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Abstract In recent years, the problem of multi-agent encirclement has attained much attention and was exten-

sively studied. However, few work consider the factor that the on-board calculation as well as the communication

capacity in the multi-agent system is limited. We investigate the encirclement control by employing the newly

developed bearing rigidity theory and event-triggered mechanism. Firstly, in order to reduce the onboard loads,

the event-triggered mechanism is considered in the framework and further an event-triggered control law based

on bearing rigidity is proposed. The input-to-state stability (ISS) of networked agents is also analyzed by using

the Lyapunov method and the cyclic-small-gain theory. In addition, the lower bound for the inter-event times

is provided. Finally, to verify the efficiency and feasibility of the proposed encirclement control law, numerical

experiments are investigated.
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1 Introduction

Inspired by the encircling technique that bottlenose dolphins use to entrap fishes [1] and the mysterious

deadth-vortex phenomenon of ants [2], the encirclement control of networked multiple agents has attracted

considerable attentions recently [3]. Similar to the so called containment problem where a collection of

autonomous mobile agents are to be driven to a given target location [4, 5], the agents’ motions in

encirclement problem should also satisfy certain geometric constraints (usually circle). But to encircle

the stationary or moving targets, the networked agents are driven to move around the centre of targets

and to form a capturing formation pattern. This interesting coordination control approach can be widely

applied in many areas such as coverage, patrolling, escorting and entrapment [6].

The study of the encirclement control initially stems from N-bugs problem [7]. Marshall et al. [2]

proposed a formation control under cyclic pursuit for multiple agents with motion constraints in a plane.

Then, the distributed cyclic pursuit approach for target capture tasks is proposed by using local distance

and bearing information [8]. The underlying communication topology in these researches is assumed to
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be fixed. However, owing to a variety of limitations, such as external disturbances, the topology may vary

with time going by, which may cause a breakdown of system. To tackle the case of switching topology,

Wen et al. [9] investigated the consensus tracking of nonlinear multi-agent systems with switching directed

topology by using M-matrix approach. As bearing measurements are often cheaper and more accessible

than position measurements, the bearing-only circular formation scheme was discussed in [10,11]. To go

further, Zhao et al. [12] investigated the bearing rigidity framework. In [13], Zhao et al. also addressed

the problem of bearing-based network localization with a special matrix termed the Bearing Laplacian,

which will be frequently used in this paper.
In many existing control methods for the multi-agent systems, a high control and communication

frequency among agents is usually required in order to pursue a high control accuracy. However, in

many real applications, the calculation and communication capacities of the onboard processors are quite

limited, which bring many difficulties in satisfying the requirement for control and communication with

high frequency. In addition, the system will run normally as long as the control accuracy reaches a

specified level. A higher control accuracy may be meaningless comparing with the increased cost on the

system hardware. Therefore, there should be a tradeoff between the accuracy and frequency. One way

to fix this problem may be the event-trigger mechanism, as investigated in this paper. Therefore, in

order to reduce on-board loads of calculation and communication, the event-triggered control method

is considered in the framework of distributed multi-agent coordinations. The agents need to exchange

information and update control output periodically when using traditional time-triggered control method.

However, when using event-triggered control, an agent exchanges information and updates its state and

output only when the specified conditions are satisfied.
In the past few years, researchers did a great deal of work in this area and many types of event-

triggered control approaches are proposed, such as the continuous-time approach [14], the discrete-time

approach [15] and the self-triggered approach [16]. Ref. [17] presented both centralized and decentralized

form of event-triggered control for multi-agent system to solve several control problems. In a large

scale and high-dimension multi-agent system, distributed control methods are often used to replace the

traditional centralized control method and some other references therein [18, 19].
The event-triggered mechanism has been applied to problems such as formation control [20],

filtering [21] and trajectory tracking [22]. In [23], Tallapragada proposed an event-based control algorithm

for trajectory tracking in nonlinear systems. However, up to now few work combined the event-triggered

mechanism with encirclement control. As the control output will stay unchanged until a certain “event”

is triggered, the system may lose part of control performance. To reduce system’s requirement on calcu-

lation and communication ability as much as possible and keep the control accuracy at the same time, a

novel event must be defined and the trigger condition for the event should be carefully designed.

In order to reduce on-board loads, we investigate the event-triggered encirclement control problem

with bearing information and the event-triggered mechanism. The first contribution of this paper is

that the event-triggered mechanism is introduced into the encirclement problem. The event-triggered

encirclement control law based on bearing measurements is proposed. The recently developed cyclic-

small-gain theorem [24–26] as well as the bearing rigidity theory is then employed to guarantee the

input-to-state stability (ISS) [27] of the closed-loop multi-agent system. In addition, we also provide the

lower-bound of the inter-event times. At last, we verify the effectiveness of the event-triggered mechanism

in saving computation and communication resources by numerical simulation.

This paper is organized as follows: the encirclement control problem is formulated in Section 2, where

the graph theory and the bearing rigidity theory are reviewed. Section 3 proposes the event-triggered

encirclement control law and studies the stability of the whole by using the Lyapunov method and the

small gain theorem. Experiments and simulation results are presented in Section 4. Conclusion and

future work are given in Section 5.

2 Backround and problem statement

Notation and terminology: In this paper, the null space and rank space are respectively represented as
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Null(·) and rank(·). Let Id ∈ R
d×d represent the identity matrix and ‖·‖ represent the Euclidian norm of

a vector or the spectral norm of a matrix. We define the operator ⊗ as the Kronecker product. Let (·)T
denote the transposition of (·) and diag(·) be the block diagonal matrix of which the diagonal blocks are

matrix (·). The symbols n and m are constants. 1n denotes a n-dimension column vector whose elements

are all 1, i.e., 1n , [1, . . . , 1]T.

