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Abstract Batched sparse (BATS) codes have been proposed for communication through networks with packet

loss. BATS codes include a matrix generalization of fountain codes as the outer code and random linear network

coding at the intermediate network nodes as the inner code. BATS codes, however, do not possess a universal

degree distribution that achieves an optimal rate for any distribution of the transfer matrix ranks. Therefore,

it is important to have a fast degree-distribution optimization approach for finite-length BATS codes. In this

paper, we propose the concept of batch release probability (BRP), and demonstrate some characteristics of

BRPs from the degree distributions achieving nearly optimal performance. Based on these BRP characteristics,

we propose a novel degree-distribution optimization approach that achieves the similar decoding performance

with a much shorter optimization time, compared with the previous approach. Moreover, the universality of

BRPs observed in this paper can further simplify the degree-distribution optimization of BATS codes.
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1 Introduction

For communication through networks with packet loss, a batched sparse (BATS) code consists of an outer

code and an inner code [1, 2]. The outer code, a matrix generalization of fountain codes, can potentially

generate an unlimited number of batches, each of which consists of M coded symbols. When M = 1, the

outer code turns into a Luby transform (LT) code [3] (or raptor code [4], if precoding is applied). The

inner code is random linear network coding [5,6] at the intermediate network nodes, which is allowed only

for the symbols belonging to the same batch, so that the network coding does not change the batch degree.

The end-to-end transmission of a batch from the source node to a destination node can be modeled by

a (batch) transfer matrix, which reflects the network coding at the intermediate network nodes and the

packet loss at the network links.

BATS codes preserve salient features of fountain codes especially their rateless property and low en-

coding/decoding complexity. Compared with the ordinary random linear network coding schemes, BATS

codes have a lower encoding/decoding complexity, as well as a smaller coefficient vector overhead and
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intermediate node caching requirement. Compared with other low-complexity random linear network

coding schemes like expander chunked (EC) codes [7], Gamma codes [8] and L-chunked codes [9], BATS

codes generally achieve higher rates and have the extra feature that an unlimited number of batches can

be generated. Application of BATS codes in various network communication scenarios have been studied

in [10–12]. BATS code based network transmission protocols (BATS protocols) is proposed in [13].

Different from LT codes, however, BATS codes do not possess a universal degree distribution that

achieves the optimal rate for any distribution of the transfer matrix ranks (also called the rank distribu-

tion), which captures the effect of the network characteristics (e.g., packet losses, network topology and

packet scheduling) on the batches. To maximize the achievable rate, the degree distribution of a BATS

code can be optimized in terms of the rank distribution. Therefore, how to fast optimize a degree distri-

bution for various rank distributions is an important BATS code design issue, especially for applications

where the rank distribution is difficult to predict and can only be measured online.

Two approaches exist for optimizing the degree distribution of a BATS code. Based on the asymptotic

performance evaluation of BATS codes with belief propagation (BP) decoding, the degree distribution

can be obtained by solving a linear optimization for a given rank distribution [2]. The obtained degree

distribution achieves a nearly optimal rate when the number of input symbols is large (e.g., hundreds of

thousands); however, the performance of such a degree distribution for a relatively small number of input

symbols is poor.

The performance of BATS codes with a relatively small number of input symbols has practical impor-

tance. Based on the finite-length analysis of BATS codes proposed in [14], a greedy approach of finite-

length degree-distribution optimization is proposed. The greedy approach evaluates the finite-length

performance of a set of degree distributions and outputs the best one. Though the greedy approach has

demonstrated significant performance gain compared with the asymptotic approach, the long runtime

prevents it from being used in applications that require online degree-distribution optimization. The

greedy approach does not use any prior knowledge about good (or nearly optimal) degree distributions,

so that the search space is large.

In this paper, we propose a novel BRP-based degree-distribution optimization approach that can benefit

from certain prior knowledge on good degree distribution and achieves the similar decoding performance

with a much shorter optimization time, compared with the greedy approach. We define the concept

of batch release probability (BRP) for capturing the characteristics of the good degree distributions.

Based on the analysis of the robust soliton distribution for LT codes and the evaluation of the degree

distributions obtained using the greedy approach, we demonstrate some characteristics of BRPs that can

be simply described using a pair of real numbers (v1, v2) with v1 + v2 < 1 and v1, v2 > 0.

Moreover, we also observe certain universal property of BRPs in our experiments. Particularly, let

(v∗1 , v
∗
2) be the pair (v1, v2) optimized for certain rank distribution. For a randomly generated rank

distribution h, we obtain a degree distribution Ψ such that the BRP of Ψ and h is approximately

characterized by (v∗1 , v
∗
2). We find for a large fraction of the rank distributions, this degree distribution

demonstrates nearly optimal performance. This universal property of BRPs can further reduce the

computation cost of our BRP-based degree-distribution optimization approach.

