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Appendix A Preliminaries

Appendix A.1 A Brief Description of AES

The Advanced Encryption Standard(AES) is a Substitution-Permutation Network [1]. Three key sizes are available for this

iterated block cipher, namely 128, 192 and 256. The 128-bit internal state is treated as a byte matrix of size 4×4, each byte

representing a value in GF (28) that is defined via the irreducible polynomial x8 + x4 + x3 + x+ 1 over GF (2). Depending

on the key size, Nr rounds are applied to the internal state, e.g., Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14

for AES-256. In each round, there are 4 basic operations:

– SubBytes(SB) applies an 8-bit S-box to each byte of the state in parallel.

– ShiftRows(SR) cyclically rotates the i-th row by i bytes to the left, where i = 0, 1, 2, 3.

– MixColumns(MC) multiplies each column of the state by a constant MDS matrix over GF (28).

– AddRoundKey(AK) xors the state with the round subkey.

Note that an additional AddRoundKey operation using a whitening key will be performed before the first round, and the

MixColumns operation of the last round is omitted.

The key schedule of AES transforms the master key into Nr + 1 128-bit subkeys. This subkey array can be represented

in the form of W [0, ..., 4 × Nr + 3] where each word W [·] is composed of 32 bits. The length of master key is then denoted

by Nk 32-bit words, e.g., Nk = 4 for AES-128, Nk = 6 for AES-192 and Nk = 8 for AES-256. We load the first Nk 32-bit

words of W [·] with the master key, and update the rest words of W [·] in the following manner:

– For i = Nk to 4 × Nr + 3 do

• if i ≡ 0 mod Nk, then W [i ] = W [i - Nk] ⊕ SB(W [i - 1] ≪ 8) ⊕ RCON [i / Nk],

• else if Nk = 8 and i ≡ 4 mod 8, then W [i ] = W [i - 8] ⊕ SB(W [i - 1]),

• otherwise W [i ] = W [i - 1] ⊕ W [i - Nk],

where RCON [·] is an array of fixed constants, and ≪ denotes circular left rotation. For complete details of AES, we refer

to [1].

Appendix A.2 A Brief Description of Kalyna

The Kalyna block cipher [4] was selected as the new Ukrainian encryption standard in 2015. Similar to AES, Kalyna

also adopts an SPN structure. In addition, it supports block sizes and key lengths of 128, 256, 512 bits, where the key

length can either be equal to or double the block size. Thereby, this block cipher has five variants, namely Kalyna-128/128,

Kalyna-128/256, Kalyna-256/256, Kalyna-256/512 and Kalyna-512/512. Of the five variants, we choose Kalyna-128/256

as our target. Hence in the following we only give the description of Kalyna-128/256. For details of other Kalyna variants,

the reader is referred to [4].

The internal state for Kalyna-128/256 can be viewed as a byte matrix of size 8×2. After a pre-whitening addition module

264, an AES-like round function is iterated for 14 times to update the state. To be specific, the round function consists of

four transformations:

– SubBytes(SB) applies an 8-bit S-box to each byte of the state in parallel.

– ShiftRows(SR) cyclically rotates the i-th row by b i·b
512
c bytes to the right, where 0 6 i 6 7 and b denotes the block size.
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– MixColumns(MC) multiplies each column of the state by a constant 8× 8 MDS matrix over GF (28).

– AddRoundKey(AK) xors the state with the round subkey.

Besides, the AK operation of the last round is replaced by a post-whitening addition module 264.

As regards the key schedule of Kalyna, it is divided into two parts. The first one is the generation of even indexed subkeys,

where each even indexed subkey is generated independently from the master key. For the odd indexed subkeys, they can

be linearly calculated from the previous round key ki−1 according to the formula:

ki =

(
ki−1 ≪

(
l

4
+ 24

))
where l is the length of the block, and ≪ denotes circular left rotation.