2.1 Bearing rigidity theory

For an undirected graph G = (V , E), the vertex set is denoted as V = {v1, . . . , vn} and the edge set is

denoted as E ⊆ V × V with m = |E|. The Cartesian coordination of vertex vi in graph G is denoted

as pi ∈ R
d, (d > 2). Then vector p = [(p1)

T, . . . , (pn)
T]T ∈ R

nd is called a configuration of undirected

graph G in R
d. A framework in R

d, denoted as G(p), is a combination of an undirected graph G = (V , E)
and a configuration p. In this paper, we suppose that no vertex in graph G overlaps. In other words, for

∀i 6= j, pi 6= pj . Then in a framework G(p), define

φij , pj − pi, gij = φij/‖φij‖, ∀(i, j) ∈ E , (1)

where unit vector gij represents the relative bearing of pj to pi. Note φij = −φji and thus gij = −gji.
For a nonzero vector v ∈ R

d(d > 2), define the operator P : Rd → R
d×d as follows:

P (v) , Id −
v

‖v‖
vT

‖v‖ . (2)

Note P (v) (denoted as Pv in the following for notational simplicity) is an orthogonal projection oper-

ator. Any nonzero vector v will be projected onto its orthogonal compliment after the operation P . It

can be easily verified that Pv satisfies P 2
v = Pv and PT

v = Pv. This orthogonal projection operator is

often used for verifying whether two vectors are parallel. Thus, Ref. [12] has lemma as follows.

Lemma 1 ([12]). Two nonzero vectors v, u ∈ R
d are parallel if and only if Pvu = 0 (or equivalently

Puv = 0).

An orientation of an undirected graph means the assignment of a direction to each edge. Then consider

an arbitrary orientation of the graph G(p) and denote the edge vector and the bearing for the kth directed

edge as follows:

φk , pj − pi, gk = φij/‖φij‖, ∀k ∈ {1, . . . ,m}. (3)

Denote φ = [φT1 , . . . , φ
T
m]T and g = [gT1 , . . . , g

T
m]T in a compact form. Let incidence matrix H ∈ R

m×n

represent a {0,±1}-matrix with rows indexed by edges and columns indexed by vertices. The element of

H is defined as follows:

[H ]ki =







1, if vertex i is the head of edge k,

−1, if vertex i is the tail of edge k,

0, otherswise.

(4)

Obviously, incidence matrix H can reflect the connection of the graph as its definition reveals. Then,

in order to describe all the bearings in the framework, define the bearing function FB : Rdn → R
dm as

follows:

FB(p) , [gT1 , . . . , g
T
m] ∈ R

dm. (5)

The bearing function describes all the bearings in the framework. A matrix Rb(p) called bearing

rigidity matrix is defined as the Jacobian of the bearing function:

Rb(p) ,
∂FB(p)

∂p
∈ R

dm×dn.

According to the proof in [12], Rb(p) can be expressed as

Rb(p) = diag

(
Pgk

‖φk‖

)

(H ⊗ Id). (6)

Some useful properties of Rb(p) which have been proven in [12] are illustrated as follows.
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Lemma 2 ( [12]). A framework G(p) in R
d always satisfies span{1n ⊗ Id, p} ⊆ Null(Rb(p)) and

rank(Rb(p)) 6 dn− d− 1.

Let δ̃p be a variation of the configuration p, i.e., a small change of p. If R(p)δ̃p = 0, then δ̃p is called an

infinitesimal bearing motion of G(p). An infinitesimal bearing motion is called trivial if it corresponds to

a translation and a scaling of the entire framework. Then, the definition of infinitesimal bearing rigidity

is given as follows.

Definition 1 (Infinitesimal bearing rigidity [12]). A framework is infinitesimally bearing rigid if all the

infinitesimal bearing motions are trivial.

Two useful lemmas related with infinitesimal bearing rigidity are given as follows.

Lemma 3 (Condition for infinitesimal bearing rigidity [12]). For a framework G in R
d, the following

statements are equivalent:

(1) G is infinitesimally bearing rigid;

(2) rank(R(p)) = dn− d− 1;

(3) Null(R(p)) = span{1n⊗ Id, p} = span{1n⊗ Id, p−1n⊗p}, where p = (1n⊗ Id)Tp/n is the centroid

of {pi}i∈V .

Lemma 4 (Unique shape [12]). An infinitesimally bearing rigid framework can be uniquely determined

up to a translational and a scaling factor.

Remark 1. Combined with Lemmas 3 and 4, a formation G(p) can be judged whether it is unique.

Based on the above notion, a special matrix Lb(G) ∈ R
dn×dn is defined as follows:

[Lb(G)]ij =







0d×d, i 6= j, (i, j) /∈ E ,
−Pgij , (i, j) ∈ E ,
∑

k∈Ni

Pgik , i = j, i ∈ V ,
(7)

where Ni , {j ∈ V|(i, j) ∈ E} represents the neighbor nodes of node i.

Note that matrix Lb(G) has a similar form as the graph Laplacian matrix of G. In addition, matrix

Lb(G) contains the inter-neighbor bearing information. Therefore, the matrix Lb(G) is called Bearing

Laplacian [13]. According to the definition in (7), Bearing Laplacian Lb(G) can be represented as

Lb(G) = (HT ⊗ Id)diag(Pgij )(H ⊗ Id), (8)

where H is the matrix defined in (4).

With the property of orthogonal projection matrix Pgij = P 2
gij

and Pgij = PT
gij

, the Bearing Laplacian

Lb(G) can be rewritten as follows:

Lb(G) = (HT ⊗ Id)diag(Pgij )diag(Pgij )(H ⊗ Id) = R̃b(p)
TR̃b(p), (9)

where R̃b(p) = diag(Pgij )(H
T ⊗ Id). By comparing R̃b(p) with the original definition of bearing rigidity

matrix in (6), we can easily find R̃b(p) is almost the same with the bearing rigidity matrix (see (6)) except

the item ‖φk‖ part. Thus R̃b(p) should have the same properties as Rb(p) in Lemma 2. For notational

simplicity, R̃b(p) will be denoted as R̃b in the rests of the paper if there is no confusion.

Finally, some useful properties of Bearing Laplacian Lb(G) are given in the following lemma.

Lemma 5 ([13]). For an undirected graph G, its Bearing Laplacian matrix Lb(G) has properties as

follows:

(1) Lb(G) is positive semi-definite and symmetrical;

(2) rank(Lb(G)) 6 dn− d− 1 and Null(Lb(G)) ⊇ span{1n ⊗ Id, p};
(3) rank(Lb(G)) = dn − d − 1 and Null(Lb(G)) = span{1n ⊗ Id, p} if and only if G(p) is infinitesimal

bearing rigidity.
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2.2 Problem formulation

Considering a system composing of n agents, if the communication among agents is bidirectional, then

its topology structure can be represented by an undirected graph G. Each agent is represented by a node

in G while each communication link between two agents is represented by an edge.

