides, after taking strategy X , the reputation of relay

changes to R′ with probability 1−µ , and to R′ with probability µ, which gives rise to (1−µ)R′+µR′ in

(8). His/her opponent is randomly sampled from the population in the next round. From (5), we know

that the fraction of good players equals to x∗
g = 1− µ in the population. Thus, the reputation of his/her

next opponent is good with probability 1− µ and bad with probability µ, resulting in (1− µ)G+ µB in

(8). The dynamic programming of this process is shown in Figure 2.

On the other hand, if the player with reputation I serves as a provider, then he/she can get the

long-term expected payoff as

f2 = β(X) + ω ·WI,(1−µ)G+µB . (9)
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Figure 2 The illustration of dynamic programming.

Here the first term β(X) reflects the immediate gain of provider towards the relay taking strategy X , and

the second term WI,(1−µ)G+µB is the benefit of provider in the future with a discounting factor ω. As a

provider, the reputation will be unchanged after the interaction. Besides, the opponent of a provider is

randomly sampled from the population in the next round, leading to the reputation of opponent be good

with probability 1− µ, and bad with probability µ.

With each interaction, the player acts as a provider or as a relay with an equal probability, which

triggers the Bellman equation of WI,J as follows:

WI,J = max
X=F,D

(

1

2
f1(X) +

1

2
f2

)

. (10)

Note that the solution to maximize (10) is independent of reputation I. Therefore, the best response

action to X̃, denoted by X̃∗, can be evaluated by

X̃∗(J) = arg max
X=F,D

WI,J

=arg max
X=F,D

[

−
1

2
α(X) +

1

2
ω ·W(1−µ)R′+µR′,(1−µ)G+µB

]

. (11)

To solve (11), define λ ≡ WG,(1−µ)G+µB −WB,(1−µ)G+µB, which reflects the “advantage of being a good

player”. According to (10), it is easily calculated that

λ = WG,(1−µ)G+µB −WB,(1−µ)G+µB

=
1

2

{

G[S(G)]−G[S(B)] + ω(WG,(1−µ)G+µB −WB,(1−µ)G+µB)

}

=
1

2

{

G[S(G)]−G[S(B)] + ωλ

}

.

Thus, we obtain

λ =
G[S(G)] −G[S(B)]

2− ω
. (12)

Rewrite (11) as (13), where ϕG[G] = 1, ϕG[B] = 0.

X̃∗(J) =



















arg max
X=F,D

[

1

2
{−α(X) + ω ·W(1−µ)G+µB,(1−µ)G+µB}

]

, if R′(J,X) = G,

arg max
X=F,D

[

1

2
{−α(X) + ω ·W(1−µ)B+µB,(1−µ)G+µG}

]

, if R′(J,X) = B,



Tang C B, et al. Sci China Inf Sci November 2017 Vol. 60 110205:10

=



















arg max
X=F,D

[

1

2
{−α(X) + ω ·W(1−2µ)G−(1−2µ)B+µG+(1−µ)B,(1−µ)G+µB}

]

, if R′(J,X) = G,

arg max
X=F,D

[

1

2
{−α(X) + ω ·W(1−µ)B+µB,(1−µ)G+µG}

]

, if R′(J,X) = B,

=arg max
X=F,D

[

1

2
{−α(X) + ω{(1− 2µ)(WG,(1−µ)G+µB −WB,(1−µ)G+µB)ϕG[R

′(J,X)]

+W(1−µ)B+µB,(1−µ)G+µG}}

]

=arg max
X=F,D

[

1

2
{−α(X) + ωqλϕG[R

′(J,X)]}+
ω

2
W(1−µ)B+µB,(1−µ)G+µG

]

=arg max
X=F,D

[

1

2
{−α(X) + ωqλϕG[R

′(J,X)]}

]

. (13)

According to (13), we know that the maximization problem is deduced to find the actionX to maximize

−α(X) + ωqλϕG[R
′(J,X)]. The first term, −α(X), represents the immediate cost of strategy X . The

second term, ωqλϕG[R
′(J,X)], stands for the future benefit through becoming a good player towards

strategy X , which is λϕG[R
′(J,X)], multiplied by discounting factor ω and social resolution q. Hence,

we are able to derive X̃∗(G) and X̃∗(B). Based on the criterions of CO, it is easy to distinguish that

action DD does not satisfy the CO. Therefore, we only discuss the actions of FD and FF .