Such design makes the recovery of the master key from the subkeys infeasible. Therefore, in this article we will not recover

the master key, but rather all the round subkeys. For complete description of the key schedule, especially the generation of

even indexed subkeys, one may refer to [4].

Appendix A.3 Notations

In the sequel, we will give an account of the notations and definitions utilized in this paper. Moreover, these notations and

definitions apply to both AES-192 and Kalyna-128/256.

P and C stand for the plaintext and the ciphertext respectively. Four symbols Xi, Yi, Zi, Wi are employed to represent

the internal state before SB, SR, MC and AK transformations in the i-th round, where 1 6 i 6 Nr. Besides, the subkey

involved in each round is denoted by ki in accordance to the round number, while the first whitening subkey is denoted by

k0. The 16 bytes of the 128-bit matrix are numbered by column from top to bottom, within the range of 0 to 15. Let Xi[m]

denote the state byte in position m in round i, then Xi[m-n] represents the state bytes positioned from m to n. To refer

to the difference in a state Xi, we use the notation ∆Xi. In some cases, we will swap the order of MC and AK operations

so as to make the description of the attack procedure more explicit. Since both operations are linear, this modification

does not affect the result. Accordingly, we now add the state with an equivalent key ui = MC−1(ki) and then perform the

transformation MC. The new intermediate state is denoted by wi.

In this paper, we measure the memory complexity of the attacks in units of 128-bit AES (or Kalyna) blocks and the time

complexity in terms of reduced-round AES (or Kalyna) encryptions.

Property 1 (AES S-box and Kalyna S-box). Given any AES S-box (or Kalyna S-box), say S, and any two non-zero

8-bit differences, say ∆in and ∆out, the equation S(x)⊕ S(x⊕∆in) = ∆out has one solution on average.

Property 2 (AES Super S-box and Kalyna Super S-box [2]). Given any AES Super S-box (or Kalyna Super

S-box) keyed by the subkey k, say SSBk and any two non-zero 32-bit (or 64-bit) differences ∆in and ∆out, the equation

SSB(x)k ⊕ SSB(x⊕∆in)k = ∆out has one solution on average.

Appendix B The 9-Round Key Recovery Attack on AES-192

Appendix B.1 Proof of Observation 1

Proof. Arguably, the sequence (e1out⊕e0out, e2out⊕e0out, ..., e31out⊕e0out) is equivalent to the one (e1in⊕e0in, e2in⊕e0in, ..., e31in⊕
e0in). Yet from the path depicted in Figure B1, we discover that (e1in⊕ e0in, e2in⊕ e0in, ..., e31in ⊕ e0in) can be calculated by the

following 37 byte parameters:

W i
1[14]||Xi

2[14]||Xi
3[4− 7]||Xi

4||k4[0, 2− 5, 7− 10, 13− 15]||k5[2, 7, 8] (B1)

To prove that, we first denote the difference Wm
1 [14] ⊕ W i

1[14] by ∆Wm
1 [14] (06 m 6 31 and Wm

1 [14] = m). Then,

given the values of ∆Wm
1 [14], Xi

2[14], Xi
3[4− 7] and Xi

4, one can easily deduce Wm
4 [0,2-5,7-10,13-15]. Afterwards with the

knowledge of k4[0,2-5,7-10,13-15]||k5[2,7,8], it is sufficient to acquire Zm
6 [8,10,11], or more precisely, the value of emin. Hence,

the target sequence can be obtained by performing this procedure for another 31 times.

However, if the message pair(wi
1, w

j
1) satisfies the differential characteristic in Figure B1, these 37 byte parameters can

be defined by 22 byte variables, namely:

∆W j
1 [14]||Xi

2[14]||Xi
3[4− 7]||Zi

5[0− 11]||Zi
6[8, 10, 11]||∆Zj

6 [8] (B2)