Suppose every agent’s motion follows a single integrator model,

ṗi = µi, i = 1, 2, . . . , n, (10)

where pi ∈ R
d and µi ∈ R

d represent the position and control input of agent i, respectively. Let

p = [pT1 , . . . , p
T
n ]

T ∈ R
nd and µ = [µT

1 , . . . , µ
T
n ]

T ∈ R
nd represent the vectors of agents’ positions and

control inputs, respectively. After assigning an arbitrary direction for each edge in the graph, the edge

vectors and bearing vectors can be denoted as φ = [φT1 , . . . , φ
T
m]T and g = [gT1 , . . . , g

T
m]T. An agent pair

(i, j) ∈ E if and only if the relative bearing information of agent i to agent j, namely gij , can be sensed

by agent i. Thus, at time t, the set of relative bearing information of agent i to its neighbor agents can

be denoted as gij(t)j∈Ni
. Consider a moving target T , its position and velocity are represented as pT

and ṗT . If target T can be detected by agent i, the relative bearing of agent i to target T is represented

as giT = (pT − pi)/‖pT − pi‖. Let p∗i and p∗j be the ideal positions for agent i and agent j. Then, the

bearing constraints g∗ij and g∗iT are defined as follows:

g∗ij = (p∗j − p∗i )/‖p∗j − p∗i ‖, (11)

g∗iT = (pT − p∗i )/‖pT − p∗i ‖. (12)

Define the center and scale of the multi-agent system as

c(t) ,
1

n

n∑

i=1

pi =
1

n
(1n ⊗ Id)

Tp, (13)

s(t) ,

√
√
√
√

1

n

n∑

i=1

||pi − c(t)||2 =
1√
n
||p− 1n ⊗ c(t)||, (14)

c(t) and s(t) represent the center and scale of the multi-agent system, respectively.

In order to associate the multi-agent system with the undirected graph, a sensible assumption is given

as follows.

Assumption 1. all agents cannot acquire their global positions directly, but only can access into the

relative bearing and relative position with respect to their neighbors and targets as well as the velocity

of the target.

Thus, based on graph G, we obtain the augmented graph Ĝ consisting of n agents and target T as

illustrated in Figure 1. The corresponding node set of augmented graph Ĝ is V̂ = {v1, . . . , vn, vn+1} while

the edge set is Ê = {e1, . . . , em, em+1, . . . , em+n}.
To achieve encirclement, the agents are supposed to satisfied the following conditions:

lim
t→∞

‖pi − pt‖ = r (t) → 0, i = 1, . . . , n,

lim
t→∞

v1 (t) /r (t) = · · · = lim
t→∞

vn (t) /r (t) ,

lim
t→∞

w1 (t) = · · · = lim
t→∞

wn (t) = w,

lim
t→∞

ψ1 (t) = · · · = lim
t→∞

ψn (t) = ψ,

in which, r (t) is the time-varying radius of the encirclement circle; w is the angular speed of encircling;

ψ is the expected angle between neighbors. Honestly, the control target described above is not intuitive;

and it is very difficult to design the control law. However, while the formation of multi-agent system

rotates around the geometric center, it forms an encirclement behavior. Then, we can transform this

problem into the target formation problem with time-varying bearing constraints.
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Figure 1 (Color online) Augmented graph Ĝ with 6 agents and tartget T .

Definition 2 (Target formation). If G(p(t)) is the graph of target formation, then it should satisfy

following constraints:

(1) bearing constraint. gij//g
∗
ij, giT //g

∗
iT , ∀(i, j) ∈ E ;

(2) formation center constraint. limt→∞ c(t) → pT (t);

(3) formation scale constraint. limt→∞ s(t) → 0;

where binary operator // represents that two nonzero vectors are parallel. g∗ij(t) and g∗iT (t) are time-

varying bearing constraints defined in (11) and (12), and the geometry configuration determined by g∗ij(t)

is a predefined regular polygon.

As listed above, the geometry configuration of formation determined by the bearing constraints should

be a regular polygon. In essence, the key problem to achieve encirclement through target formation is

how to make that condition guaranteed. According to the definition of bearing rigidity in Definition 1, the

augmented graph Ĝ is infinitesimally bearing rigid. When the bearing constraints of every pair of neighbor

nodes are given, the geometry configuration is determined (the shape is unique but the scale varies). Thus,

we firstly assign n agents on the unit circle evenly, and then calculate g∗ij(0) and g∗iT (0), which are the

initial bearing constraints defined in (11) and (12), respectively. A regular hexagon determined by bearing

constraints is illustrated in Figure 2. It is easy to verify that the geometry configuration constrained by

{g∗ij(0)}j∈Ni

⋃{g∗iT (0)}i∈V is infinitesimal bearing rigidity. Thus, according to Lemma 4, the framework

can be uniquely determined up to a translational and a scaling factor, namely the target’s position and

the formation’s scale.

When agents circle around a fixed point, the relationship between their current positions and initial

positions can be represented by

p(t) = R(θ)p(0), (15)

where matrix R(θ) is called rotation matrix and θ is the angle that agents rotate by. Specifically, in a

two-dimensional space, the rotation matrix R(θ) can be defined as follows:

R(θ) =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

. (16)

As Eq. (1) indicates, the bearing constraint at time t can be represented by agents’s position p.

Therefore, R(θ) can also be utilized to describe the bearing constraint g∗ij(t), where θ = wt and w is

the given angular velocity of formation. If w > 0, the formation rotates anticlockwise. Otherwise,

the formation rotates clockwise. Affected by the rotation matrix, the formation’s bearing constraint is

time-varying. The bearing constraint at time t is given by

g∗ij(t) = R(θ)g∗ij(0), (17)

g∗iT (t) = R(θ)g∗iT (0), (18)
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Figure 2 (Color online) A regular polygon determined by bearing constraints.

where g∗ij(0) and g
∗
iT (0) are initial bearing constraints at time 0.