2 BATS codes

2.1 Encoding and transmission

A finite field Fq is fixed with size q, called the base field. Let K,n,M > 0 be integers. A BATS code

with K input symbols of the base field includes a sequence of n batches, X1,X2, . . . ,Xn, formed by

Xi = BiGi, (1)

where Bi is a row vector consisting of di input symbols, and Gi is a di×M totally random matrix called

the generator matrix. We call di the (batch) degree and M the (batch) size. The degree di, i = 1, . . . , n
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are i.i.d. random variables with a given distribution Ψ = (Ψ1, . . . , ΨK), i.e., Pr{di = k} = Ψk. The

distribution Ψ is called degree distribution and is the parameter of BATS codes to be studied in this

paper.

The batches are transmitted through a network where intermediate nodes perform linear network

coding only among the symbols belonging to the same batch. So the received symbols of i-th batch can

be represented by a row vector,

Yi = XiHi = BiGiHi, (2)

where Hi is an M -row random matrix called the (batch) transfer matrix. The number of columns of Hi

corresponds to the number of symbols received for i-th batch, which may vary for different batches and

is finite. Let ri = rk(Hi). We know that ri 6 M .

2.2 GE-BP decoding

We describe the Gaussian-elimination belief-propagation (GE-BP) decoding algorithm of BATS codes

provided in [2]. The input of the GE-BP decoding is the sequence (Yi,GiHi), i = 1, . . . , n. In other

words, each batch is associated with a linear system of equations given in (2), where the input symbols in

Bi are the variables to solve. The decoder knows the indices of the input symbols involved in each batch.

A batch with degree d, generator matrix G and transfer matrix H is said to be decodable if rk(GH) = d,

i.e., the associated linear equation of the batch is uniquely solvable, and an input symbol is decodable if

it is involved in a decodable batch.

The GE-BP decoding has multiple steps. Suppose the step index starts at 0. For each step, a decodable

input symbol b is selected, substituted into the undecodable batches that it is involved in, and marked

as recovered. Consider an undecodable batch that involves b with degree d, generator matrix G and

transfer matrix H . The substitution will remove one row of G and reduce d by one, which may make

the batch decodable and hence generate new decodable input symbols. The decoding stops when there

are no decodable input symbols. The GE-BP decoding algorithm uses a given number n of batches, and

is denoted by BP(n).

2.3 Solvability of a batch

The performance of BP(n) has been analyzed when n (and K) is a finite number (finite-length analysis)

in [14]. Let us introduce some basic steps of these analysis that are useful in this paper. Assume that

H1,H2, . . . ,Hn are independent and follow the same distribution of a random matrix H .

Let us check the probability that a batch is decodable when its degree has a specific value. According

to the decoding algorithm of BP(n), if a batch is decodable at step t, it is decodable at all steps t′ > t

until the associated linear system has no variable left. We say a batch is decodable for the first time at

step t if it is decodable at step t, but is not decodable at step t− 1.

For s = 0, 1, . . . ,M , let G(s) be an s×M totally random matrix over the base field Fq. Define

~s , Pr

{

rk

([

G
(1)

G
(s)

]

H

)

= rk(G(s)
H) = s

}

, (3)

~
′
s , Pr{rk(G(s)

H) = s}, (4)

where G
(1) and G

(s) are statistically independent. We see that ~s is the probability that a batch is

decodable for the first time when it involves s input symbols. Once a batch becomes decodable, it

remains to be decodable until all input symbols it involves in are decoded. Note that ~′s =
∑

k>s ~k for

0 6 s 6 M and ~s = 0 for s > M . As it was characterized in [2],

~s =
M
∑

k=s

ζks
qk−s

hk and ~
′
s =

M
∑

k=s

ζks hk, (5)
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where

ζks ,

{

(1 − q−k)(1 − q−k+1) · · · (1− q−k+s−1), s > 0,

1, s = 0.
(6)

Let hk , Pr{rk(H) = k}, we call h = (h0, . . . , hM ) the rank distribution of H .

For BP(n), we are interested in the step when the decoding stops, which is equal to the number of

input symbols that are decoded. If BP(n) stops at step K, all the input symbols are decoded. Define

Perr(n) as the probability that at least one input symbol is not decoded when decoding stops. In [14],

a recursive formula is provided to calculate Perr(n). In this paper, we study how to optimize the degree

distribution using Perr(n) as the performance measure.

2.4 Greedy approach for degree-distribution optimization

Let us first introduce the greedy approach of finite-length degree-distribution optimization in [14], which

has the following two steps with an initial degree distribution Ψ
(0) (which can be trivial).

(i) Find one or multiple new degree distribution which may be potentially better than Ψ
(0).

(ii) Evaluate the performance of these new degree distributions in terms of an objective function (e.g.,

Perr(n)), and select the degree distribution that outperforms Ψ (0) the most.

These two steps can be applied repeatedly.

For the degree-distribution optimization of finite-length BATS codes in [14], the degree distribution

obtained from the asymptotic analysis of BATS codes is used as the initial degree distribution Ψ
(0). In

the first step, a new degree distribution Ψ
(1) is obtained by perturbing the degree distribution Ψ

(0) at

certain degree d so that

Ψ
(1) = (Ψ (0) + δed−1)/(1 + δ),

where δ is a real number and ed−1 is the all-zero vector except that the (d− 1)-th component is 1. In the

second step, the performances of Ψ (1) and Ψ
(0) are compared based on the finite-length results of BATS

codes and the better degree distribution is selected as Ψ (0). These two steps are repeated for a number

of iterations and output Ψ (0).

