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Dear editor,

For complex targets, the scattered fields vary
rapidly with frequency or aspect angle owing to
diverse scattering mechanisms [1]. To comprehen-
sively learn the characteristics of a target’s signa-
ture, a large number of radar cross section (RCS)
samples need to be collected and stored, which re-
sults in a heavy burden on the measurement equip-
ment and the storage devices [2]. Since the scatter-
ing process of an electrically large target exhibits
highly localized behavior related to the scattering
mechanisms, its scattering physics can be mod-
eled by a set of scattering centers [3]. In general,
the scattering center model provides a sparse ab-
straction of radar targets. And it is insensitive to
the variance of frequency and aspect angle. Com-
pared with RCS samples, the number of corre-
sponding scattering centers is far less. Thus, data
compression can be achieved by transforming scat-
tered fields into scattering centers and storing the
backscattering coefficients and spatial positions of
the extracted scattering centers.

In this letter, the extraction of scattering cen-
ters from RCS samples is performed using basis
pursuit denoising (BPDN) [4, 5]. By means of
the sparse distribution of scattering centers, the

valid backscattering coefficients can be obtained
with the undersampled measurements. It saves
the time for measuring echo signals. However, the
great computation load and memory cost caused
by matrix-vector products always limit the appli-
cation of sparse reconstruction algorithms in the
data compression of RCS samples. To solve this
problem, we derive efficient operators on the ba-
sis of support set and filtered backprojection. By
combining the sparse solver SPGL1 with the op-
erators, the new algorithm not only reduces con-
sumption of system resources, but also estimates
the backscattering coefficients accurately. In addi-
tion, the experimental results and analysis demon-
strate that the proposed technique possesses high
data compression ratio and small RCS reconstruc-
tion error.

Principles of data compression technique based

on BPDN for scattered fields. As one of the equiv-
alent optimization models to compressed sensing,
BPDNmakes use of a priori information of sparsity
to approximately fit the underdetermined least-
squares problem in the presence of noisy data [5].
In the research of radar targets, their distributions
of scattering centers are mostly sparse in the high-
frequency optics region [3]. Therefore, we apply
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the BPDN to the transformation from scattered
fields to scattering centers. The model used for
data compression of RCS samples is described by

min
x

‖x‖1 s.t. ‖Ax− y‖2 6 σ, (1)

where x is the backscattering coefficients of an ob-
served region; y is the RCS samples of a radar
target; A is the measurement matrix deduced from
system parameters and observation geometry; σ is
the additive noise level; ‖·‖1 and ‖·‖2 represent
the l1-norm and l2-norm of a vector, respectively.

Generally, the computational complexity and
memory usage of the sparse reconstruction algo-
rithms for solving (1) both reach O

(

n2
)

due to
the matrix-vector products. When a large number
of RCS samples need to be transformed into 3-D
scattering centers, the great computation load and
memory cost make data processors fail to realize
the data compression via limited time and mem-
ory. Thus, we derive efficient operators to replace
these computationally expensive steps. Since the
number of the nonzero backscattering coefficients
is far less than the pixels in the observed region,
Ax can be calculated only by the elements in the
support set of x. In light of this fact, the operator
for generating RCS samples is expressed as

G (x) =
{

yl,m ∈ C

∣

∣

∣
yl,m =

∑

xn 6=0

xn exp (−jklRn,m)
}

, (2)

where xn is the nth element of x ∈ CN , whose
space coordinate is (un, vn, wn); kl = 4πfl

c
is the

wavenumber with respect to the carrier frequency
of the lth pulse, fl = f1+(l − 1)∆f, l = 1, . . . , L,
∆f is the frequency step size, L is the number of
range pulses, and c is the speed of light; Rn,m is
the projected range of the nth scattering center
at the mth aspect angle (ϕm, θm) , m = 1, . . . ,M ,
ϕm ∈ (−π, π] and θm ∈ [−π/2, π/2] are the az-
imuth and elevation angles, and M is the number
of the aspect angles. In the case of far fields, the
projected range is specifically written as

Rn,m = un sinϕm cos θm + vn cosϕm cos θm

+ wn sin θm.

The geometric relationship between the target and
the radar is shown in Figure A1(a). To further re-
duce the computation load and memory cost, we
construct the operator for estimating backscatter-
ing coefficients according to the principles of fil-
tered backprojection [6]. And it is expressed as

I (y) = S
(

Ψaft ⊙ C
(

Ψbef ⊙F−1
r (J ⊙Rsf (y))

))

,
(3)

where Rsf (·) represents reshaping the vector y ∈
CLM×1 to the matrix Y ∈ CL×M , whose mth col-
umn denotes the range RCS samples measured at
(ϕm, θm); J ∈ RL×M is the matrix obtained from
the Jacobian for spherical coordinate transforma-
tion, whose (l,m)-th element Jl,m is k2l cos θm;
⊙ denotes the Hadamard product; F−1

r (·) rep-
resents the inverse discrete Fourier transform in
range; C (·) represents the sinc interpolation from
the range profile to the pixels in the observed re-
gion; Ψbef ∈ C

L×M and Ψaft ∈ C
N×M are the

matrices for compensating the additive phase be-
fore and after the interpolation, the lth element

in every column of Ψbef is ψ
bef
l = exp(−j π(L−1)l

L
)

and Ψaft is composed of ψaft
n,m = exp(j

4πfcRn,m

c
),

fc is the center frequency of the pulse sequence in
range; S (·) represents coherently summating the
subimages acquired at different aspect angles. By
replacing AHy with I (y), the computation load is
reduced from O

(

n2
)

to O
(

n3/2
)

, and the memory

cost is reduced from O
(

n2
)

to O (n)(see [7]).