Theorem 1. Under the social norm of stern-judging, when the benefit-to-cost ratio b
c
> 2−ω

ωq(1−pe)
, action

FD is an optimal action.

Proof. For each player with action FD, there are two stability conditions to satisfy: (I) the optimal

strategy should be F when he/she meets the opponents with good reputation; (II) the optimal strategy

should be D when he/she meets the opponents with bad reputation. Specifically, condition (I) requires

X̃∗(G) = arg max
X=F,D

[

1

2
{−α(X) + ωqλϕG[R

′(G,X)]}

]

= F,

(14)

i.e.,
1

2
{−α(F ) + ωqλϕG[R

′(G,F )]} >
1

2
{−α(D) + ωqλϕG[R

′(G,D)]}. (15)

Since R′(G,F ) = G, and R′(G,D) = B, we simplify (16) to

−α(F ) + ωqλ > −α(D)

⇒ −c+
ωqb(1− pe)

2− ω
> 0 ⇒

b

c
>

2− ω

ωq(1− pe)
.

(16)

On the other hand, condition (II) requires

X̃∗(B) = arg max
X=F,D

[

1

2
{−α(X) + ωqλϕG[R

′(B,X)]}

]

= D,

(17)

i.e.,
1

2
{−α(D) + ωqλϕG[R

′(B,D)]} >
1

2
{−α(F ) + ωqλϕG[R

′(B,F )]}. (18)

For R′(B,D) = G, which leads to ϕG[R
′(B,D)] = 1, and −α(D) = 0, (18) is always true.

In summary, if the benefit-to-cost ratio, b/c, satisfies that b
c
> 2−ω

ωq(1−pe)
, the action FD is the best

response to itself, i.e., FD is an optimal action.

Remark 1. Note that FF never becomes an optimal action under the social norm of stern-judging,

for strategy F will never be the best response to itself when he/she meets the opponents with bad

reputation. That is, the condition 1
2{−α(F ) + ωqλϕG[R

′(B,F )]} > 1
2{−α(D) + ωqλϕG[R

′(B,F )]} will

never be satisfied.
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Figure 3 The illustration of expected payoffs’ calculation to the actions FF .

3.3 Evolutionary stability of optimal action rule

Since the uncertainty of the system and/or the noisy parameters, players may take a non-optimal action

rule during the forwarding process. Therefore, it is indispensable to take the perturbation effect into

account, which motivates us to evaluate the evolutionary stability of the optimal action rule.

Denote x1, x2, and x3 as the frequencies of strategy FF , FD, and DD, respectively. Then, we have

x1 + x2 + x3 = 1. Given the stationary reputation distribution x∗
g = 1 − µ, we calculate the expected

payoff of a strategy. For a FF player, he/she acts as a relay with probability 1
2 , and cooperate with cost c.

With probability 1
2 the player acts as a provider, who meets a FF , FD and DD player with probability

x1, x2 and x3, respectively. Thus, the expected gains of the provider are b(1− pe), b(1− pe)(1− µ) and

0, respectively (see Figure 3).

Similarly, we can obtain the gain and cost of FD and DD players, which results in the expected payoffs

of actions FF , FD and DD as






























P1 =
1

2
(−c) +

1

2
[b(1− pe)x1 + b(1− pe)(1− µ)x2],

P2 =
1

2
(1− µ)(−c) +

1

2
[b(1− pe)x1 + b(1− pe)(1− µ)x2],

P3 =
1

2
(0) +

1

2
[b(1− pe)x1 + b(1− pe)(1− µ)x2],

(19)

where P1, P2, and P3 are the expected payoffs of strategy FF , FD, and DD, respectively.