Technically, the greedy approach can find a nearly optimal degree distribution if we use a sufficiently

small δ and repeat the algorithm for a large number of iterations. In our experience, the greedy approach

converges when the number of iterations is in the range 2000–5000 for K = 256 and M = 16. The greedy

approach does not use any prior characteristics of the good degree distributions and therefore the number

of degree distributions evaluation is large, which results in a long runtime.

3 Batch release probability

3.1 Definition of BRP

We say that a batch is released at step t (1 6 t 6 K − 1) if it is decodable for the first time at step

t and involves at least one decodable input symbol. At step 0, a decodable batch is also released. We

use r(t, d) to denote the probability that a batch with degree d is released at step t, which is called the

degree release probability.

Proposition 1. (Degree release probability formula)

• For t = 0 and d 6 M , r(0, d) = ~
′
d.

• For t = 1, . . . ,K − 1 and d = 2, . . . ,min{K,M + t},

r(t, d) =

min{M,K−t,d−1}
∑

s=max{1,d−t}

~s

(

t−1
d−s−1

)(

K−t

s

)

(

K

d

) . (7)

• For all other t and d, r(t, d) = 0.
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Proof. At step 0, only a batch with degree d 6 M can be decodable as well as released, and r(0, d) =

Pr{rk(G(d)
H) = d} = ~

′
d (see Eq. (4)).

For t > 1, only a batch with degree d > 2 and d 6 t+M can be released. For a batch that is released

at step t, the number of input symbols involved in the batch is between 1 and M . Fix a batch with

degree d, the degree released probability at step t can be decomposed into

r(t, d) =

M
∑

s=1

Pr(the batch is released at step t | the batch involves s input symbols at step t)

×Pr(the batch involves s input symbols at step t)

=

M
∑

s=1

Pr(the batch is decodable for the first time when it involves s input symbol at step t)

×Pr(the batch involves s input symbols at step t)

=

min{M,K−t}
∑

s=max{1,d−t}

~s ×

(

t−1
d−s−1

)(

K−t

s

)

(

K

d

) ,

where the event that the batch involves s input symbols at step t has a hypergeometric distribution

because the input symbols are randomly selected when decoding. Hence this event can be expressed as:

d − s− 1 input symbols involved in the batch are recovered before step t, one input symbol involved in

the batch is recovered at step t and the remaining s input symbols involved in the batch are among the

K − t unrecovered input symbols, which imply d− t 6 s 6 min{K − t, d− 1}.

Lemma 1. For all degree d,
∑K−1

t=0 r(t, d) = 1− ~0.

Proof. For d = 1,
∑K−1

t=0 r(t, d) = r(0, 1) = ~
′
1 = 1− ~0. For d > 1,

K−1
∑

t=0

r(t, d) = r(0, d) +

K−1
∑

t=1

min{M,K−t,d−1}
∑

s=max{1,d−t}

~s

(

t−1
d−s−1

)(

K−t

s

)

(

K

d

)

= r(0, d) +

min{M,d−1}
∑

s=1

~s

min{K−1,K−s}
∑

t=max{1,d−s}

(

t−1
d−s−1

)(

K−t

s

)

(

K

d

) = r(0, d) +

min{M,d−1}
∑

s=1

~s, (8)

if 1 < d 6 M , Eq. (8) equals ~′d +
∑d−1

s=1 ~s = ~
′
1 = 1− ~0. And if d > M , Eq. (8) equals

∑M

s=1 ~s = ~
′
1 =

1− ~0. Hence for all degree d,
∑K−1

t=0 r(t, d) = 1− ~0.

Definition 1 (Batch release probability, BRP). Let r(t,Ψ ) =
∑

d>1 Ψdr(t, d), called the batch release

probability (BRP) at step t. Let R(Ψ ) = (r(0,Ψ ), . . . , r(K − 1,Ψ )), which represent the BRP at each

step and is called the BRP distribution. To specify the dependence of the BPR on the rank distribution

h, we also write R(Ψ ) as R(Ψ ,h).

Note that
∑K−1

t=0 r(t,Ψ ) is 1− ~0 instead of 1, where the missing ~0 is the probability that a batch is

decodable for the first time when all its input symbols are previously decodable. In general, for a vector

L of l entries, we denote by L[k] its kth entry and the starting index is 0. We say a length-l vector L a

distribution vector if L[i] > 0 and
∑l−1

i=0 L[i] > 0. Note that we do not require that
∑l−1

i=0 L[i] = 1 since,

if desired, we can simply normalize the vector. Henceforth, when we say Ψ = (Ψ1, . . . , ΨK) is a degree

distribution, it is possible that
∑

d Ψd 6= 1. The definition of BRP in Definition 1 can be extended to this

case.