Then, in order to reduce the on-board loads of calculation and communication, event-triggered mech-

anism is introduced into the system. The system communicates and updates its output only when the

event-triggered condition is satisfied.

Up to this point, the problem formulation of encirclement control using bearing rigidity theory and

event-triggered mechanism is completed. In the next section, control law will be provided and the stability

of system will be proven.

3 Control law design and stability analysis

3.1 Control law design

To solve the proceeding encirclement control problem, a continuous control law for each agent i (i =

1, . . . , n) is given as follows:

µi(t) = −kα
∑

j∈Ni

P ∗
ij(t)(pi − pj)− kβP

∗
iT (t)(pi − pT ) + ṗT , (19)

where kα > 0 and kβ > 0 are control gain constants, and P ∗
ij(t) and P ∗

iT (t) are orthogonal projection

matrices defined in (2). Specifically

P ∗
ij(t) = Id − g∗ij(t)(g

∗
ij(t))

T, (20)

P ∗
iT (t) = Id − g∗iT (t)(g

∗
iT (t))

T. (21)

As bearing constraints g∗ij(t) and g∗iT (t) are time-varying, P ∗
ij(t) and P ∗

iT (t) vary with time as well.

Note that R(θ)R(θ)T = Id, thus we have

P ∗
ij(t) = R(θ)P ∗

ij(0)R(θ)
T,

P ∗
iT (t) = R(θ)P ∗

iT (0)R(θ)
T.

Based on (10) and (19), the multi-agent system can be described in a compact form as follows:

ṗ(t) = µ(t), (22)
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µ(t) = −kαLb(G)p − kβDb(G)(p − 1n ⊗ pT ) + 1n ⊗ ṗT . (23)

Block diagonal matrix Db(G) is defined as follows:
{

[Db(G)]ij = 0, i 6= j;

[Db(G)]ij = P ∗
iT , i = j.

(24)

Further, event-triggered mechanism is considered in order to reduce the on-board loads of calculation

and communication. First of all, for integrating the event-triggered mechanism, we need to define a

(state) measurement error ei(t). Unlike most literatures that propose to base (state) measurement error

on position information, our (state) measurement error is based on bearing information. Thus, we define

a bearing state as follows:

x = kαLb(G)p+ kβDb(G)(p− 1n ⊗ pT ). (25)

Obviously, x is a weighted sum of the inter-agent bearing state and the agent-target bearing state. The

weighting factors imply the importance of two types of bearing state in the event-trigged mechanism.

To be consistent with the control law, these two weighting factors are just set as kα and kβ . Then, the

(state) measurement error ei(t) for agent i is defined as follows:

ei(t) = xi(t)− xi(tk), k = 1, 2, . . . , (26)

where tk denotes the time when event k is triggered. Also, let e(t) = [e1(t), . . . , en(t)]
T be the vector of

system’s state error. Thus, we have

e(t) = x(t) − x(tk), t ∈ [tk, tk+1). (27)

Then the event trigged condition is determined by an event-triggered condition f(e(t), x(t)) = 0. Each

time when the event-triggered condition is satisfied, every agent will communicate with other agents and

further update its control input µi. Between two events, the control intput µ remains constant until next

event is triggered, i.e., µ(t) = µ(tk) for all t ∈ [tk, tk+1). Therefore, combined with (23) and (25), we

have the following event-triggered control law:

µ(t) = −x(tk) + 1n ⊗ ṗT , ∀t ∈ [tk, tk+1). (28)

Further, combined with (27), we rewrite control law (28) as follows:

µ(t) = −x(t) + e(t) + 1n ⊗ ṗT . (29)

Up to this point, we have designed the control law of encirclement for multi-agent system based on

event-triggered mechanism. In the following section, we will show that the system is stable and will be

convergent to the expected state under control law (29).

3.2 Stability analysis

In order to prove the stability of the multi-agent system, the structure of system is firstly explored.

According to the definiton of target formation in Definition 2, the bearing constraints gij//g
∗
ij and

giT //g
∗
iT should be satisfied during the process of encirclement. Further, according to Lemma 1, the

condition P ∗
ijgij = 0 should always hold if bearing vectors gij and g∗ij are parallel, where P ∗

ij is the

orthogonal projection matrix defined in (20). Similarly, the condition P ∗
iT giT = 0 should always hold if

giT //g
∗
iT .

Define a variable η as follows:

η = R̃∗
bp,

where R̃∗
b = diag(P ∗

ij)(H
T ⊗ Id). Note that φ = (HT ⊗ Id)p, thus η can be rewritten as

η = diag(P ∗
ij)(H

T ⊗ Id)p

= diag(‖φl‖P ∗
l )

[
φ1
‖φ1‖

, . . . ,
φm
‖φm‖

]

= diag(‖φl‖)[P ∗
1 g1, . . . , P

∗
mgm]T,
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Figure 3 (Color online) The combination-loop control system consisting of η-subsystem and ξ-subsystem.

where l = 1, 2, . . . ,m is the order number of the graph edge corresponding to agent pair (i, j).

Obviously, η = 0 if and only if P ∗
l gl = 0, which is the condition for gl//g

∗
l . Therefore, condition

gij//g
∗
ij will be satisfied if η = 0. Likewise, define a varible ξ as follows:

ξ = Db(p− 1n ⊗ pT ),

where Db is the target-bearing diagonal matrix defined in (24). When pi 6= pT and ξ = 0, condition

giT //g
∗
iT is satisfied. Therefore, we can check whether conditions gij//g

∗
ij and giT //g

∗
iT are satisfied by

analysing the property of η and ξ.

Firstly, differentiating η with (9), (22), (25) and (29), we obtain the η-subsystem as follows:

η̇ = −kαR̃∗
bR̃

T
b η − kβR̃

∗
bξ + R̃∗

b(1n ⊗ ṗT ) + R̃∗
be. (30)

From Lemma 2, we obtain that for a framework G(p) in R
d, span{1n⊗ Id, p} ⊂ Null(R∗

b) always holds.

