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Abstract In this work, we investigate the spectral efficiency (SE) and energy efficiency (EE) for a massive

multiple-input multiple-output multi-pair two-way amplify-and-forward relaying system, where multi-pair users

exchange information via a relay station equipped with large scale antennas. We assume that imperfect chan-

nel state information is available and maximum-ratio combining/maximum-ratio transmission beamforming is

adopted at the relay station. Considering constant or scaled transmit power of pilot sequences, we quantify

the asymptotic SE and EE under general power scaling schemes, in which the transmit power at each user

and relay station can both be scaled down, as the number of relay antennas tends to infinity. In addition, a

closed-form expression of the SE has been obtained approximately. Our results show that by using massive relay

antennas, the transmit power at each user and the relay station can be scaled down, with a non-vanishing signal

to interference and noise ratio (SINR). Finally, simulation results confirm the validity of our analysis.
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ciency

Citation Yang J, Wang H Y, Ding J, et al. Spectral and energy efficiency analysis for massive MIMO multi-

pair two-way relaying networks under generalized power scaling. Sci China Inf Sci, 2017, 60(10): 102303, doi:

10.1007/s11432-016-9007-2

1 Introduction

In the massive multiple-input multiple-output (MIMO) systems, the base station (BS) deployed hundreds

or more antennas can serve tens of user terminals in the same time-frequency resource, achieving higher

dramatic data rate and power efficiency [1–3]. It was shown that when the antenna number at BS,

i.e., N , increases sufficiently large, the detrimental effects in the conventional wireless systems, such as

inter-pair interference, small-scale fading and noise, will totally clear away through some simple linear

processing approaches [3, 4]. Furthermore, massive MIMO can remarkably boost the energy efficiency

(EE) of the system, for instance, the transmit power of each antenna can be scaled down by 1/N or

1/
√
N maintaining a desirable rate, depending on availability of the channel state information (CSI)
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at the BS [3, 5–7]. These attractive features make massive MIMO gain significant interest from both

academia and industry, and understanding the fundamental performance limits of the massive MIMO

systems has become a hot topic.

On the other hand, the two-way relaying inherits the benefits of the one-way relaying for capturing

higher capacity, longer network lifetime and so on, meanwhile it effectively utilizes the spectrum resources

[8,9]. Two-way relaying system combined with massive MIMO can be regarded as a promising technique

to remarkably improve the performance, e.g., spectral efficiency (SE) and EE [10–13]. With variable gain

AF relaying adopted, Cui et al. [10] investigated the asymptotic SE and EE for the specific power-scaling

schemes. With fixed gain amplify-and-forward (AF) relaying utilized, Jin et al. [11] studied the ergodic

rates and EE for a massive MIMO two-way relaying system. In [12], a power allocation scheme was

proposed to maximize the sum SE in the massive MIMO two-way AF relaying system. Achievable rate

was studied for the massive MIMO two-way decode-and-forward relaying system [13]. The above works

assumed perfect CSI is available.

However, massive MIMO still has many challenges we have to deal with. A fundamental one is to

acquire accurate CSI at the BS [14]. In [15], the authors investigated the resource allocation problem

for a pilot-assisted multi-user massive MIMO uplink with linear minimum mean-squared error (MMSE)

channel estimation and detection. Moreover, some studies on massive MIMO with imperfect CSI have

been presented [16–21]. Considering the multiuser massive MIMO downlink transmission, Khansefid

et al. [16] maximized the sum-rate lower bound with an asymptotic optimal power allocation, and Dong

et al. [17] derived a closed-form lower bound on the area spectral efficiency. Considering the uplink

massive MIMO systems, considering the most dominant factor of large-scale fading, Yang et al. [18]

obtained a novel expression on the asymptotic ergodic achievable rate; the authors in [20] investigated

the achievable sum-rate with aged CSI. For the massive MIMO two-way relaying system, we studied

the asymptotic signal to inference and noise ratio (SINR) with zero-forcing beamforming adopted at the

relay station with imperfect CSI; and the authors in [21] studied the impact of co-channel interference

and the pilot contamination. However, in the above studies [10,13,16–19,21], only specific power scaling

schemes for the transmit power at each user, i.e., PU and at the relay station, i.e., PR, are considered,

for example, PU = EU/N, PR = ER/N , where EU and ER are constant values, and N is the antenna

number at the relay station [21]. Focusing on the uplink massive system, the authors in [20] investigated

a general power scaling scheme.