Indeed, the knowledge of ∆W j
1 [14]||Xi

2[14]||Xi
3[4 − 7] allows us to deduce ∆Xj

4 . On the other hand, suppose the val-

ues of Zi
5[0− 11]||Zi

6[8, 10, 11]||∆Zj
6 [8] are known, ∆Y j

4 can be calculated backward directly. Then for the fixed difference

∆Xj
4 ||∆Y

j
4 , we obtain on average one value ofXi

4||Y i
4 according to Property 1. At the same time, u2[6], u3[1, 4, 11, 14], k4[0, 2−

5, 7− 10, 13− 15] and k5[2, 7, 8], which are denoted by black spot (•) in Figure B1, are determined, too. Then by the key

schedule of AES-192, we have k1[14] = SB(k4[7])⊕k4[14]. With this subkey, the value of W i
1[14] is deduced. Consequently,

one gets all the 37 byte parameters.

Since there is no key relation between the subkey bytes that are marked by black spot(•) in Figure B1, the key-dependent

sieve is of little help in further reducing the size of the sequence. Therefore, we conclude that the sequence (e1out⊕e0out, e2out⊕
e0out, ..., e

31
out ⊕ e0out) can assume at most 2176 values.
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Figure B1 The 5-Round Distinguisher for AES-192(the subkey bytes, marked by black spot (•), can be deduced by the

22 byte variables; while k1[14], marked by black star (?), can be deduced by the key schedule)
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Figure B2 The 9-Round Attack on AES-192(the subkey bytes, marked by triangle (∆), are the ones we need to guess in

the online phase; while the subkey bytes, marked by black star (?), can be deduced by the key schedule)

Appendix B.2 The Attack Procedure

Precomputation Phase. In this phase, two hash tables, named T1 and T2, will be built. To begin with, for the table T1
which contains all the 2176 possible sequences, we iterate over the 2176 values of the 22 byte variables in (B2). Next, for each

of them, evaluate the corresponding 37 byte parameters in (B1). Finally the sequence (e1out⊕e0out, e2out⊕e0out, ..., e31out⊕e0out)
is deduced and stored in the table T1.

Regarding the table T2, it is designed to store the values of eout. For all the 280 values of subkeys u7[2, 15]||u8[0, 3, 6, 7, 9, 10,

12, 13], we decrypt w8[0, 3, 6, 7, 9, 10, 12, 13] in an attempt to get the corresponding eout. Afterwards, the result is stored

with the index of u7[2, 15]||u8[0, 3, 6, 7, 9, 10, 12, 13]||w8[0, 3, 6, 7, 9, 10, 12, 13].

Online Phase. This phase is composed of three steps. The first one searches the right pair conforming to the 9-round

differential path outlined in Figure B2 by guessing some subkeys. Next, we construct the corresponding δ-set and compute
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the sequence. Finally the result is matched against the ones in the precomputed table T1.

1. Encrypt 281 structures of 232 plaintexts where bytes 1,6,11,12 take all the 232 possible values and the rest of the

bytes are constants. In total, we can generate 2144 pairs among which one is expected to verify the trail shown in

Figure B2.

2. For each of the 2144 message pairs,

(a) Choose random differences for the 8 active bytes in Y8 and propagate them forward to state X9. Meanwhile,

deduce ∆Y9 from the ciphertext difference. Then using Property 1, one value of X9||Y9 is obtained. Hence,

we get k9. There are as many as 264 suggestions of k9.

(b) For each of the 264 suggestions of k9, deduce w8[0, 3, 6, 7, 9, 10, 12, 13]||u8[0, 3, 6, 7]. Then, we compute ∆X8[0, 3,

14, 15] and examine whether the result leads to ∆Z7[0, 1, 3, 12 − 14] = 0. If not, discard the suggestion of k9.

If so, we learn X8[1, 2, 12, 13]||Y8[1, 2, 12, 13] from the fixed ∆X8[1, 2, 12, 13]||∆Y8[1, 2, 12, 13], on the basis of

Property 1. Furthermore, the bytes 9,10,12,13 at u8 are also known to us. Now we are left with 248 suggestions

of k9||u8[0, 3, 6, 7, 9, 10, 12, 13].