Therefore, R̃∗
b(1n ⊗ ṗT ) = 0 and further the η-subsystem becomes

η̇ = −kαR̃∗
b(R̃

∗
b)

Tη − kβR̃
∗
bξ + R̃∗

be. (31)

In analogy to the η-subsystem, we differentiate ξ and obtain the ξ-subsystem as follows:

ξ̇ = −Db(kαLbp+ kβξ − e)

= −kβDbξ − kαDb(R̃
∗
b)

Tη +Dbe. (32)

From (31) and (32), it can be observed that the combination-loop control system consisting of η-

subsystem and ξ-subsystem is a typical interacting feedback system, as illustrated in Figure 3. In order

to prove the stability of the η-subsystem and the ξ-subsystem, we first define the Lyapunov function

(see [24]) of the η-subsystem and the ξ-subsystem respectively as follows:

Vη =
1

2
ηTη, (33)

Vξ =
1

2
ξTξ. (34)

Then, we give two lemmas related with the stability of the η-subsystem and the ξ-subsystem.

Lemma 6. For multi-agent system ṗ = µ with control law (29), if the trigger condition of system

satisfies

‖e‖ 6
σ1‖η‖
‖R̃∗

b‖
, (35)

then the η-subsystem with ξ being the system input is input-to-state stable (ISS). Also, for any s ∈ R
+,

the ISS Lyapunov function defined in (33) satisfies

Vη > γηξ (Vξ) ⇒ ∇Vη η̇ 6 −2εVη, (36)
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where constants σ1 and ε satisfy 0 < σ1 < kαλ2(Lb), 0 < ε < kαλ2(Lb)− σ1, and the gain is given as

γηξ (s) =

(

kβ‖R̃∗
b‖

kαλ2(Lb)− σ1 − ε

)2

s.

Proof. Combining with (31), we obtain the derivative of Vη as follows:

V̇η = −kαηTR̃∗
b(R̃

∗
b)

Tη − kβη
TR̃∗

bξ + ηTR̃∗
be.

For a positive semi-definite matrix A, let λ2(A) denote its smallest eigenvalue and Null(A)⊥ denote

the orthogonal complement space of Null(A). Then for any vector v ∈ Null(A)⊥, it should always satisfy

(see [26])

vTAv > λ2(A)v
Tv. (37)

Note that R̃∗
b(R̃

∗
b)

T = LT
b is positive semi-definite. It can be deduced from the definition η = R̃∗

bp that

η belongs to the range space of R̃∗
b, namely the complement space of Null(R̃∗

b). Therefore, η ⊂ Null(R̃∗
b)

⊥.

According to (37) and event-triggered condition (35), we have

V̇η 6− kαλ2(Lb)‖η‖2 + kβ‖R̃∗
b‖‖ξ‖‖η‖+ ‖R̃∗

b‖‖η‖‖e‖
6− ‖η‖(kαλ2(Lb)‖η‖ − kβ‖R̃∗

b‖‖ξ‖ − σ1‖η‖). (38)

For any given constant 0 < ε < kα. λ2(Lb) − σ1, it can be deduced from the given gain condition

Vη > γηξ (Vξ) that

‖ξ‖ 6
kαλ2(Lb)− σ1 − ε

kβ‖R̃∗
b‖

‖η‖. (39)

Substitute (39) into (38), we get ∇Vη η̇ 6 −2εVη and the proof is complete.

Lemma 7. For multi-agent system ṗ = µ with control law (29), if the trigger condition of system

satisfies

‖e‖ 6
σ2‖ξ‖
‖Db‖

, (40)

then the η-subsystem with ξ being the system input is ISS. Also, for any s ∈ R
+, the ISS Lyapunov

function defined in (34) satisfies

Vξ > γξη(Vη) ⇒ ∇Vξ ξ̇ 6 −2ζVξ, (41)

where constants σ2 and ζ satisfy 0 < σ2 < kβλ2(Db), 0 < ζ < kβλ2(Db)− σ2, and the gain is given as

γξη(s) =

(

kα‖DbR̃
∗
b‖

kβλ2(Db)− σ2 − ζ

)2

s.

Proof. Note that Db is positive semi-definite and ξ ⊂ Null(Db)
⊥ as ξ = Db(p− 1n ⊗ pt). According

to (37) and event-triggered condition (40), we have

V̇ξ =− ξT(kβDbξ + kαDb(R̃
∗
b)

Tη −Dbe)

6− ‖ξ‖(kβλ2(Db)‖ξ‖ − kα‖DbR̃
∗
b‖|η‖ − ‖Db‖‖e‖)

6− ‖ξ‖(kβλ2(Db)‖ξ‖ − kα‖DbR̃
∗
b‖|η‖ − σ2‖ξ‖). (42)

For any given constant 0 < σ2 < kβλ2(Db) and 0 < ζ < kβλ2(Db)− σ2, we have

‖η‖ 6
kβλ2(Db)− σ2 − ζ

kα‖DbR̃∗
b‖

‖ξ‖. (43)

Finally, we get ∇Vξ ξ̇ 6 −2ζVξ by substituting (43) into (42). The proof is complete.

Then, we are ready to prove the stability of system and the main result of this paper is given as follows.
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Theorem 1. For multi-agent system ṗ = µ, the control law (29) and event-triggered conditions (35)

and (40) will make the system achieve the encirclement of a moving target, that is, constraints gij//g
∗
ij,

giT //g
∗
iT , limt→∞ c(t) → pT (t) and limt→∞ s(t) → 0 will be satisfied. In addition, the formation scale

s(t) will shrink at a exponential-like rate and the shrink rate is estimated as follows:

s(t) 6 e
− kα

√

n
λ2(Lb)ts(0), t > 0. (44)

Proof. In Theorem 1, three types of constraints defined in Definition 2 should be satisfied with the

given control law and event-triggered condition. Therefore, in order to prove Theorem 1, we need to

explore whether these constraints are satisfied.

Firstly, from Lemmas 6 and 7, we obtain that both η-subsystem and ξ-subsystem are ISS. Let Id stand

for the identity function: Id(r) = r for all r. Then, according to the small gain theory (see [28]), the

interconnected system consisting of the η-subsystem and the ξ-subsystem is ISS when the gain of the

feedback interconnected subsystem satisfies γηξ ◦ γξη <Id. An ISS system with zero input must be a global

asymptotic stable system. Therefore, the interconnected system consisting of the η-subsystem and the

ξ-subsystem is global asymptotic stable. Further gij//g
∗
ij and git//g

∗
it hold as well.