Different from the existing works, i.e., [10, 13, 16–19, 21], we investigate the SE and EE in a massive

MIMO two-way AF relaying system, assuming the general power scaling schemes are used at the each

user and the relay station. Specifically, we define PU = EU
Na , PR = ER

N b , and a > 0, b > 0, indicating the

power scaling laws at the each user and relay station, respectively. Furthermore, we consider two cases for

the transmit power of pilot sequences PP, i.e., PP = c where c is a constant, and PP = τPU indicating PP

is scaled down proportionally to Na. The first case is called fixed PP case, and the latter is called variable

PP case in this paper. In addition, we assume maximum-ratio combining/maximum-ratio transmission

(MRC/MRT) beamforming is adopted at the relay station, and imperfect CSI is available. We derive

the general asymptotic SINR at the k′th user when N → ∞, from which the asymptotic SE and EE is

obtained analytically. Additionally, the approximate closed-form expression on the SE in the considered

system is also obtained. It is shown that the analytical results in [10] are the special cases of our results.

Our analytical results in this paper show that the transmit power at each user, i.e., PU, and at the relay

transmit power, i.e., PR, and/or the transmit power of pilot sequences PP, can be dramatically reduced

without the loss in the system performance. Finally, Monte-Carlo simulations are employed to verify

these results.

Notation. ‖·‖ , (·)T, (·)∗, (·)H, (·)−1
and Tr (·) represent the Euclidean norm, the transpose, the con-

jugate, the conjugate transpose, the inverse, and the trace of a matrix, respectively. E{x} stands for

the expectation of a random variable x and IN denotes an N × N identity matrix. 1i, (i = 1, . . . , 2K)

represents the ith entry is 1 in a 1 × 2K vector, and the others are 0; δki = 1 if k = i, and δki = 0,

otherwise. 02K×1 is a zero 2K × 1 vector. 1N is a N × 1 vector where all elements are 1. CN
(
µ, σ2

n

)
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Figure 1 The system model of the multi-pair massive MIMO two-way AF relaying system.

is the complex-Gaussian distribution with mean µ and variance σ2
n.

a.s.
−−−−−→

N→∞
represents the almost sure

convergence, when N approaches to infinity, and d
−−−−−→

N→∞
denotes the convergence in distribution, when N

approaches to infinity.

2 System model

As illustrated in Figure 1, in a multi-pair two-way relaying system, 2K users comprisingK communication

pairs exchange information with each other within a pair, with the help of a shared AF relay station. The

relay station is equipped with N (N > 2K) antennas while each user has a single antenna. Consider users

k and k′ as a communication pair (k, k′), in which they exchange information with each other. Thus,

the ith communication pair can be denoted by (2i − 1, 2i), i = 1, . . . ,K. The channel matrix between

the relay station and 2K users is denoted by G = [g1, . . . , g2K ] ∈ CN×2K , with gk ∼ CN (0, ηk1N)

representing the channel between the kth user and the relay station. Furthermore, the channel matrix is

modeled as G = HD1/2, where H ∈ C
N×2K denotes the normalized small-scale fading matrix between

the relay station and all users, following independent identically distributed (i.i.d.) Rayleigh fading, and

D ∈ C2K×2K is the diagonal large-scale fading matrix with [D]kk = ηk, representing the large-scale

fading coefficient. Channel reciprocity is assumed in this paper.

2.1 Channel estimation

Before data transmission, channel estimation is performed during the training part of the coherence inter-

val. Assume that the relay station performs minimum mean squared error (MMSE) channel estimation by

transmitting the orthogonal pilot sequences [13, 22]. Thus, the received pilot matrix at the relay station

is given by

YP =
√

PPGΦT +N , (1)

where PP denotes the transmit power, Φ ∈ Cτ×2K represents the pilot sequences from all the users to

the relay station satisfing ΦHΦ = I2K , τ (τ > 2K) is the length of the pilot sequences, and N ∈ CN×τ

denotes the additive white AWGN matrix with i.i.d. CN (0, 1) elements.

Then, the MMSE channel estimation Ĝ of G, which is the true channel matrix, is expressed as [13]

Ĝ =
1√
PP

YPΦ
∗D̃ =

(

G+
1√
PP

W

)

D̃, (2)
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where W = NΦ∗, and D̃ , ( 1
PP

D−1 + I2K)−1. Since ΦHΦ = I2K , the elements of W follow CN (0, 1).

Recalling gk ∼ CN (0, ηk1N ), gk′ ∼ CN (0, ηk′1N) and according to the large number law [23], we have

1

N
gH
k gk

a.s.−−−−→
N→∞

ηk,
1

N
gH
k gk′

a.s.−−−−→
N→∞

0, (3)

yielding

1

N
ĜHĜ

a.s.−−−−→
N→∞

D̃HDD̃ +
1

PP
D̃HD̃ = Λ̂, (4)

where [Λ̂]kk =
PPη2

k

PPηk+1 . Therefore, the elements of ĝk ∼ CN (0,
PPη2

k

PPηk+1 ).