3.2 Linearity of BRP

As we will see in this paper, for the degree distributions that demonstrate good GE-BP decoding per-

formance, the corresponding BRP distributions have a similar form. This observation will be used in

our degree-distribution optimization approach, where one of the important steps is to obtain a degree

distribution Ψ such that R(Ψ ) is (approximately) a given distribution vector. Note that it is possible

that for a distribution vector r, e.g., r = e10, there exists no degree distribution Ψ such that R(Ψ ) = r.
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Algorithm 1 Transformation from a distribution vector to a degree distribution

Input:

• K,N,M,h are the number of input symbols, num-

ber of batches, batch size, and rank distribution, respec-

tively.

• L is a length-K distribution vector.

• E1, E2 are two threshold parameters.

Output:

1: for d = K to 1 do

2: Ψd ⇐ 1

3: for t = 0 to K − 1 do

4: if r(t, d) > E1 and L[t] > E1 then

5: Ψd ⇐ min{Ψd,L[t]/r(t, d)}

6: end if

7: end for

8: if maxt(Ψdr(t, d)− L[t]) > E2 then

9: Ψd ⇐ 0

10: else

11: L ⇐ L− ΨdVd

12: end if

13: end for

14: return Ψ = (Ψ1, . . . , Ψk)

Before giving the transformation from a BRP distribution to a degree distribution, let us discuss a

linearity property of BRP distributions. We can rewrite the BRP distribution R(Ψ ) as follows:

R(Ψ ) = (r(0,Ψ ), . . . , r(K − 1,Ψ )) =

(

K
∑

d=1

Ψdr(0, d), . . . ,

K
∑

d=1

Ψdr(K − 1, d)

)

=

K
∑

d=1

Ψd (r(0, d), . . . , r(K − 1, d)) =

K
∑

d=1

ΨdVd, (9)

where Vd , (r(0, d), . . . , r(K − 1, d)). Eq. (9) is a linear decomposition of BRP distribution and the

coefficients of Vd (d = 1, . . . ,K) constitute the corresponding degree distribution. Define a K×K matrix

V as (V T
1 , . . . ,V T

K ), we have

R(Ψ ) = ΨV
T. (10)

The properties of Vd are shown in Figure 1. From the sub-figures of the Vd with different values of d,

we can see that (i) the peak value of Vd (i.e., maxt r(t, d)) increases with degree d; (ii) the peak position

(i.e., argmaxt r(t, d)) increases with degree d.

3.3 Approximating a distribution vector using BRP

In this subsection, we introduce an approach to obtain a degree distribution Ψ such that R(Ψ ) approx-

imates a length-K distribution vector L. According to (10), the degree distribution can be obtained if

matrix V is non-singular,

Ψ = LV
−T. (11)

However, matrix V usually has a large or infinite condition number, which makes the numerical inversion

infeasible. For our purpose, it is not necessary to obtain a degree distribution Ψ such that R(Ψ ) = L,

which may not exist; it is sufficient that R(Ψ ) is close enough to L.

In view of the properties BRP distributions discussed in the previous subsection, our idea is to find

a linear combination of Vd that approximates the given L, where the combination coefficients Ψd of Vd

constitute the desired Ψ . Figure 2 shows an example of linear combination of Vd in ascending order of

degree d, where the upper bound of the curves in Figure 2(d) is the given vector L.

Particularly, we use Algorithm 1 to obtain such a degree distribution, where the searching of the linear

combination coefficients Ψd of Vd is in the descending order of d. The pseudocodes from the 2nd line to

the 7th line search a proper coefficient Ψd for the current Vd. And the pseudocodes from the 8th line to

the 12th line check if the coefficient Ψd is suitable by measuring the approximation error. The threshold

E1 is used to alleviate the effect of relatively small r(t, d) or L(t) values, and the threshold E2 is to

control the approximation error. This algorithm is suitable for any length-K distribution vector L. The

algorithm guarantees that Ψd > 0.

Numerical results in Figure 3 illustrate the performance of Algorithm 1. In Figure 3(a), all the entries

of the distribution vector L have almost the same value. There is no degree distribution Ψ such that

R(Ψ ) = L. The L in Figure 3(b) is the BRP distribution of a randomly generated degree distribution.

We see that our algorithm can approximate this BRP distribution well.
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Figure 1 (Color online) Vd with different degrees. (a) d = 13, 16, 20, 25, 50, 150, and K = 256; (b) d = 20, . . . , 150,

K = 256.

4 BRP-based approach for degree-distribution optimization

4.1 Heuristics from robust soliton distribution of LT codes

As a special case of BATS codes with M = 1, LT codes achieve very good BP decoding performance with

the robust soliton distribution, denoted by Ψ
RS. For the general case with M > 1, however, we do not

have a single degree distribution that can achieve good GE-BP decoding performance for all (or even a

subset of) rank distributions. So it is not surprising that the robust soliton distribution cannot be used

in BATS codes. But the study of the robust soliton distribution for LT codes would shed light the design

of a good degree distribution for BATS codes.