Next, it should be proven that the multi-agent formation can track the target and limt→∞ c(t) → pt.

Define the variable δ for the error between formation’s center and target’s position as follows:

δ = c− pt. (45)

Differentiate both sides of (45) and we have

δ̇ =
1

n
(1n ⊗ Id)

Tṗ− ṗT

=− 1

n
(1n ⊗ Id)

T(kαLbp+ kβDb(p− 1n ⊗ pT )− e). (46)

According to Lemma 5, Null(Lb(G)) ⊇ span{1n⊗Id, p}. Thus kα(1n⊗Id)TLbp = 0 as Lb(1n⊗Id) = 0.

Therefore, Eq. (46) can be simplified as

δ̇ = − 1

n
(1n ⊗ Id)

T(kβξ − e). (47)

Eq. (47) reveals that the δ-subsystem is a linear system with only inputs ξ and e. Therefore, the

δ-subsystem is also ISS. From what discussed above, we obtain the conclusion that the ξ-subsystem is

global asymptotic stable. Following, based on the event-trigged condition ‖e‖ 6 σ2‖ξ‖/‖Db‖, we have

e → 0 if ξ → 0. Further, e-subsystem is global asymptotic stable. Therefore, the δ-subsystem is also

global asymptotic stable and limt→∞ c(t) → pT .

Next, the formation scale should be proven to be convergent to zero with control law (29). For analysis

convenience, an orthogonal projection matrix QM ∈ R
nd×nd is defined as follows:

QM =







1
n

· · · 1
n

...
. . .

...
1
n

· · · 1
n






⊗ Id. (48)

This projection matrix will project a vector into the subspace span{1n⊗ Id}. In analogy to QM, define

another orthogonal projection matrix Q⊥
M as follows:

Q⊥
M = In ⊗ Id −QM =







1− 1
n

· · · − 1
n

...
. . .

...

− 1
n

· · · 1− 1
n






⊗ Id. (49)

Similar to QM, Q⊥
M will project a vector into span{1n⊗ Id}’s orthogonal complement space span{1n⊗

Id}⊥.



Yu Y G, et al. Sci China Inf Sci November 2017 Vol. 60 110203:12

According to the definition of orthogonal projection matrix, it can be easily verified that QM = Q2
M,

Q⊥
M = (Q⊥

M)
2
and QMQ

⊥
M = Q⊥

MQM = 0.

Then, according to the definition of formation’s center c(t) = (1/n)(1n ⊗ Id)
Tp, we have

p− 1n ⊗ c(t) = p−QMp = Q⊥
Mp. (50)

Thus, the formation scale defined in (14) can be rewritten as

s(t) =
1√
n
‖Q⊥

Mp‖. (51)

Choose Lyapunov function Vs as follows:

Vs = s(t).

Using the property that Q⊥
MQM = 0, we get the derivative of s(t) as follows:

ṡ(t) =− 1√
n

(Q⊥
Mp)

T

‖Q⊥
Mp‖

(In ⊗ Id −QM)ṗ

=
1√
n

(Q⊥
Mp)

T

‖Q⊥
Mp‖

ṗ. (52)

According to Lemma 5, the subspace span{1n ⊗ Id, p} is a subset of Bearing Laplacian Lb’s kernel

space. Thus we have

Lb(1n ⊗ c(t)) = 0. (53)

Likewise, according to the definition of Q⊥
M, Q⊥

Mp belongs to the subspace span{1n⊗Id}’s kernel space.
Therefore, it holds that

(Q⊥
Mp)

TṗT = 0. (54)

Then comebining with (50), (53) and (54), Eq. (52) becomes

ṡ(t) =− kα√
n

(Q⊥
Mp)

T

‖Q⊥
Mp‖

Lb(p− 1n ⊗ c(t) + 1n ⊗ c(t))− 1√
n

(Q⊥
Mp)

T

‖Q⊥
Mp‖

e

− kβ√
n

(Q⊥
Mp)

T

‖Q⊥
Mp‖

Db(p− 1n ⊗ c(t) + 1n ⊗ c(t)− 1n ⊗ pT )

=− kα√
n

(Q⊥
Mp)

T

‖Q⊥
Mp‖

Lb(Q
⊥
Mp)−

1√
n

(Q⊥
Mp)

T

‖Q⊥
Mp‖

e

− kβ√
n

(Q⊥
Mp)

T

‖Q⊥
Mp‖

Db(Q
⊥
Mp+ 1n ⊗ c− 1n ⊗ pT )

=− kα√
n

(Q⊥
Mp)

T

‖Q⊥
Mp‖

Lb(Q
⊥
Mp)−

1√
n

(Q⊥
Mp)

T

‖Q⊥
Mp‖

e

− kβ√
n

(Q⊥
Mp)

T

‖Q⊥
Mp‖

Db(Q
⊥
Mp+ 1n ⊗ δ). (55)

According to the property of the orthogonal projection matrix, Q⊥
Mp is the orthogonal compliment

subspace of Lb’s kernel space. Thus we have

(Q⊥
Mp)

TLb(Q
⊥
Mp) > λ2(Lb)‖Q⊥

Mp‖.

As target-bearing diagonal matrix Db is positive semi-definite, it holds that

(Q⊥
Mp)

TDb(Q
⊥
Mp) > 0.
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Combined with (55), the derivative of Vs should satisfy

V̇s 6− kα√
n
λ2(Lb)s

︸ ︷︷ ︸

S1

+
kβ√
n
‖1n ⊗ δ‖

︸ ︷︷ ︸

S2

+
1√
n
‖e‖

︸ ︷︷ ︸

S3

.

As discussed in the previous section, the δ-subsystem and the e-subsystem is global asymptotic stable,

namely δ → 0 and e → 0 as t → ∞. Obviously, when δ → 0 and e → 0, the shrinking rate of formation

is determined by item S1

V̇s 6 e
− kα

√

n
λ2(Lb)s,

and s(t) will be convergent to zero at an exponential-like rate. Thus we obtain

Vs(s(t)) 6 e
− kα

√

n
λ2(Lb)Vs(s(0)), t > 0.