Let E be the error matrix and assume the orthogonality between Ĝ and E. Thus, we have [13]

G = Ĝ+E, (5)

where ek ∼ CN
(
0, σ2

ek
1N

)
is the kth column ofE which is independent of the kth column of Ĝ. Recalling

gk ∼ CN (0, ηk1N ) and ĝk ∼ CN (0,
PPη2

k

PPηk+11N ), one can obtain

σ2
ek =

ηk
PPηk + 1

. (6)

2.2 Data transmission

The whole data transmission takes place in two phases, i.e., the multiple-access (MA) phase and the

broadcast (BC) phase. During the MA phase, all 2K users simultaneously transmit their respective

information to the relay station. Thus, the received signal yr ∈ CN×1 at the relay station can be

expressed as

yr =

2K∑

i=1

gi
√

PUxi + nr =
√

PUGx+ nr, (7)

where x = [x1, . . . , x2K ]
T
stands for the transmitted symbols with E{xxH} = I2K , nr ∈ CN×1 represents

the zero-mean AWGN at the relay station with E{nrn
H
r } = σ2

nIN , and PU is the transmit power at each

user.

During the BC phase, the relay station broadcasts the amplified signal y = Fyr to the 2K users,

where F ∈ CN×N denotes the MRC/MRT beamforming matrix at the relay station. Utilizing the

channel estimate Ĝ, the beamforming matrix F is given as follows [10]:

F = βĜ∗PĜH, (8)

where β is the amplification factor to satisfy power constraint at the relay station, and P = diag{P1,

. . . ,PK} is the block diagonal matrix, following Pi = [0 1; 1 0] , i = 1, . . . ,K. Specifically, β is given

by [11]

β =

√

PR

PUTr (Z1) + σ2
nTr (Z2)

, (9)

where Z1 = Ĝ∗PĜHĜP ĜT and Z2 = Ĝ∗PĜH(Ĝ + E)(ĜH + EH)ĜP ĜT. Therefore, the received

signal at the k′th user is given by

yk′ = gT
k′y + nk′ = gT

k′Fgk
√

PUxk + gT
k′Fgk′

√

PUxk′ + gT
k′F

2K∑

i6=k,k′

gi
√

PUxi + gT
k′Fnr + nk′ , (10)

where nk′ ∼ CN (0, σ2
n) is the AWGN at the k′th user.

After canceling the self-interference term ĝT
k′F ĝk′

√
PUxk′ in (10), and substituting (5) into (10), the

remaining received signal at the k′th user is given by

yc,k′ = ĝT
k′F ĝk

√

PUxk
︸ ︷︷ ︸

signal

+ ĝT
k′Fek

√

PUxk + eTk′F ĝk
√

PUxk
︸ ︷︷ ︸

(additional noise)

(11)
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+ eTk′Fek
√

PUxk
︸ ︷︷ ︸

(additional noise)

+ ĝT
k′Fek′

√

PUxk′ + eTk′F ĝk′

√

PUxk′ + eTk′Fek′

√

PUxk′

︸ ︷︷ ︸

(residual self-interference)

+
(
ĝT
k′ + eTk′

)
F

2K∑

i6=k,k′

(ĝi + ei)
√

PUxi

︸ ︷︷ ︸

(inter-pair interference)

+
(
ĝT
k′ + eTk′

)
Fnr + nk′

︸ ︷︷ ︸

(noise)

.

From (11), it can be seen that the residual self-interference and additional noise are introduced due to

the channel estimation errors.

Consequently, the received SINR at the k′th user is expressed as

γk′ =
PU|ĝT

k′F ĝk|2
PA + PSI + PII + PN

, (12)

where

PA = PU

(
|ĝT

k′Fek|2 + |eTk′F ĝk|2 + |eTk′Fek|2
)
,

PSI = PU

(
|ĝT

k′Fek′ |2 + |eTk′F ĝk′ |2 + |eTk′Fek′ |2
)
,

PII = PU

2K∑

i6=k,k′

(
|ĝT

k′F ĝi|2 + |ĝT
k′Fei|2 + |eTk′F ĝi|2 + |eTk′Fei|2

)
,

and

PN = σ2
n

(
‖ĝT

k′F ‖2 + ‖eTk′F ‖2
)
+ σ2

n

represent the power of the additional noise, the residual self-interference, the inter-pair interference and

AWGN, respectively.

From (12), the SE of the massive MIMO multi-pair two-way relaying system is defined as [11]

Rsum =
T − τ

2T
E

[
2K∑

i=1

log2 (1 + γi)

]

, (13)

where T denotes the coherence interval time, and the coefficient 1/2 is because the data transmission

within a communication pair takes place in two phases. Therefore, the EE of the considered system is

defined as [11]

ρ =
Rsum

2KPU + PR
, (14)

where 2KPU + PR denotes the total power consumption at all users and the relay station.