SPGL1 is a fast and accurate solver of BPDN,
and does not require explicit access to the mea-
surement matrix [5]. As such, we can incorpo-
rate the efficient operators into it. The new al-
gorithm is given in Algorithm 1. In the inner
iterations (Steps 11–32), the LASSO subproblem
about the regularization parameter τp is approx-
imately solved by the spectral projected-gradient
algorithm, which mainly consists of the projected
gradient path search (Steps 16–24) and the spec-
tral step length update (Steps 26–30). In Step 12,
δτp

(

r̃q−1
)

is the duality gap, which provides a
bound on the iteration error. It is defined as

δτ (r) = ‖r‖2 −
(

yHr − τ‖I (r)‖∞
)/

‖r‖
2
, (4)

where ‖·‖∞ represents the infinity norm of a vec-
tor. In Step 17, the operator Pτ (β) represents
projecting a vector β ∈ CN onto the one-norm
ball with radius τ , which is briefly expressed as

Pτ (β) = argmin
z

‖β − z‖2 s.t. ‖z‖1 6 τ. (5)

Its implementation is detailedly explained in [5].
In the outer iterations (Steps 1–34), the proposed
technique uses the Newton’s method to update τp

in accordance with the Pareto frontier, so that the
results of the LASSO subproblems can converge
to the desired solution of BPDN gradually. To
exclude the false scattering centers caused by the
additive noise, the thresholding operation for se-
lecting valid backscattering coefficients is placed in
Step 35. The output threshold Tv is determined
by the practical noise level.
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Algorithm 1 RCS data compression based on BPDN

Input: RCS samples y, additive noise level σ ∈
[

0, ‖y‖2
)

,
optimality tolerance Top > 0, sufficient descent param-
eter η ∈ (0, 1), maximum and minimum step lengths
αmax > αmin > 0, output threshold Tv < 0 dB;

Output: valid backscattering coefficients x̂;
Initialization: x

0 = 0, r0 = y, τ0 = 0, α0 = αmax;
1: for p = 1 to maxiter1 do

2: if
∣

∣

∥

∥r
p−1

∥

∥

2
− σ

∣

∣

/
∥

∥r
p−1

∥

∥

2
6 Top then

3: break;
4: end if

5: τp = τp−1 −
(

σ −
∥

∥r
p−1

∥

∥

2

) ‖rp−1‖
2

‖I(rp−1)‖
∞

;

6: if τp < τp−1 then

7: x̃
0 = Pτp

(

x
p−1

)

, r̃0 = y−G
(

x̃
0
)

, g̃0 = −I
(

r̃
0
)

;
8: else

9: x̃
0 = x

p−1, r̃0 = r
p−1, g̃0 = −I

(

r̃
0
)

;
10: end if

11: for q = 1 to maxiter2 do

12: if δτp

(

r̃
q−1

)

6 Top then

13: break;
14: end if

15: α = αq−1;
16: for h = 1 to maxiter3 do

17: x̄ = Pτp

(

x̃
q−1 − αg̃q−1

)

, r̄ = y − G (x̄);

18: if ‖r̄‖22 6
∥

∥r̃
q−1

∥

∥

2

2
+η

(

x̄ − x̃
q−1

)H
g̃
q−1 then

19: break;
20: else

21: α = α/2;
22: end if

23: h = h+ 1;
24: end for

25: x̃
q = x̄, r̃q = r̄, g̃q = −I (r̃q), ∆x = x̃

q − x̃
q−1,

∆g = g̃
q − g̃

q−1;
26: if ∆x

H∆g 6 0 then

27: αq = αmax;
28: else

29: αq = min

(

αmax,max

(

αmin,
‖∆x‖2

2

∆xH∆g

))

;

30: end if

31: q = q + 1;
32: end for

33: x
p = x̃

q−1, rp = r̃
q−1, p = p+ 1;

34: end for

35: return x̂=

{

x
p−1
n ∈ x

p−1

∣

∣

∣

∣

20 lg

(

|xp−1

n |
max(|xp−1|)

)

>Tv

}

;

Experimental results and analysis. To test the
capability of data compression, we use the itera-
tive shrinkage thresholding algorithm (IST), the
iterative hard thresholding algorithm (IHT) and
our method to extract the scattering centers. The
far-field RCS samples of a typical warhead are
generated with the high-frequency electromagnetic
code. The primary parameters of the simulated
data are listed in Table A1. Since there exists ad-
ditive noise in the samples, the output threshold is
set as −35 dB. By randomly selecting 90% of the
azimuth angles and 90% of the elevation angles
from the fullsampled data, 81% samples are used
for estimating the distribution of scattering cen-
ters (Figures A1 (b)–(d)). The assessment of RCS
recovery precision is based on the relative mean
square error (rMSE). The data compression ratio
and RCS reconstruction error of these algorithms

are given in Table A2. The experimental results
show that the proposed technique possesses higher
data compression ratio and smaller RCS recon-
struction error in comparison with IST and IHT.
To evaluate its robustness to additive noise, we
utilize the scattering centers in Figure A1(d) to
reconstruct the RCS samples, and compare them
with the noiseless simulated data. Figures A1(e)
and (f) show that the reconstructed samples well
resemble the noiseless data in different dimensions.

Conclusion. This letter applies BPDN to the
data compression of RCS samples and proposes
an efficient algorithm for extracting scattering cen-
ters. With the help of the prior knowledge of spar-
sity, the scattering center model of complex target
can be built using the undersampled RCS samples
in azimuth and elevation. It significantly reduces
the time for measuring echo signals, which pro-
motes the efficiency of radar systems. Addition-
ally, experimental results and analysis verify that
the proposed technique possesses high data com-
pression ratio and small RCS reconstruction error.
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