A robust soliton distribution can be specified by two parameters (see [3] for the definition). R(ΨRS) is
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Figure 2 (Color online) Example of the linear combination of Vd, (a) d = 17; (b) d = 17, 23; (c) d = 17, 23, 33; (d)

d = 17, 23, 33, 50.
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Figure 3 (Color online) Results of Algorithm 1 for two given L. The curves without rhombus express the given L. The

rhombus curves are the BRP distributions Ψ of the degree distributions obtained from the Algorithm 1. (a) A horizontal

L; (b) BRP distribution of a random degree distribution.

the BRP distribution of the robust soliton distribution for LT codes 1). As shown in Figure 4, R(ΨRS)

has the following characteristics: the BRP is high at step 0 and at the steps close to K, and is smooth

and relatively low at other steps. When we tune the parameters of the robust soliton distribution in

a feasible range, though BRP changes, these characteristics of BRP are preserved. We explain in the

following paragraph how these characteristics of BRP affect the BP decoding performance of LT codes.

The BRP determines the number of released batches (though for LT codes, each batch has only one

coded symbol) at each step, which may generate new decodable input symbols. Denote by Rt the number

of the decodable input symbols at step t. Note that the BP decoding of LT codes stops when there exist

1) Our previous discussion can be applied to LT codes by letting M = 1, ~0 = 0 and ~1 = 1 (see [14]).
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Figure 4 BRP distribution of the robust soliton distribution for the LT code with K = 1024.

no decodable input symbols. At step 0, the BRP is high to ensure a proper size of R0. During each

following decoding step, one input symbol is recovered from the set of decodable input symbols. The

smooth and relatively low BRP can ensure that on average one previously undecodable input symbol

become decodable at each step t until t reaches a value close to K, which can keep the number of

decodable symbols roughly unchanged. Therefore, the number of decodable symbols Rt, t = 0, 1, . . . , is

approximately a random walk with the initial position R0. We would like R0 is large enough so that

Rt is not zero with high probability before t is close to K, which accounts for the high BRP at step 0.

When the decoding step is close to K, the input symbols involved in the released batches at step t are

previously decodable with a high probability of Rt/(K − t). Thus, a high BRP is needed to generate

enough released symbols that all the undecodable symbols can become decodable with high probability.

Though there is not a single degree distribution with these characteristics for all rank distributions,

these characteristics motivate us to use BRP for designing the degree distribution of BATS codes.

4.2 The approximate BRP vector and the corresponding degree distribution

Now let us check the BRP characteristics of the general BATS codes. Figure 5(c) and (d) are two

BRP vectors of the degree distributions obtained from the greedy approach, which demonstrate similar

characteristics of LT codes. Particularly, the BRP vector demonstrates two peaks, the first peak is at

the step 0, the second peak is in a sequence of consecutive steps from K −M to K − 1. At other steps,

the BRP vector is smooth and roughly flat. If we ignore the minor variations, the BRP vectors can be

approximated by a bimodal vector L of ‘⊔’ shape, illustrated in Figure 5(e).

For the vector L
∗ shown in Figure 5(e), our purpose is to obtain a degree distribution Ψ such that

R(Ψ ) approximates L∗. A simple approach is that first fix L
∗ and then obtain degree distribution Ψ by

Algorithm 1. However, this approach needs M+2 parameters to formulate L∗: one parameter formulates

the BRP at step 0, one parameter formulates the BRP values from step 1 to step K −M − 1, and M

parameters formulate the BRP values from step K −M to step K − 1.

Here we give a simpler approach for obtaining a degree distribution Ψ that can approximate L∗. First

we separate L
∗ into two length-K vectors L1 and L2, where

L1[t] =

{

L
∗[t], 0 6 t < K −M,

0, K −M 6 t,
L2[t] =

{

0, 0 6 t < K −M,

L
∗[t], K −M 6 t.

L1 can be formulated by parameters v1 and v2,

L1[t] =















v1, t = 0,
1−v1−v2
K−M−1 , 1 6 t < K −M,

0, t > K −M.

(12)
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Figure 5 (a) Rank distribution h′

1; (b) rank distribution h′

2; (c) BRP distribution of the degree distribution obtained by

the greedy approach for rank distribution h′

1, K = 256, M = 16; (d) BRP distribution of the degree distribution obtained by

the greedy approach for rank distribution h
′

2, K = 256, M = 16; (e) the approximate BRP vector of the degree distribution

from the greedy approach.

Algorithm 2 Obtaining a degree distribution from v1 and v2

Input:

• K,N,M,h are the number of input symbols, number of batches, batch size, and rank distribution, respectively.

• v1, v2 are two positive real numbers that v1 + v2 < 1.

Output:

1: Initialize L1 using Equation (12)

2: Compute Ψ1 using L1 by Algorithm 1

3: Initialize Ψ
2 using Equation (13)

4: Ψ ⇐ Ψ1 +Ψ2

5: Normalize Ψ

6: return Ψ

Applying Algorithm 1 on L1, a degree distribution Ψ
1 can be obtained.