3 Asymptotic SINR for different power scaling cases

In this section, we investigate how much power can be scaled down at each user and the relay station

with a non-vanishing SINR, as N → ∞. Rewrite PU = EU

Na , PR = ER

Nb , where EU and ER are constants,

a > 0 and b > 0 indicate the power scaling laws at the each user and the relay station, respectively. For

variable PP, PP = τPU indicates that the transmit power of pilot sequences is also scaled down by 1/Na;

for fixed PP, PP = c, where c is a constant. The asymptotic SINR at the k′th user is firstly derived for

fixed and variable PP, respectively, from which the asymptotic SE and EE can be obtained analytically.
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3.1 Asymptotic SINR at the k′th User with Fixed PP, PP = c

With the fixed transmit power of pilot sequences, i.e., PP = c, the asymptotic SINR at the k′th user is

presented in the following Theorem 1.

Theorem 1. With the fixed transmit power of pilot sequences, i.e., PP = c, and PU = EU

Na , PR = ER

Nb ,

a, b > 0, for fixed EU and ER, the asymptotic SINR at the k′th user is given by

γk′

a.s.−−−−→
N→∞

EUER

(
ηk − σ2

ek

)2 (
ηk′ − σ2

e
k′

)2
N2−a−b

ER

(
ηk − σ2

ek

) (
ηk′ − σ2

e
k′

)2
σ2
nN

1−b + EUϕ2σ2
nN

1−a + ϕ1σ4
n

, (15)

where

ϕ1 = 2
K∑

i=1

(
η2i−1 − σ2

e2i−1

) (
η2i − σ2

e2i

)
(16)

and

ϕ2 =
K∑

i=1

(
η2i−1 − σ2

e2i−1

) (
η2i − σ2

e2i

) [(
η2i−1 − σ2

e2i−1

)
+
(
η2i − σ2

e2i

)]

. (17)

Proof. See Appendix A.

Remark 1. Theorem 1 implies that for a non-vanishing γk′ as N → ∞, we should have 2 − a − b >

max(1− b, 0, 1− a), or equivalently 0 6 a, b 6 1. As such, γk′ increases as N grows without bound. With

PP = c, the transmit power at each user and relay station can be both further scaled down by 1/N ,

maintaining a constant γk′ as N → ∞. In particular, γk′ converges to the constant for the following three

cases: 2−a− b = 3− b > max(0, 1−a), 2−a− b = 1−a > max(1− b, 0) and 2−a− b = 1− b = 0 = 1−a,

or equivalently (a = 1, 0 6 b < 1), (0 6 a < 1, b = 1), and (a = b = 1), respectively. Specially, we have

the cases as follows.

• Case A-I (a = 1, 0 6 b < 1):

γk′

a.s.−−−−→
N→∞

γasm
f1,k′ =

EU

(
ηk − σ2

ek

)

σ2
n

. (18)

• Case A-II (0 6 a < 1, b = 1):

γk′

a.s.−−−−→
N→∞

γasm
f2,k′ =

ER

(
ηk′ − σ2

e
k′

)2 (
ηk − σ2

ek

)2

ϕ2σ2
n

. (19)

• Case A-III (a = b = 1):

γk′

a.s.−−−−→
N→∞

γasm
f1,k′γasm

f2,k′

γasm
f1,k′ + γasm

f2,k′ + ϕ1/ϕ2
. (20)

In Case A-I, the asymptotic SINR is only limited by the channel estimation error, the average signal

noise ratio (SNR) and the large-scale fading. In addition, with the increase of N , the AWGN at the k′th

user converges to zero. While in Case A-II and Case A-III, the AWGNs at each user and the relay station

do not tend to zero when N → ∞. Moreover, when ER → ∞, γasm
f3,k′ runs to the asymptotic SINR in Case

A-I, i.e., γasm
f1,k′ in (18); and when EU → ∞, γasm

f3,k′ runs to the asymptotic SINR in Case A-II, i.e., γasm
f2,k′

in (19).

Remark 2. In particular, when the system structure is symmetric, i.e., ηi = 1, σ2
ei = σ2

e , i = 1, . . . , 2K,

and EU = ER = E, the asymptotic SINR γk′ in (15) becomes

γk′

a.s.−−−−→
N→∞

E2
(
1− σ2

e

)2
N2−a−b

E (1− σ2
e)

2 σ2
nN

1−b + 2KE (1− σ2
e)σ

2
nN

1−a + 2Kσ4
n

. (21)
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Accordingly, Eqs. (18)–(20) become

γasm
f1,k′ =

E
(
1− σ2

e

)

σ2
n

, γasm
f2,k′ =

E
(
1− σ2

e

)

2Kσ2
n

and

γasm
f3,k′ =

γasm
sf1,k′γasm

sf2,k′

γasm
f1,k′ + γasm

f2,k′ + 1/
(
1− σ2

e

) ,

respectively.

Comparing γasm
f1,k′ , γasm

f2,k′ and γasm
f3,k′ and considering the fact that xy

x+y+z < xy
x+y 6 min{x, y}, where

x, y, z > 0, it can be concluded that in the symmetric system, the asymptotic SINR in Case A-I is the

maximal, while in Case A-III is the minimal among the three cases. Thus, the asymptotic SE in Case

A-I is the greatest, and in Case A-III is the smallest. In addition, from (14), it can be observed that

the asymptotic EE in Case A-III increases linearly with N . So, the asymptotic EE in Case A-III is the

maximal in the above three cases.