(c) For each of the 248 suggestions of k9||u8[0, 3, 6, 7, 9, 10, 12, 13], evaluate u7[2] = u8[6] ⊕ u8[10] and u7[15] =

3 · (k9[0] ⊕ k9[4]) ⊕ (k9[1] ⊕ k9[5]) ⊕ (k9[2] ⊕ k9[6]) ⊕ 2 · (k9[3] ⊕ k9[7]). With these two values and ∆X8[0 −
3, 12 − 15]||X8[0 − 3, 12 − 15], the difference at X7[10, 11] could be calculated directly. Then, before moving

forward, we need to make sure that ∆X7[10, 11] result in ∆Z6[9] = 0. In effect, this happens with a possibility

of 2−8. Thus, only 240 suggestions are valid for k9||u8[0, 3, 6, 7, 9, 10, 12, 13]||u7[2, 15].

(d) Next, deduce ∆Y1[1, 6, 11, 12] by guessing ∆W1[14]. Since ∆X1, which is consistent with plaintext difference,

and ∆Y1 are known, Property 1 enables us to get one value of X1[1, 6, 11, 12]. Arguably, k0[1, 6, 11, 12] is fixed.

Thereby, utmost 28 suggestions are possible for k0[1, 6, 11, 12].

(e) For each of the 28 suggestions of k0[1, 6, 11, 12], encrypt the message pair through round 1 and retrieve

W1[12, 13, 15]. Let W1[14] be (0,1,...,31) and compute the corresponding plaintexts(P 0, P 1, ..., P 31). Then

ask for the encryption of these 32 plaintexts.

(f) For each of the 240 suggestions of k9||u8[0, 3, 6, 7, 9, 10, 12, 13]||u7[2, 15], partially decrypt the 32 ciphertexts

so as to obtain w8[0, 3, 6, 7, 9, 10, 12, 13]. Afterwards, look up the table T2 to get the corresponding eout
for each ciphertext by the values of u8[0, 3, 6, 7, 9, 10, 12, 13]||w8[0, 3, 6, 7, 9, 10, 12, 13]||u7[2, 15]. Then, (e1out ⊕
e0out, e

2
out ⊕ e0out, ..., e31out ⊕ e0out) is computed. Discard the subkeys if this sequence is not listed in table T1.

Recovering the Remaining Subkeys. It should be noted that k5[7] = k9[3]⊕k9[7]⊕k9[11]⊕k9[15] by the key schedule.

So there are 2144 × 240 × 28/28 = 2184 subkeys remaining. For each of them, exhaustively search the rest of subkeys.

Attack Complexity. In the precomputation phase, it requires 2176 partial encryptions of 32 messages for the construction

of table T1 and 280 partial decryptions of 264 messages for the construction of table T2. Thus the time complexity of this

phase is roughly 2176 × 25 × 2−0.8 = 2180.2 9-round AES encryptions. And for the time complexity of online phase, it

is apparently dominated by step 2(f), which calls for 2144 × 240 × 28 × 32/28 = 2189 encryptions if we approximate the

complexity of a single AES encryption by 28 table lookups as in [3]. Therefore, the overall time complexity is 2189 9-round

AES encryptions. Additionally, our attack has a data complexity of 2113 chosen plaintexts and a memory requirement of

2176 × 248/128 = 2177 128-bit blocks.

Appendix C The Improved Key Recovery Attack on 9-Round Kalyna-128/256

Appendix C.1 Proof of Observation 2

Proof. Given the 6-round differential path in Figure C1, the multiset (e0out ⊕ eiout, e2out ⊕ eiout, ..., e255out ⊕ eiout) is actually

defined by the following 53 byte parameters:

∆Zm
1 [7]||Xi

2[0− 7]||Xi
3||Xi

4||Xi
5[0− 3, 12− 15]||Xi

6[4− 7] (C1)

where ∆Zm
1 [7] stands for the difference Zm

1 [7]⊕ Zi
1[7](06 m 6 255).