Finally, for Vs = s(t), the shrinking rate is estimated as

s(t) 6 e
− kα

√

n
λ2(Lb)s(0), t > 0.

In the above discussion, it has been proven that the formation can satisfy all the required constraints

during the encirclement process. Thus Theorem 1 is proven and the proof is complete.

In the final part of this section, we will show that the proposed control policy attains a strictly positive

lower bound on the inter-event times. We will prove that in a method similar to that used in [17]. As the

control law has two event-triggered conditions, we need to find the lower bound on the inter-event times

of both conditions respectively. Then the smaller one should be the lower bound on the inter-event times

for the multi-agent system.

Theorem 2. For multi-agent system ṗ = µ, the control law (29) and the event-triggered conditions

(35) and (40) will make the inter-event time lower bounded by a strictly positive time τ which is given

by

τ = min

{

σ1

C1C2(‖R̃∗
b‖+ σ1M)

,
σ2

C̃1C̃2(‖Db‖+ σ2M̃)

}

,

where strictly positive constants C1, C2,M, C̃1, C̃2, M̃ are given as follows:

C1 =kα‖R̃∗
b‖+

kαλ2(Lb)− σ1 − ε

‖R̃∗
b‖

,

C2 = ‖kαLb + kβDb‖,

M = max

{

‖R̃∗
b‖

C2
,
1

C1

}

,

C̃1 =
‖R̃∗

b‖(kβλ2(Db)− σ2 − ζ)

‖DbR̃∗
b‖

+ kβ ,

C̃2 = C2,

M̃ = max

{‖D∗
b‖

C̃2

,
1

C̃1

}

.

Proof. Firstly, we will prove that event-triggered condition (35) has a posive lower bound on the inter-

event times. As mentioned before, subspace span{1n ⊗ Id, p} is a subset of the Bearing Laplacian Lb’s

kernel space. Thus we have R∗
b(1n ⊗ ˙pT ) = 0 and further R∗

bṗ = −R∗
bx + R∗

be, where x is the bearing

state defined in (25). It also can be verified that ẋ = −(kαLb + kβDb)x. Then we compute the time

derivative of ‖e‖/‖η‖:

d

dt

‖e‖
‖η‖ =

eTė

‖e‖‖η‖ − ‖e‖ηTη̇
‖η‖3
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= −e
T(kαLb + kβDb)x

‖e‖‖η‖ − ‖e‖ηTR̃∗
b(e− x)

‖η‖3

6
‖kαLb + kβDb‖‖x‖

‖η‖ +
‖e‖‖R̃∗

b‖(‖e‖+ ‖x‖)
‖η‖2

6 C2
(‖e‖+ ‖x‖)

‖η‖ +
‖e‖‖R̃∗

b‖(‖e‖+ ‖x‖)
‖η‖2

= C2

(

1 +
‖R̃∗

b‖‖e‖
C2‖η‖

)

(‖e‖+ ‖x‖)
‖η‖ .

Combining with (39), we have

‖x‖ 6 kα‖(R̃∗
b)

T‖‖R̃∗
bp‖+ kβ‖ξ‖

6

(

kα‖R̃∗
b‖+

kαλ2(Lb)− σ1 − ε

‖R̃∗
b‖

)

‖η‖

= C1‖η‖.

Thus, we have

d

dt

‖e‖
‖η‖ 6 C1C2

(

1 +
‖R̃∗

b‖‖e‖
C2‖η‖

)(

1 +
‖e‖
C1‖η‖

)

6 C1C2

(

1 +M
‖e‖
‖η‖

)2

.

Using the notation y = ‖e‖
‖η‖ , we have ẏ 6 C1C2(1 +My)2.

So y satisfies the bound y(t) 6 ϕ(t, ϕ0), where ϕ(t, ϕ0) is the solution of ϕ̇ 6 C1C2(1 + Mϕ)2,

ϕ(0, ϕ0) = ϕ0.

Thus the solution of the above differential equation is given by

ϕ(τ1, 0) =
C1C2τ1

1− C1C2Mτ1
, (56)

where constant τ1 is the lower bound of the inter-event time for event-triggered condition (35).

On the other hand, the event-triggered condition (35) reveals that the inter-event times should be

bounded by

ϕ(τ1, 0) =
σ1

‖R̃∗
b‖
. (57)

Combining with (56) and (57), we obtain the inter-event times’ lower bound

τ1 =
σ1

C1C2(‖R̃∗
b‖+ σ1M)

,

obviously, constant τ1 is strictly positive.

Next, we continue to prove that the inter-event times for condition (40) is lower bounded by a strictly

positive constant by a similar method.

Firstly, it can be easily verified that ṗ − 1n ⊗ ˙pT = −x+ e. Then we compute the time derivative of

‖e‖/‖ξ‖ as before

d

dt

‖e‖
‖ξ‖ =

eTė

‖e‖‖ξ‖ − ‖e‖ξTξ̇
‖ξ‖3

= −e
T(kαLb + kβDb)x

‖e‖‖ξ‖ − ‖e‖ξTDb(e − x)

‖ξ‖3
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6
‖kαLb + kβDb‖‖x‖

‖ξ‖ +
‖e‖‖Db‖(‖e‖+ ‖x‖)

‖ξ‖2

6 C̃2
(‖e‖+ ‖x‖)

‖ξ‖ +
‖e‖‖Db‖(‖e‖+ ‖x‖)

‖ξ‖2

= C̃2

(

1 +
‖Db‖‖e‖
C̃2‖ξ‖

)
(‖e‖+ ‖x‖)

‖ξ‖ .

Combining with (43), we have

‖x‖ 6 kα‖(R̃∗
b)

T‖‖R̃∗
bp‖+ kβ‖ξ‖

6

(

‖R̃∗
b‖(kβλ2(Db)− σ2 − ζ)

‖DbR̃∗
b‖

+ kβ

)

‖ξ‖

= C̃1‖ξ‖.