Remark 3. With perfect CSI, we have σ2
ek = ηk

PPηk+1 → 0. In this case, γk′ in (15) becomes

γk′

a.s.−−−−→
N→∞

EUERη
2
kη

2
k′N2−a−b

ERηkη2k′σ2
nN

1−b + EU

∑K
i=1 η2i−1η2i (η2i−1 + η2i)σ2

nN
1−a + 2

∑K
i=1 η2i−1η2iσ4

n

. (22)

Furthermore, we note that, with perfect CSI, i.e., σ2
ek = σ2

e
k′

= 0, γasm
f1,k′ , γasm

f2,k′ and γasm
f1,k′ in (18)–(20)

reduce to the previously known results, i.e., [10, Eqs. (13), (20), (24)], respectively.

3.2 Asymptotic SINR at the k′th User with variable PP, PP = τEU/Na, a > 0

For variable PP, i.e., PP = τPU, the asymptotic SINR at the k′th user is presented in the following

Theorem 2.

Theorem 2. With the variable PP, i.e., PP = τPU, and PU = EU

Na , and PR = ER

Nb , where EU and ER

are fixed, and a > 0, b > 0, as N → ∞, the asymptotic SINR at the k′th user is given by

γk′

a.s.−−−−→
N→∞

ERτ
2E3

Uη
4
kη

4
k′N2−3a−b

τEREUσ2
nη

2
kη

4
k′N1−a−b + τE2

Uσ
2
n

∑K
i=1 η

2
2i−1η

2
2i

(
η22i−1 + η22i

)
N1−2a + 2

∑K
i=1 η

2
2i−1η

2
2iσ

4
n

.

(23)

Proof. Recalling (6), ϕ1 and ϕ2 in (16) and (17) can be re-expressed as

ϕ1 = 2

K∑

i=1

P 2
Pη

2
2i−1η

2
2i

(
PPη2i−1 + 1

)
(PPη2i + 1)

(24)

and

ϕ2 =

K∑

i=1

P 3
Pη

2
2i−1η

2
2i

(PPη2i−1 + 1) (PPη2i + 1)

(
η22i−1

PPη2i−1 + 1
+

η22i
PPη2i + 1

)

, (25)

respectively.

Due to (6), we have ηk − σ2
ek =

PPη2

k

PPηk+1 . Let PP = τPU, PU = EU

Na , PR = ER

Nb , a, b > 0, thus PPηk ≪ 1

as N → ∞. Substituting (24) and (25) into (15), Theorem 2 can be easily achieved.

Remark 4. Theorem 2 implies that with a non-vanishing γk′ as N → ∞, we should have 2− 3a− b >

max(1 − a − b, 1 − 2a, 0), or equivalently, 0 6 a 6 1/2 and a + b 6 1. In particular, as N → ∞, γk′

converges to the constant if 2−3a− b= max(1−a− b, 1−2a, 0), and equivalently (a = 1/2, 0 6 b < 1/2),

(0 6 a < 1/2, a+ b = 1), or (a = b = 1/2). Specially, we have the cases as follows.

• Case B-I (a = 1/2, 0 6 b < 1/2):

γk′

a.s.−−−−→
N→∞

γasm
v1,k′ =

τE2
Uη

2
k

σ2
n

. (26)



Yang J, et al. Sci China Inf Sci October 2017 Vol. 60 102303:8

• Case B-II (0 6 a < 1/2, a+ b = 1):

γk′

a.s.−−−−→
N→∞

γasm
v2,k′ =

τEREUη
4
kη

4
k′

σ2
n

∑K
i=1 η

2
2i−1η

2
2i

(
η22i−1 + η22i

) . (27)

• Case B-III (a = b = 1/2):

γk′

a.s.−−−−→
N→∞

γasm
v3,k′ =

ERτ
2E3

Uη
4
kη

4
k′

τEREUσ2
nη

2
kη

4
k′ + τE2

Uσ
2
n

∑K
i=1 η

2
2i−1η

2
2i

(
η22i−1 + η22i

)
+ 2σ4

n

∑K
i=1 η

2
2i−1η

2
2i

. (28)

Remark 5. With a constant γk′ , as N → ∞, the transmit power for the pilot sequences and data signal

at each user can be scaled down simultaneously up to by 1/
√
N , which leads to the so-called “squaring

effect” [5, 6].