Define Ψ
2 as

Ψ2
d =

{

0, 1 6 d < K,

v2, d = K.
(13)

Since a batch with degree K can not be released until step K − M , we have r(t,K) = 0 for t =

0, 1, . . . ,K − M − 1. Recalling the shape of VK = (r(0,K), r(1,K), . . . , r(K − 1,K)) illustrated in

Subsection 3.2, we can use R(Ψ2) = Ψ2
KVK to approximate L2.

Let Ψ = Ψ
1+Ψ

2. L∗ can be approximated by R(Ψ ). Here we summarize this process as an algorithm

outlined in Algorithm 2 for obtaining a degree distribution using parameters v1 and v2.
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Table 1 The rank distribution h0 for evaluation examples. h0 is the one of the length-2 homogeneous line network with

link erasure probability 0.2 (see [2]). Here the BATS code has q = 256 and M = 16

h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

0.0001 0.0004 0.0025 0.0110 0.0387 0.1040 0.2062 0.2797 0.2339 0.1038 0.0190 0.0008

4.3 BRP-based approach for degree-distribution optimization

We are now ready to present our fast degree-distribution optimization approach based on the BRP

properties. The BRP-based approach uses Algorithm 2 and certain finite-length performance measure

of BATS codes. The approach in general includes multiple iterations of the following four steps with an

initial list V of (v1, v2) pairs:

(1) Obtain a degree distribution Ψ
(v1,v2) using Algorithm 2 for each (v1, v2) pair in the list V .

(2) Evaluate the BATS code decoding performance of Ψ (v1,v2) in terms of certain objective function

for each (v1, v2) pair in the list V .

(3) If a better degree distribution is found, mark the degree distribution as Ψ∗ and the corresponding

(v1, v2) pair as (v
∗
1 , v

∗
2).

(4) Update list V .

In this section, we use the error probability Perr(n) of GE-BP decoding as the objective function in

Step (2), which can be evaluated using algorithms in [14]. Another objective function will be discussed

in the next section. In Step (4), the list V can be updated using various approaches. For example, we

can use {(v∗1 ± S, v∗2 ± S)} as V , excluding the pairs that have been previous evaluated, where S takes

a predefined value, e.g., 0.02. If no better degree distribution can be found in Step (3), we decrease the

value of S by half. The above iteration stops when S is small enough (e.g., 0.001) or the number of

iterations exceeds a certain value (e.g., 20). The output of the algorithm is Ψ∗ and (v∗1 , v
∗
2).

4.4 Performance comparison with the greedy approach for GE-BP decoding

The computation cost of the BRP-based approach is mainly contributed by two parts. The first part is

the calculation of Perr(n) for a degree distribution, which has a computational complexity of O(K2n2M)

(see [14]). The second part is the evaluation of Algorithm 2, which has a computational complexity of

O(K2M). The first part actually dominates the computation cost of the BRP-based approach. The time

complexity of the greedy approach and the BRP-based approach can be compared using the number of

times of evaluating Perr(n).

We use an example to demonstrate the performance of the BRP-based approach for GE-BP decoding.

Consider a BATS code with K = 256, M = 16, q = 256 and the rank distribution h0 shown in Table 1.

Three degree distributions Ψ
asy, Ψg B and Ψ

brp B (given in Table A1 in Appendix A) are used in our

evaluation, where Ψ
asy is obtained by the asymptotic analysis approach; Ψg B is obtained by the greedy

approach of GE-BP decoding; Ψbrp B is obtained by our BRP-based approach for GE-BP decoding. We

evaluate the error probability Perr(n), n = 1, . . . , 150, for these three degree distributions. See Figure 6

for the evaluation results.

We observe that Ψg B and Ψ
brp B have almost the same error probability for different batch numbers,

both of which demonstrate much better decoding performance than Ψ
asy. To achieve this performance,

the greedy approach calculates Perr(n) for about 2500 times, which takes about 30 min using for computer

with Intel i5-4590 CPU, while the BRP-based approach calculates Perr(n) for less than 50 times, which

takes about 1 min for the same computer. In other words, the BRP-based approach is roughly 50 times

faster than the greedy approach in this example.

5 BRP-based approach for inactivation decoding

5.1 Inactivation decoding

GE-BP decoding stops with high probability before the desired fraction of input symbols are decoded
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Figure 6 Error probability Perr(n) of GE-BP decoding for three degree distributions Ψasy , Ψg B and Ψbrp B. (a) n from

1 to 150; (b) zoom-in with n from 20 to 50.

when the number of input symbols is small. Though GE-BP decoding stops, Gaussian elimination can

still be used to decode the remaining input symbols. But the decoding complexity of Gaussian elimination

is much higher than that of GE-BP decoding. A better way to continue the decoding process is to use

inactivation. We introduce the inactivation decoding provided in [14], which is a practical decoding

method for BATS codes.