In the following, we adopt the action spreading algorithm of replicator dynamics to demonstrate the

evolution of frequency at ∆t time interval [41], which means that the evolution of xm (m = 1, 2, 3) is

given by the following equation:

∆xm =[ωa(x) + (1 − ω)b(x)]∆t− xm∆t

=ω[ηxm(Pm − P̄ )− xm]∆t, (20)

where x = (x1, x2, x3)
T, η is a scale factor controlling the speed of the evolution, Pm is the expected

payoff of action rule m, and P̄ =
∑3

m=1 xmPm is the average payoff of the three actions. Here, the first

term a(x) = ηxm(Pm − P̄ ) in (20) denotes the frequency variation caused by internal competition, which

occurs with probability ω. And the second term b(x) = xm in (20) denotes the frequency variation caused

by the external mobility, which happens with probability 1− ω.
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Define P̂m = Pm − P3, and P̃ =
∑3

m=1 xmP̂m. We get the transformed deterministic dynamical

evolution of frequency as



























































ẋ1 = ω[ηx1(P̂1 − P̃ )− x1]

= ω[(−cη − 1)x1 + cηx2
1]

+ ωη
[(1− 2µ)b(1− pe) + c]x1x2 − (1− 2µ)b(1− pe)x1x2(x1 + x2)

2− 1−2µ
1−µ

(x1 + x2)
,

ẋ2 = ω[ηx2(P̂2 − P̃ )− x2]

= ω(cηx1x2 − x2)

+ ωη
−cx2 + [(1− 2µ)b(1− pe) + c]x2

2 − (1− 2µ)b(1− pe)x
2
2(x1 + x2)

2− 1−2µ
1−µ

(x1 + x2)
.

(21)

We can investigate the stability of (21) to characterize the evolutionary stability of actions. Intuitively,

if b ≫ c, the potential cooperation gain will be larger than the immediate cooperation cost, i.e., results

that each player is inclined to cooperate with other players. While b ≪ c, each player tends not to

cooperate with other players, since the potential cooperation gain will be smaller than the immediate

cooperation cost in such a scenario. Therefore, there should exist a critical value of benefit-to-cost ratio
b
c

∗
such that the optimal action rule is evolutionarily stable if b

c
> b

c

∗
, which coincides with the result in

Theorem 1.

Assume that parameter ω = 0.7, the channel loss probability pe = 0.01 and the reputation updating

error µ = 0.01. Consider a fixed-size population with N = 300, in which the players share the fixed social

norm defined in (2). Initially, each player uses one of the possible action rules FF , FD and DD with

randomly choosing reputation G or B. Before any one elementary step of action updating, each player

has exactly 30 interactions with their opponents, among which every player acts as a provider and a relay

15 times on average. After all 30 interactions have taken place, all participants return to the population

with probability ω or leave the population with probability 1 − ω. For each player who leaves, a new

player enters the population to keep the total population size constant.

According to Theorem 1, we obtain the critical value of the benefit-to-cost ratio b
c

∗
≈ 1.914. The

corresponding evolutionary stability of action FD is shown in Figure 4 by setting b = 2.4 and c = 1, in

which the parameters of packet process satisfy the condition of Theorem 1, and action FD is the optimal

action. In this case, the benefit-to-cost ratio b
c
= 2.4 > 1.914, action FD will spread over the whole

population when the initial frequency of action FD is chosen a suitable value (see Figure 4(a)). However,

when decreasing the initial frequency of action FD, the percentage of the population with the optimal

action FD no longer converges to 1, as shown in Figure 4(b). In fact, there is a feasible domain of the

initial action distributions. On the other hand, when b = 1.6 and c = 1, the corresponding evolutionary

stability of action FD is shown in Figure 5. In this case, the benefit-to-cost ratio b
c
= 1.6 < 1.914, action

FD will never converge to 1 regardless of the initial frequency of action FD (see Figure 5(a) and (b)).

4 Numerical results

4.1 Simulation setup

Consider an unreliable wireless network with 300 nodes randomly scattered in an area of 3600 m×3600 m.

Each node has a physical communication range of 100 m. The underlying MAC protocol is IEEE 802.11g

CSMA/CA with a bandwidth of 4 Mbps. The unit slot time of the communication is 20 µs. SIFS and

DIFS are 10 µs and 28 µs, respectively. The size of each data packet is 64 bytes and the ACK packet

size is 32 bytes. At a constant bit rate of 2 packets per second, one datum is generated. Assumed that

there is only one data session at each slot time.

In each time slot, one of the nodes in the communication network is picked as the relay to transmit

the data packets for the provider. Comparatively, we define the “full cooperation” action rule, in which

every node will unconditionally forward packets independent from other nodes’ reputation. Though the
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Figure 4 (Color online) The evolutionary stability of the action FD with b = 2.4 and c = 1. (a) The initial frequency of

the action FD is setting to 0.6; (b) the initial frequency of the action FD is setting to 0.35.
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Figure 5 (Color online) The evolutionary stability of the action FD with b = 1.6 and c = 1. (a) The initial frequency of

the action FD is setting to 0.85; (b) the initial frequency of the action FD is setting to 0.35.