Remark 6. When the system structure is symmetric, i.e., ηi = 1, σ2
ei = σ2

e , i = 1, . . . , 2K, and

EU = ER = E, the asymptotic SINR γk′ in (23) becomes

γk′

a.s.−−−−→
N→∞

τ2E4N2−3a−b

τE2σ2
nN

1−a−b + 2KτE2σ2
nN

1−2a + 2Kσ4
n

. (29)

Therefore, Eqs. (26)–(28) become

γasm
v1,k′ =

τE2

σ2
n

, γasm
v2,k′ =

τE2

2Kσ2
n

, γasm
v3,k′ =

τ2E4

τE2σ2
n + 2KτE2σ2

n + 2Kσ4
n

,

respectively.

Comparing γasm
v1,k′ , γasm

v2,k′ and γasm
v3,k′ , it can be clearly observed that the asymptotic SINR in Case B-I

is the highest, but in Case B-III is the lowest. Thus, the greatest asymptotic SE is observed in Case B-I,

but the worst asymptotic SE is observed in Case B-III.

Remark 7. With perfect CSI, recalling gk ∼ CN (0, ηk1N ) and ĝk ∼ CN
(
0,

PPη2

k

PPηk+11N

)
, we have

ηk =
PPη2

k

PPηk+1 . Therefore, the asymptotic SINR γk′ in (23) becomes (22).

4 Approximation of spectral efficiency

In this section, we present the approximate expression on the SE in the considered system. The achievable

rate at user k′ in pair (k, k′) is given by

Rk′ =
T − τ

2T
E {log2(1 + γk′)} . (30)

Using the Jansen inequality, we obtain

Rk′ > R̃k′ ≡ T − τ

2T
log2

(

1 + [Ek′ ]
−1
)

, (31)

where

Ek′ , E{[γk′ ]
−1}. (32)

Recalling that the ith communication pair is represented by (2i−1, 2i), i = 1, . . . ,K, we have the following

Theorem 3.

Theorem 3. An approximation of the spectral efficiency in the considered system is given by

R̃sum ≈

K∑

i=1

T − τ

2T

[

log2

(

1 +
NPU(η2i−1 − σ2

e2i−1
)

σ2
n(1 +A2i−1)

)

+ log2

(

1 +
NPU(η2i − σ2

e2i )

σ2
n(1 +A2i)

)]

, (33)

where σ2
ei , i = 1, . . . , 2K is given in (6),

A2i−1 =
PUϕ2 + ϕ1σ

2
n/N

PR(η2i−1 − σ2
e2i−1

)(η2i − σ2
e2i )

2
, A2i =

PUϕ2 + ϕ1σ
2
n/N

PR(η2i − σ2
e2i )(η2i−1 − σ2

e2i−1
)2
, (34)

ϕ1 and ϕ2 are given as in (16) and (17), respectively.
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The number of antennas at relay N
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Figure 2 The SE PP versus N with imperfect CSI. Figure 3 The EE versus N with imperfect CSI.

Proof. See Appendix B.

Theorem 3 presents the approximate expression on the SE in the considered system. It can be observed

that R̃sum increases as N increases or as the channel estimation error in all links reduces, but decreases

as A2i−1 or A2i increases.

5 Numerical and simulation results

In this section, the numerical and Monte-Carlo simulation results are presented to evaluate the SE and

EE in the considered system. In Figures 2–8, “Sim” denotes the abbreviation of simulation, “Asym”

represents the asymptotic results obtained from Theorems 1 and 2, and “Analy” is short for the approx-

imate results obtained from Theorem 3. We assume that EU = ER = 10, all noise variance σ2
n = 1, the

coherence interval T = 200, the number of communication pairs K = 2. We also assume that the system

structure is symmetric, i.e., ηi = 1, σ2
ei = σ2

e = 0.1, i = 1, . . . , 2K. For variable PP, the length of pilot

sequences τ = 2K, and PP = τPU.

Firstly, we consider Case A (a = 1/2, b = 1/2) for fixed PP and Case B (a = 1/4, b = 1/3) for

variable PP. With imperfect CSI, Figures 2 and 3 compare the simulated SE and EE with the analytical

and asymptotic results for the fixed PP and variable PP, respectively. From Figures 2 and 3, it can be

observed for fixed and variable PP, the SE and EE both increase as N → ∞, which is reasonable since the

asymptotic γk′s grow with the increase of N . In addition, as N → ∞, it shows that our asymptotic and

analytical SE/EE become very tight, indicating the validity of our analysis. Furthermore, as expected,

it can be seen that for the deeper power scaling, the SE in Case A for fixed PP is lower than that in

Case B for variable PP, while the EE in Case A for fixed PP is comparatively greater than that in Case

B for variable PP. For example, when N = 2000, the SE in Case A is about 2.2 bps/Hz less than that in

Case B, while the EE in Case A is about 8.6 bits/J greater than that in Case B.