Yet drilling down, the number of reachable multisets is much less than 2424. This is because if xi1 belongs to a right pair

(xi1, x
j
1) that follows the differential trial in Figure C1, these 53 byte parameters depend on the 39 byte variables, which are

∆Zj
1 [7]||Xi

2[0− 7]||Xi
3||Zi

5[0− 7]||Zi
6[12, 13]||∆Zj

6 [12− 15] (C2)

Without any doubt, the adversary can easily get ∆xj4 once he knows the values of ∆Zj
1 [7]||Xi

2[0 − 7]||Xi
3. From the

bottom side, the knowledge of ∆Zj
6 [12, 13]||Zi

6[12, 13] supports us to calculate ∆W j
5 [4, 5]. Then, by the MC operation,

we are capable of determining ∆Zj
5 [0, 1, 4− 7]||∆W j

5 [6, 7] as well as ∆Xj
6 [6, 7]. Since ∆Xj

6 [6, 7]||∆Y j
6 [6, 7] is known, using

Property 1, one value of Xj
6 [6, 7]||Y j

6 [6, 7] is obtained. Then with ∆Zj
5 [0, 1, 4 − 7]||Zi

5[0 − 7], it’s easy to deduce ∆Y j
4 .

Afterwards, the adversary finds one value on average for Xi
4||Y i

4 with Property 1. By this means, we get the knowledge of

the 53 byte parameters.

In the meantime, the 39 byte variables also fully determine the values of u2[0− 3, 12− 15]||k3||k4[0− 3, 12− 15]||k5[4− 7].

Nevertheless, it should be noted that there are some key relations between these subkey bytes. In short, once we know k3
and k5[6 − 8], we get u2[0 − 3, 12 − 15]||k4[12 − 14] for free. Hence, there are only 2224 multisets left after applying the

key-dependent sieve which can screen out 288 wrong values.
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The 6-Round Distinguisher for Kalyna-128/256
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Figure C1 The 6-Round Distinguisher for Kalyna-128/256
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Figure C2 The 9-Round Attack on Kalyna-128/256

Appendix C.2 The Attack Procedure

Precomputation Phase.

1. Iterate over ∆Z6[12 − 15]||∆W5[4, 5], and compute ∆W5[6, 7]||∆Z5[0, 1, 4 − 7] by the MC operation. After that,

propagate ∆W5[4−7] forward to X6, meanwhile propagate ∆Z6[12−15] backward to Y6. Then it is adequate to get

X6[4−7]||Y6[4−7]. Next, guess Z5[0−7] to acquire the values of ∆W4[0, 1, 12−15]||X5[0−3, 12−15]||k5[4−7], by which

the bytes 12,13,14 at k4 are also fixed. Then with the knowledge of k4[12− 14]||X5[12− 14], one learns W4[12− 14].

Eventually, we store X5[0− 3, 12− 15]||X6[4− 7] in a table T4 with the index of ∆W4[0, 1, 12− 15]||W4[12− 14]. For

each index, there are 240 values of X5[0− 3, 12− 15]||X6[4− 7].

2. For each ∆Z2[0 − 3, 12 − 15]||∆W4[0, 1, 12 − 15]||k3, one deduces ∆X3||∆Y4. Then, we are able to find one value

of X3||Y4 on average, according to Property 2. After evaluating u2[0 − 3, 12 − 15] from k3 by the key schedule, we

learn Z2[0− 3, 12− 15]. Then X3||X4||W4[0− 3, 12− 15]||∆W4[0, 1, 12− 15] are stored in a table T5 by the index of

∆Z2[0− 3, 12− 15]||Z2[0− 3, 12− 15]. On average, each index has 2−16 entries.

3. For each ∆Z1[7]||X2[0 − 7], compute ∆Z2[0 − 3, 12 − 15]||Z2[0 − 3, 12 − 15]. By this value, the adversary looks up

the table T5 to get X3||X4||W4[0 − 3, 12 − 15]||∆W4[0, 1, 12 − 15]. Then for each ∆W4[0, 1, 12 − 15]||W4[12 − 14],

240 values of X5[0− 3, 12− 15]||X6[4− 7] can be retrieved by accessing the table T4. Consequently, all the 53 byte

parameters are deduced.