Thus, we have

d

dt

‖e‖
‖ξ‖ 6 C̃1C̃2

(

1 +
‖Db‖‖e‖
C̃2‖ξ‖

)(

1 +
‖e‖
C̃1‖ξ‖

)

6 C̃1C̃2

(

1 + M̃
‖e‖
‖ξ‖

)2

.

Then using the same trick as proving the existence of τ1, we can obtain the conclusion that inter-event

time is lower bounded by a strictly positive time:

τ2 =
σ2

C̃1C̃2(‖Db‖+ σ2M̃)
.

Through the above analysis, the inter-event times for both event-triggered conditions are lower bounded

by a strictly positive constant. When either of the event-triggered condition is satisfied, the event for

system will be triggered. Thus, the inter-event time for system should always be the smaller one of the

two constants τ1 and τ2, namely τ = min{τ1, τ2}. The proof is complete.

4 Simulations

To verify the effectiveness of the proposed control law, we present a simulation in which six agents encircle

a moving target in a two-dimensional space. The initial expected formation is illustrated in Figure 2. The

initial inter-agent bearing constraints are as follows: g∗12 = −g∗21 = [1, 0]T, g∗23 = −g∗32 = [1/2,
√
3/2]T,

g∗34 = −g∗43 = [−1/2,−
√
3/2]T, g∗45 = −g∗54 = [−1, 0]T, g∗56 = −g∗65 = [−1/2,

√
3/2]T, g∗61 = −g∗16 =

[1/2,
√
3/2]T. The initial agent-target bearing constraints are as follows: g∗1T = [1/2,−

√
3/2]T, g∗2T =

[1/2,
√
3/2]T, g∗3T = [−1, 0]T, g∗4T = [−1/2,

√
3/2]T, g∗5T = [−1/2,−

√
3/2]T, g∗6T = [1, 0]T. Set the initial

positions of the target as pT = [100, 100] m and the velocity of the moving target as ṗT = [1, 0.5]T m/s.

The initial positions of agents are [380, 130]T m, [−195, 280]T m, [215, 0]T m, [120,−100]T m, [80,

−220]T m, [−100,−25]T m. Set the gain coefficient of the control law (29) as kα = 1, kβ = 0.5 and

the constants of event-triggered conditions as σ1 = σ2 = 1. The sampling time of simulation is set as

0.05 s. The rotation matrix R(θ) is defined as (16), where θ = wt and w = −π/30 (rad/s).

Then, with the control law (29) and the event-triggered conditions (35) and (40), the simulation result

is illustrated from Figures 4–10. The trajectories of agents and targets during the process of encirclement

are shown in Figure 4. The result shows that the multi-agent formation can encircle and track the moving

target with obvious scale shrinking during the whole process. Figure 5 reveals that the distances between

the target and different agents will be convergent and Figure 6 illustrates that agents will encircle the

target uniformly. The variation of formation scale during the process of encirclement is illustrated in

Figure 8 (depicted as blue line). It can be seen that the formation scale shrinks at an exponential-like

rate after the regular formation is formed. Then, the error between formation’s center and target’s
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Figure 4 (Color online) Multi-agent sytem encircles a

moving target.

Figure 5 (Color online) The distance between agents and

target.
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Figure 6 (Color online) The angle between neighbour

agents.

Figure 7 (Color online) Evolution of state error norm.
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Figure 8 (Color online) The formation scale for two

mechanisms.

Figure 9 (Color online) Error between formation’s

center and target for two mechanisms.

position is shown in Figure 9 (depicted as blue line). It can be seen that the error is convergent to zero

after 30 s, which proves the system satisfies limt→∞ c(t) → pt. The evolution of state error is depicted in

Figure 7. As shown in Figure 7, the norm of state error decreases gradually but the time between two

events is always positive.

In order to find out the effects that the event-triggered mechanism brings into the system, we also

simulate the situation with the time-triggered mechanism, namely using control law (23). Firstly, the

errors between the formation’s center and the target for two mechanisms are illustrated in Figure 9.

Obviously, the difference between the event-triggered mechanism and the time-triggered mechanism is
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Figure 10 (Color online) The occurrences of control update for two mechanisms.

very small. The result in Figure 9 reveals that the configuration of formation is only marginally affected

by the event-triggered mechanism. Then Figure 8 illustrates the process of encirclement and the evolution

of formation scale. From Figure 8, it can be found that the convergence rate of formation with the event-

triggered mechanism is slightly slower than that with the time-triggered mechanism. At last, we compare

the occurrences of control update for two mechanisms, which is illustrated in Figure 10. The frequency

of system control update of the time-triggered is obviously higher than that of the event-triggered. In

the 200-second simulation, the occurrences of control update for the time-triggered is 4000 while that for

the event-triggered is only less than 600. This result means the event-triggered mechanism reduces the

required control and communication frequency of the system to 15% of the previous one.

Remark 2. By comparing the simulation results of two mechanisms, it can be found that the event-

triggered mechanism reduces the control and communication frequency at a small expenses of the control

performance. Usually, the event-triggered mechanism could cause slightly longer convergence time and

poorer control performance. However it will greatly reduce the control and communication frequency.

Therefore, it is worthy of introducing the event-triggered mechanism into the system of which the calcu-

lation and communication capacity is limited.

5 Conclusion and future work

In this paper, in order to reduce the frequency of communication and control updating, we introduce the

event-triggered mechanism into encirclement control. Further, based on this mechanism, we propose a

bearing-based control law with aid of Bearing Laplacian matrix. Next, feasible event-triggered conditions

are provided and the stability of the system is analyzed. It is proven in this paper that the system

with designed control law demonstrates global asymptotic stability and will never be infinitely triggered

in a finite time. Finally, numerical simulations are investigated and the performances of both event-

triggered and traditional time-triggered control laws are compared in the same condition. The experiment

results indicate that it is worthy of using event-triggered mechanism to reduce the computation and

communication loads at a small expense of control performance.

Our work is based on the assumption that the communication and control updating of all agents happen

at the same time, namely, in a centralized method. However, considering a fully decentralized system, it is

hard to ensure that. In addition, a multi-agent system is often troubled by a variety of noises. Therefore,

we will consider investigating the decentralized encirclement control under a noisy environment in the

future. Further, we will also validate the performance of our control law with nonlinear or high-order

physical robots, such as quadrotors.
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