In Figures 4–6, we consider three power scaling cases for fixed PP, i.e., Case A-I (a = 1, b = 0), Case

A-II (a = 0, b = 1) and Case A-III (a = 1, b = 1). Figure 4 shows the SE versus the number of relay

antennas N for fixed PP with perfect/imperfect CSI. From Figure 4, it can be seen that when N increases,

the SE tends to a certain constant value for perfect/imperfect CSI, respectively, which is consistent with

our analysis, since the asymptotic γk′ converges to a constant. For example, considering Case A with

a = 1, b = 0, SE converges to 6.7 bps/Hz with perfect CSI and 6.3 bps/Hz with imperfect CSI. We can

also clearly observe that all analytical and asymptotic results are very tight at large N . As expected,

the SE with perfect CSI performs better than that with imperfect CSI. For example, there is about

0.4 bps/Hz gap in SE between perfect and imperfect CSI cases in Case A with a = 1, b = 0. Besides, it

can be seen that the SE in Case A-I is the maximal among the above three power scaling cases for fixed

PP, which is consistent with Remark 2. From Remarks 3 and 7, it is shown that the asymptotic γk′ for
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The number of antennas at relay N
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Figure 4 The SE for fixed PP versus N with perfect/imperfect CSI.
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Figure 5 Case A-I and A-II: The EE versus N with perfect/imperfect CSI.

fixed PP is identical with the one for variable PP with perfect CSI. Thus, due to the space limitation,

here, we only compare the SE and EE with perfect/imperfect CSI for fixed PP, which is reasonable.

Figure 5 compares the EE for perfect/imperfect CSI in Case A-I and Case A-II. It can be clearly seen

that whenN → ∞, the EE approaches to a constant value, which is consistent with the conclusion in (14).

For example, considering Case A-I with a = 1, b = 0, the EE converges to 0.66 bits/J with perfect CSI

while 0.64 bits/J with imperfect CSI. It can be seen that for both perfect/imperfect CSI, the analytical
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The number of antennas at relay N
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Figure 6 (Color online) Case A-III: The EE versus N with perfect/imperfect CSI.
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Figure 7 The SE versus N with imperfect CSI. Figure 8 The EE versus N with imperfect CSI.

EE is very close to the simulated ones when N is very large. Moreover, Figure 6 shows the EE for

perfect/imperfect CSI in Case A-III. Again, it can be observed that the analytical and asymptotic results

are very tight, as N → ∞. Notably, the EE grows linearly with N for perfect/imperfect CSI, which is

also reasonable due to (14). From Figures 5 and 6, it is shown that the EE with perfect CSI outperforms

the counterpart with imperfect CSI, that is to say, the EE is impaired by the channel estimation errors.

Next, in Figures 7 and 8, we consider the three power scaling cases for variable PP with imperfect

CSI, i.e., Case B-I (a = 1/2, b = 1/3), Case B-II (a = 1/3, b = 2/3) and Case B-III (a = 1/2, b = 1/2).

In Figure 7, it is illustrated that the analytical SE results approximate the simulated ones very well,

especially when N is large. Additionally, all simulation results approach to their asymptotic results, as

N → ∞. Furthermore, it is easily observed that Case B-I performs the best among the three power cases,

which is consistent with Remark 6. In Figure 8, the simulated EE also approaches to the fixed value as

N becomes large. Thus, the tightness of analytical results is verified.

6 Conclusion

In this paper, considering the fixed PP and the variable PP, the SE and the EE performance were inves-

tigated for a massive MIMO multi-pair two-way AF relaying system, with general power scaling schemes

and imperfect CSI. In a large relaying antenna regime, we firstly obtained the asymptotic expression of
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the SINR, from which the asymptotic SE and EE were deduced. Furthermore, we derived an approximate

closed-form expression of the SE. As the antenna number of relay station grows without bound, our anal-

ysis results revealed that the transmit power at each user and relay station can be scaled down by 1/N

with fixed PP, but can be further cut down by 1/
√
N with variable PP. Numerical results accompanied

with Monte-Carlo simulations verified the accuracy of the proposed mathematical analysis.
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Appendix A Proof of Theorem 1

According to the law of large numbers, we obtain

1

N
ĝT
k ek

a.s.
−−−−→
N→∞

0,
1

N
eTk ek′

a.s.
−−−−→
N→∞

0. (A1)

As such, we have

PA
a.s.

−−−−→
N→∞

0, PII
a.s.

−−−−→
N→∞

0, PSI
a.s.

−−−−→
N→∞

0, and PN
a.s.

−−−−→
N→∞

σ2
n‖ĝ

T
k′F ‖2 + σ2

n. (A2)

Utilizing (A2), we have

γk′

a.s.
−−−−→
N→∞

PU|ĝT
k′
F ĝk|

2

σ2
n‖ĝ

T
k′
F ‖2 + σ2

n

. (A3)

Rewriting ĝk ∼ CN (0,
PPη2

k

PPηk+1
1N ) due to (6), we obtain

ĝT
k′F

a.s.
−−−−→
N→∞

βN
(

ηk′ − σ2
e
k′

)

ĝH
k , (A4)

and

ĝT
k′F ĝi

a.s.
−−−−→
N→∞

βN2
(

ηk′ − σ2
e
k′

) (

ηi − σ2
ei

)

δki. (A5)

Additionally, using the property Tr (AB) = Tr (BA) and rewriting [Λ̂]kk = (ηk − σ2
ek

) due to (6), Tr(Z1) and Tr(Z2)

in (9) are given by

Tr (Z1)
a.s.