The inactivation decoding process for a given number n of batches is denoted by INAC(n). The

decoding of INAC(n) is the same as BP(n) until there are no decodable symbols. Instead of stopping

the decoding in BP(n), INAC(n) tries to resume the GE-BP decoding process by “inactivating” certain

undecoded input symbols. Specifically, suppose that there are no decodable input symbols at step t,

the decoder randomly picks an undecoded symbol b and marks it as inactive. The decoder substitutes

the inactive b into the batches like a decoded symbol, except that b is an indeterminate and increases

the step by one. Since the step is increased by one for each input symbol decoded or inactivated, the

decoding process of INAC(n) is repeated until step K when all the input symbols are either decoded

or inactive. The inactive input symbols can be recovered by solving a linear system of equations using

Gaussian elimination. In a nutshell, inactivation decoding trades computation cost (decoding inactive

input symbols using Gaussian elimination) with coding overhead.

For INAC(n), we are interested in the number of inactive symbols when the decoding stops. In [14],

a recursive formula is provided to calculate the expected number of inactive symbols for inactivation

decoding. The BRP-based degree-distribution optimization approach discussed in Subsection 4.3 can

be used to optimize the degree distribution for inactivation decoding as well. We only need to use the

expected number of the inactive symbols as the objective function in Step 2.

5.2 Performance comparison with the greedy approach for inactivation decoding

Let us demonstrate the performance of BRP-based approach for inactivation decoding by an example.

Consider a BATS code with K = 256, M = 16, q = 256 and the rank distribution h0 in Table 1. Three

degree distributions Ψasy, Ψg I and Ψ
brp I (given in Table A1 in Appendix A) are used in our evaluation,

where Ψasy is obtained by the asymptotic analysis approach of BATS codes in [2]; Ψg I is obtained by the

greedy approach for inactivation decoding; Ψbrp I is obtained by the BRP-based approach for inactivation

decoding. We evaluate the expected number of inactive symbols of INAC(n), n = 1, . . . , 200, for the three

degree distributions. See Figure 7 for the evaluation results.

We observe that Ψ
g I and Ψ

brp I have almost the same expected number of inactive symbols for

different batch numbers, which is far less than that of Ψasy. To achieve this performance, the BRP-

based approach calculates the expected number of inactive symbols for about 40 times, while the greedy

approach evaluates the expected number of inactive symbols for about 2000 times.
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Figure 7 Expected number of inactive symbols for different degree distributions Ψ
asy , Ψg I and Ψ

brp I. (a) n from 1 to

150; (b) zoom-in with n from 20 to 40.

Table 2 The rank distribution h1 for evaluation examples. h1 is the one of the length-3 line network with link erasure

probability 0.2, 0.3 and 0.3, respectively

h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15

0.0001 0.0005 0.0026 0.0113 0.0376 0.0971 0.1888 0.2622 0.2382 0.1254 0.0327 0.0034 0.0001

5.3 The universality of BRP

We know that a universal degree distribution does not exist for BATS codes, i.e., a degree distribution

optimized for one rank distribution may not have a good performance for another rank distribution. As an

example, recall the degree distribution Ψ
g I optimized for rank distribution h0 used in the last subsection,

and consider another rank distribution h1 given in Table 2. The inactivation decoding performance of Ψg I

for h1 is plotted in Figure 8(a), and is compared with the greedy-approach optimized degree distribution

Ψ
g I∗ for h1. We see that Ψg I∗ is much better than Ψ

g I for h1.

We, however, find that the BRPs demonstrate certain universal property. Note that when using our

BRP-based approaching for rank distribution h0, the algorithm outputs a pair (v∗1 , v
∗
2) together with the

degree distribution Ψ
brp I. We can obtain another degree distribution Ψ

u I by Algorithm 2 w.r.t. (v∗1 , v
∗
2)

and rank distribution h1. Roughly speaking, Ψu I is a degree distribution such that BRP R(Ψu I,h1)

can be approximately characterized by (v∗1 , v
∗
2). As in Figure 8(a), Ψ

u I demonstrates a very similar

performance as Ψ
g I∗ for h1, where the latter is optimized by the greedy-approach for h1. This is

surprising since (v∗1 , v
∗
2) is optimized (by our BRP-based approach) for h0, but not for h1.

To verify whether the above observation is accidental, we use 2000 rank distributions with M = 16

generated randomly [15] to test the performance of (v∗1 , v
∗
2), particularly v∗1 = 0.015, v∗2 = 0.02. For

each rank distribution h, two degree distributions Ψ
init and Ψ

opt are compared: Ψ
init is obtained by

Algorithm 2 w.r.t. (v∗1 , v
∗
2) and h, and Ψ

opt is obtained using the BRP-based approach using {(v∗1 , v
∗
2)}

as the initial list. The ratio α of the expected numbers of the inactive symbols for Ψ
init and Ψ

opt is

calculated. Note that α is not larger than 1, and Ψ
init is better if α is closer to 1.

The empirical distributions of the values α for these 2000 rank distributions are plotted in Figure 8(b).

We can see that for more than 93.7% of the rank distributions, α is larger than 0.9; for all the rank

distributions the smallest α is 0.747. Therefore, the (v∗1 , v
∗
2) can achieve high performance for most of

the rank distributions in our experiments.

This observation hints that, if the initial list is properly chosen, our BRP-based degree-distribution

optimization only needs a small number of iterations to generate nearly optimal degree distributions.