4. The last step is to compute the multiset and store it in the table T3. Furthermore, with the purpose of recovering

the remaining subkeys later, we also keep the record of the corresponding k3||X4||X5[0, 1, 12 − 15]||X6[4 − 7] along

with the multiset. From the viewpoint of information theory, we can represent such an entry on 512 + 336 = 29.7

bits. Hence, the table T3 requires a storage of 2224 × 29.7/128 = 2226.7 128-bit blocks.
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Online Phase. As shown in Figure C2, the distinguisher is extended by adding 3 more rounds at the bottom. So the effect

of the carry bits resulting from the pre-whitening key addition module 264 could be avoided. Unfortunately, on account of

the post-whitening key addition module 264, we have to test all the 2128 possible values of k9. Here are the details:

1. Ask for the encryptions of 297 structures of 28 plaintexts where byte 15 assumes all possible values and the remaining

bytes are constants.

2. For each of the 2112 pairs,

(a) Traverse the 2128 values of k9 and deduce the corresponding k8 by the key schedule. We then partially decrypt

the ciphertexts through 2 rounds to acquire both the value and difference of X8. After that deduce ∆W7||∆Z7

and discard the wrong guesses which don’t result in ∆Z7[0 − 3, 12 − 15] = 0. Then only 264 values of k9||k8
will remain.

(b) For each of the 264 values of k9||k8, guess ∆Z6[12 − 15] so as to calculate ∆X7[8 − 15]. For ∆X7[8 − 15] is

already known, according to Property 1, it is expected that one value of X7[8− 15]||Y7[8− 15] will be found.

At the same time, u7[4− 11] is determined. There are at most 232 values of u7[4− 11].

(c) We now pick one message of the pair, say P0, to construct the δ-set. This can be done by computing Pi = P0⊕i,
where 1 6 i 6 255. Next, query the encryption of the δ-set.

(d) Using the 296 values of k9||k8||u7[4 − 11], partially decrypt the ciphertexts and evaluate the corresponding

multisets. Then look for a match in the table T3. If there is no match, the subkeys are eliminated.

Recovering the Remaining Subkeys. Once a match is found in the table T3, we can affirm with certainty that the

guess of k9||k8||u7[4 − 11] is correct. We now proceed to recover the rest of subkeys. More detailed, for P0 which is the

chosen plaintext in the previous phase, do as follows:

1. Guess the remaining 8 unknown bytes of u7, and compute the corrsponding k7 and k6. With the knowledge of k7||k6,

it is adequate to calculate X6 from X8. Then compare X6[4− 7] with the one stored with the matching multiset in

the table T3. If there is no difference between these two values, continue to the next step. Otherwise, discard the

guess. It is expected that 232 guesses of k7||k6 survive.

2. Iterate over k5 and get the corresponding k4. Using these two subkeys, the adversary learns X4||X5 from X6. He

then checks whether X4||X5[0, 1, 12− 15] is equal to the one obtained from the table T3 corresponding to the correct

multiset sequence. Ultimately, the adversary is left with one value of k9||k8||k7||k6||k5||k4.

3. Using k3 retrieved from the table T3, compute k2||X2. Next, traverse k1, and deduce k0 as well as the plaintext.

Apparently, the calculated plaintext and P0 must be identical if we find the right subkeys. This happens with a

possibility of 2−128. Thereupon, only one value of k9||k8||k7||k6||k5||k4||k3||k2||k1||k0 will remain.