−−−−→
N→∞

Tr
(

NĜTĜ∗PĜHĜP
)

a.s.
−−−−→
N→∞

Tr
(

NΛ̂P Λ̂P
)

= 2
K
∑

i=1

(

η2i−1 − σ2
e2i−1

) (

η2i − σ2
e2i

)

N2 = ϕ1N
2, (A6)

Tr (Z2)
a.s.

−−−−→
N→∞

Tr
(

N2ĜTĜ∗PĜHĜĜHĜP
)

a.s.
−−−−→
N→∞

Tr
(

N2Λ̂P Λ̂2P
)

=
K
∑

i=1

(

η2i−1 − σ2
e2i−1

) (

η2i − σ2
e2i

)

[

(

η2i−1 − σ2
e2i−1

)

+
(

η2i − σ2
e2i

)

]

N3 = ϕ2N
3. (A7)

Therefore, we get

β2 a.s.
−−−−→
N→∞

PR

PUϕ2N3 + ϕ1σ2
nN

2
. (A8)

Substituting (A4) and (A5) into (A3), we have

γk′

a.s.
−−−−→
N→∞

PUβ2N4
(

ηk′ − σ2
e
k′

)2
(ηk − σ2

ek
)2

σ2
nβ

2N3
(

ηk′ − σ2
e
k′

)2
(ηk − σ2

ek
) + σ2

n

. (A9)

Let PU = EU/Na, PR = ER/Nb, a, b > 0, substituting (A8) into (A9), Theorem 2 can be deduced.

Appendix B Proof of Theorem 3

Recalling that the SINR at the k′th user, we have

E
{

[γk′ ]−1
}

= E

{

PA +PN +PSI +PII

PU|ĝT
k′
F ĝk|2

}

. (B1)

Due to (4), one can obtain

ĝT
k′F

a.s.
−−−−→
N→∞

βĝT
k′ ĝ

∗

k′1k′PĜH = β‖ĝk′‖2ĝH
k , (B2)

and

ĝT
k′F ĝi

a.s.
−−−−→
N→∞

β‖ĝk′‖2‖ĝi‖
2δki. (B3)

Consequently, recalling (A2) and substituting (B2) and (B3) into (B1) we have

E{[γk′ ]−1}
a.s.

−−−−→
N→∞

E

{

σ2
nβ

2‖ĝk′‖4‖ĝk‖
2 + σ2

n

PUβ2‖ĝk′‖4‖ĝk‖4

}

=
σ2
n

PU

E

{

1

‖ĝk‖2

}

+
σ2
n

PUβ2
E

{

1

‖ĝk‖4

}

· E

{

1

‖ĝk′‖4

}

. (B4)

Utilizing the properties of Wishart matrix, we obtain

E

{

1

‖ĝk‖2

}

=
1

(N − 1) (ηk − σ2
ek

)
≈

1

N(ηk − σ2
ek

)
, (B5)
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and

E

{

1

‖ĝk‖4

}

· E

{

1

‖ĝk′‖4

}

=
1

(N − 1)2 (N − 2)2 (ηk − σ2
ek

)2
(

ηk′ − σ2
e
k′

)2

≈
1

N4(ηk − σ2
ek

)2
(

ηk′ − σ2
e
k′

)2
. (B6)

Substituting (B5), (B6) and (A8) into (B4), we have

E{[γk′ ]−1}
a.s.

−−−−→
N→∞

σ2
n

PU

1

(N − 1) (ηk − σ2
ek

)
+

σ2
n

PUβ2

1

(N − 1)2 (N − 2)2 (ηk − σ2
ek

)2(ηk′ − σ2
e
k′
)2

≈
1

N
·
σ2
n

PU

1

(ηk − σ2
ek

)
+

1

N4
·

1

β2
·
σ2
n

PU

·
1

(ηk − σ2
ek

)2
(

ηk′ − σ2
e
k′

)2

a.s.
−−−−→
N→∞

σ2
n

NPU







1

(ηk − σ2
ek

)
+

(PUϕ2N3 + ϕ1σ2
nN

2)

PR(ηk − σ2
ek

)2
(

ηk′ − σ2
e
k′

)2
N3







=
σ2
n

NPU(ηk − σ2
ek

)

{

1 +
PUϕ2 + ϕ1σ2

n/N

PR(ηk − σ2
ek

)(ηk′ − σ2
e
k′
)2

}

. (B7)

Substituting (B7) into (32) and using (13), Theorem 3 can be deduced.
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