“full cooperation” action rule is irrealizable in such wireless communication networks, it can act as a

loose performance upper bound of other strategies.

4.2 Performance evaluation

We first aim at the one-hop packet forwarding scenario in unreliable communication networks, in which

the two-player packet forwarding game is based on the mechanism of indirect reciprocity. Assume that

the gain per unit is 2 and the cost per unit is 1, i.e., b = 2 and c = 1. The parameter ω = 0.7.

Figures 6 and 7 present the average node payoff of the optimal action with the indirect reciprocity

mechanism for different pe and µ compared with the “full cooperation” action. In Figure 6, we set

the reputation updating error as µ = 0.01, while in Figure 7, we set the channel loss probability as

pe = 0.01. Figures 6 and 7 provide three insights: (i) When the channel becomes more unreliable

(large pe) and the reputation becomes more undistinguishable (large µ), the average node payoff drops;

(ii) Comparing to the unconditionally cooperative payoff, the optimal action based on indirect reciprocity

can stimulate cooperation with only a small performance loss, in which the parameters of packet process

satisfy Theorem 1; (iii) As the increase of pe and µ, the performance loss of the optimal action compared

to the unconditionally cooperative action becomes large.

To further evaluate the performance of the optimal action, we consider the network performance for

multiple hops packet forwarding. Assume every hop on a data route is independent. When all the

generated packets are successfully delivered from a source to the destination, the state is denoted as “1”.

As shown in Figures 8 and 9, with a small channel loss probability (pe = 0.01) and a small reputation

updating error (µ = 0.01), the optimal action based on the indirect reciprocity mechanism achieves almost
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Figure 6 (Color online) The average node payoffs of the

full cooperation action and the optimal action with different

channel loss probability when µ = 0.01.

Figure 7 (Color online) The average node payoffs of the

full cooperation action and the optimal action with different

reputation updating error when pe = 0.01.
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Figure 8 (Color online) The normalized data session

throughput of the full cooperation action and optimal ac-

tion with different channel loss probability when µ = 0.01.

Figure 9 (Color online) The normalized data session

throughput of the full cooperation action and optimal ac-

tion with different reputation updating error when pe =

0.01.

the same throughput as that of the fully cooperative action. On the other hand, when the parameters of

packet process do not satisfy in Theorem 1 (pe = 0.1 and µ = 0.1, respectively), the throughput difference

between the unconditional cooperation state and the optimal action becomes larger.

Besides, we illustrate the normalized data session throughput with different effects of hop count, channel

unreliability and reputation updating error. From Figures 10 and 11, we know that the throughput drops

when the channel becomes more unreliable, the reputation becomes more undistinguishable and the

hop count increases. These observations also suggest that the optimal action yields the throughput

performance is very close to that of the situation when all the nodes are unconditionally cooperative, in

which the parameters of packet process satisfy Theorem 1.

5 Conclusion

Wireless communications require that all nodes in a network should complete a task cooperatively, in

which the limited battery resources and the lack of a single authority are likely to trigger a noncooperative

behavior for the packet forwarding. In this paper, we have modeled the unreliable packet forwarding

among participants as an indirect reciprocity game with finite number of interactions between any pairs of

players. We have theoretically analyzed the optimal action rule with the method of dynamic programming,
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Figure 10 (Color online) The normalized data session

throughput of hop count with different channel loss proba-

bility when µ = 0.01.

Figure 11 (Color online) The normalized data session

throughput of hop count with different reputation updating

error when pe = 0.01.

and derived the approximate threshold of benefit-to-cost ratio to achieve the optimal action rule. Besides,

we have investigated the evolutionary stability of the optimal action with the replicator dynamics. When

the benefit-to-cost ratio exceeds the critical value b
c

∗
, the optimal action rule FD is evolutionarily stable

with the suitable initial frequency of the action FD, i.e., the optimal action rule will quickly spread over

the whole population. However, when the benefit-to-cost ratio is smaller than the critical value b
c

∗
, the

optimal action rule FD will never be evolutionarily stable. Furthermore, we have illustrated that the

performance of the wireless communications is observably improved by the optimal action in the packet

forwarding process with small channel unreliability and reputation updating error.
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