Attack Complexity. We first discuss the time complexity of the precomputation phase. In this phase, a total of 3

tables, including T3, T4 and T5, are established. Concretely, the table T4 costs 2(8+6)×8 × 2−2.2 = 2109.8 encryptions,

whereas the table T5 needs 2(16+8+6)×8 × 2−2.2 = 2237.8 encryptions. After that, the table T3 is constructed at the price

of 2224 × 28 × 2−0.6 = 2231.4 encryptions. In the online phase, the time complexity is primarily consumed by the step 2(a)

recovering k9||k8, which is equivalent to 2112×2128×2−2.2 = 2237.8 encryptions. As for the last phase, we need to perform

232+128 × 2−2.2 = 2157.8 encryptions for the recovery of k5. To summarize, the time complexity of our attack is 2238.8,

while the data complexity is 2105 chosen plaintexts and the memory requirement for the precomputation table T3 is 2226.7

128-bit blocks.

Appendix D The 10-Round Key Recovery Attack on Kalyna-128/256 from the Second

Round

Appendix D.1 Proof of Observation 3

Proof. Let ∆Zm
2 [7] represent the difference Zm

2 [7]⊕ Zi
2[7], where 06 m 6 255. Then, we claim that the knowledge of the

following 62 byte parameters is sufficient to calculate the multiset (e0in ⊕ eiin, e1in ⊕ eiin, ..., e255in ⊕ eiin), which is equal to

(e0out ⊕ eiout, e2out ⊕ eiout, ..., e255out ⊕ eiout):

∆Zm
2 [7]||Xi

3[0− 7]||Xi
4||Xi

5||Xi
6||Xi

7[0, 12− 15] (D1)

However, under the condition that xi2 belongs to a right pair (xi2, x
j
2) which follows the differential trial in Figure D1,

then the 62 byte parameters can be deduced by 47 byte variables, namely

∆Zj
2 [7]||Xi

3[0− 7]||Xi
4||Zi

6||Zi
7[0, 4− 7]||∆Zj

7 [0] (D2)

For one thing, ∆Zj
2 [7]||Xi

3[0− 7]||Xi
4 allows us to compute ∆Xj

5 . For another, ∆Y j
5 is defined by Zi

6||Zi
7[0, 4− 7]||∆Zj

7 [0].

Together, we are expected to find one value of Xi
5||Y i

5 by using Property 1. This also leads to the determination of k4||k5.

By checking whether there is a key relation between these two subkeys, the key-dependent sieve can filter out 2128 wrong

values of the byte variables. In other words, only 247×8−128 = 2248 values of multiset are valid.
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Figure D2 The 10-Round Attack on Kalyna-128/256

Appendix D.2 The Attack Procedure

Precomputation Phase.

1. For each ∆Z7[0], deduce ∆W7[[4−7]]||∆Z7[4−7] by the MC operation. Then iterate over ∆W6[0, 12−15], by which

∆X7[0, 12− 15] is fixed. We now adopt Property 1 to get X7[0, 12− 15] and Y7[0, 12− 15]. After that, the table T7
is built so as to store X7[0, 12− 15] with the index of ∆W6[0, 12− 15]. It is expected that each index has 28 values

of X7[0, 12− 15].

2. For each ∆W4[0 − 3, 12 − 15]||k5[0 − 7]||∆W6[0, 12 − 15], acquire the corresponding X5[0 − 3, 12 − 15]||X6[0 − 7]

by utilizing Property 2. As k5[0 − 7] is known, k4[7 − 14] is no longer a mystery to us. This enables us to obtain

the knowledge of W4[12 − 14]. Afterwards, k4[7 − 11]||X5[0 − 3, 12 − 15]||X6[0 − 7]||∆W6[0, 12 − 15] is indexed by

∆W4[0− 3, 12− 15]||W4[12− 14] and stored in the table T8. Accordingly, there are 280 entries for each index.

3. Next, we create another table T9 through the same way as in step 2. In brief, according to Property 2, we find

one value of X5[4 − 11]||X6[8 − 15] for each ∆W4[4 − 11]||k5[8 − 15]||∆W6[0, 12 − 15]. Using k4[0 − 6, 15] deduced

from k5[8 − 15], one can easily get W4[4 − 6]. Ultimately, we store k4[4 − 6]||X5[4 − 6]||X6[8 − 15] by the index of

∆W4[4− 11]||W4[4− 6]||k4[0− 3, 15]||X5[7− 11]||∆W6[0, 12− 15] in the table T9. The average entries for each index

is 2−40.