This conclusion can be explained as follows. The BRP vector of degree distribution obtained from greedy

approach demonstrates two peaks, which are depicted by v1 and v2 (see Subsection 4.2). v1 and v2 for

different BRP vectors are similar.
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Figure 8 Some numerical results to demonstrate the universality of the (v1, v2). (a) The expected number of inactive

symbols for three degree distributions Ψg I∗ , Ψg I and Ψu I; (b) the empirical distributions of performance ratio α for 2000

different rank distributions for (0.015, 0.02).

6 Conclusion

In this paper, we propose the concept of batch release probability (BRP) for capturing the characteristics

of the good degree distributions of BATS codes. Based on these BRP characteristics, we propose a novel

degree-distribution optimization approach. This approach can be significantly faster than the greedy

approach proposed previously, and achieves nearly the same performance as the latter. The universal

property observed in this paper deserves some further investigations towards better understanding of the

decoding performance, as well as designing better BATS codes.
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Appendix A Table of degree distribution

Several degree distributions used for the rank distribution h0 and h1 are listed in Tables A1 and A2, respectively.

Table A1 Several degree distributions for the rank distribution h0 in Table 1

(a) Ψasy: the degree distribution obtained using the asymptotic analysis in [14]

Ψasy
14 Ψasy

15 Ψasy
20 Ψasy

21 Ψasy
27 Ψasy

28 Ψasy
37

0.0467 0.2502 0.1079 0.0781 0.0350 0.0968 0.0728

Ψasy
38 Ψasy

50 Ψasy
51 Ψasy

72 Ψasy
116 Ψasy

117 Ψasy
256

0.0199 0.0676 0.0087 0.0697 0.0277 0.0312 0.0896

(b) Ψg B: the degree distribution obtained by the greedy approach for GE-BP decoding

Ψg B
11 Ψg B

12 Ψg B
13 Ψg B

14 Ψg B
15 Ψg B

20 Ψg B
21 Ψg B

27 Ψg B
28

0.0826 0.0734 0.0550 0.0429 0.1745 0.0348 0.0809 0.0321 0.0888

Ψg B
37 Ψg B

38 Ψg B
50 Ψg B

51 Ψg B
72 Ψg I

116 Ψg B
117 Ψg B

256

0.0484 0.0183 0.0620 0.0080 0.0623 0.0254 0.0286 0.0822

(c) Ψg I: the degree distribution obtained by the greedy approach for inactivation decoding

Ψg I
12 Ψg I

13 Ψg I
14 Ψg I

15 Ψg I
20 Ψg I

21 Ψg I
26 Ψg I

27 Ψg I
28

0.0796 0.0973 0.0414 0.2126 0.0955 0.0692 0.0088 0.0309 0.0857

Ψg I
37 Ψg I

38 Ψg I
50 Ψg I

51 Ψg I
72 Ψg I

116 Ψg I
117 Ψg I

256

0.0644 0.0176 0.0598 0.0077 0.0512 0.0245 0.0276 0.0262

(d) Ψbrp B: the degree distribution obtained by BRP-based approach for GE-BP decoding

Ψbrp B
11 Ψbrp B

13 Ψbrp B
17 Ψbrp B

24 Ψbrp B
36 Ψbrp B

55 Ψbrp B
84 Ψbrp B

126 Ψbrp B
183 Ψbrp B

256

0.0705 0.2259 0.1773 0.1621 0.1180 0.0782 0.0496 0.0306 0.0184 0.0693

(e) Ψ
brp I: the degree distribution obtained by BRP-based approach for inactivation decoding

Ψbrp I
12 Ψbrp I

13 Ψbrp I
17 Ψbrp I

23 Ψbrp I
34 Ψbrp I

51 Ψbrp I
78 Ψbrp I

116 Ψbrp I
165 Ψbrp I

223 Ψbrp I
256

0.0435 0.2421 0.1874 0.1592 0.1335 0.0854 0.0579 0.0346 0.0207 0.0121 0.0235

Table A2 Several degree distributions for the rank distribution h1 in Table 2

(a) Ψg I: the degree distribution obtained by the greedy approach for inactivation decoding

Ψg I
11 Ψg I

12 Ψg I
13 Ψg I

16 Ψg I
17 Ψg I

18 Ψg I
19 Ψg I

20 Ψg I
21 Ψg I

22

0.0843 0.2734 0.0749 0.0391 0.0126 0.0190 0.0360 0.0588 0.0141 0.0461

Ψg I
23 Ψg I

25 Ψg I
29 Ψg I

34 Ψg I
45 Ψg I

55 Ψg I
62 Ψg I

63 Ψg I
119 Ψg I

256

0.0152 0.0278 0.0388 0.0616 0.0545 0.0283 0.0278 0.0124 0.0553 0.0202

(b) Degree distributions Ψu I by BRP-based approach for inactivation decoding

Ψu I
11 Ψu I

15 Ψu I
22 Ψu I

34 Ψu I
53 Ψu I

95 Ψu I
256

0.3032 0.2217 0.1853 0.1271 0.0817 0.0561 0.0249
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