4. Iterate over the 225×8 values of ∆Z2[7]||X3[0− 7]||X4, and evaluate W4||∆W4. By ∆W4[0− 3, 12− 15]||W4[12− 14],

we look up the table T8 for the values of k4[7− 11]||X5[0− 3, 12− 15]||X6[0− 7]||∆W6[0, 12− 15]. From X5[0− 3, 15]

and W4[0−3, 15], k4[0−3, 15] is deduced. In addition, we learn X5[7−11] from k4[7−11]||W4[7−11]. The adversary

then is able to retrieve k4[4−6]||X5[4−6]||X6[8−15] from the table T9 by the index of ∆W4[4−11]||W4[4−6]||k4[0−
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3, 15]||X5[7− 11]||∆W6[0, 12− 15]. Afterwards, for each ∆W6[0, 12− 15], we access the table T7 to get 28 values of

X7[0, 12− 15].

5. For each of the 2248 values of the 47 byte parameters, calculate the corresponding multiset. Finally, in order to recover

all the subkeys later, we store the multiset with a 45-byte parameter, which is u3[0−3, 12−15]||k5||X6||X7[0, 12−15],

in the table T6. According to the information theory, each entry can be presented by 512 + 360 = 29.8 bits. In that

case, the memory complexity of table T6 is about 2248 × 29.8/128 = 2250.8 128-bit blocks.

Online Phase.

1. In order to find the right pair that satisfies the truncated differential path in Figure D2, we enquire the encryptions

of 2105 structures of 28 plaintexts.

2. For each of the 2120 pairs, do:

(a) Guess k11, in return we get k10 for free. With these subkeys, partially decrypt the ciphertexts through 2 rounds

to get the difference at Z9. Then check whether ∆Z9[0− 3, 12− 15] = 0. If not, eliminate the guess.

(b) For each of the remaining 264 values of k11||k10, guess ∆Z8[12−15] and compute ∆X9[8−15]. Using Property

1, the adversary obtains X9[8− 15]||Y9[8− 15]. Accordingly, u9[4− 11] is determined.

(c) Next, we learn ∆X8[4 − 7] by guessing ∆Z7[0]. For ∆Y8[4 − 7] is already known, again Property 1 helps us

acquire X8[4− 7]||Y8[4− 7]. From Y8[4− 7] and X9[8− 15], we deduce u8[12− 15].

(d) Take one plaintext of the pair, say P0, to construct the δ-set. Afterwards encrypt the δ-set.

(e) For each of the 264+32+8 values of k11||k10||u9[4 − 11]||u8[12 − 15], do partial decryptions over these 256

ciphertexts to state X8. Then compute the multiset and look up the result in the table T6. If no match,

discard the key guess. Otherwise, we retrieve the corresponding 45-byte parameter, namely u3[0 − 3, 12 −
15]||k5||X6||X7[0, 12− 15], and move to the next phase.

Recovering the Remaining Subkeys. At this point, we already know the subkeys k11||k10||u9[4 − 11]||u8[12 −
15]||k5||u3[0− 3, 12− 15]. For P0, the chosen plaintext, we do the follows:

1. Decrypt the ciphertext to state X10 with k11||k10. Then guess u9[0 − 3, 12 − 15] and evaluate the corresponding

k9||k8||u8. As u8[12−15] is already fixed, each guess can be verified by comparing these two values. Only 232 guesses

of k9||k8 will pass this test.

2. For each of the 232 guesses of k9||k8, evaluate X7 by trying all the 2128 possible values of k7. After filtering the

wrong guesses which bring about the inconsistence between the deduced X7[0, 12 − 15] and the one stored in the

table T6, we are left with 288 values of k7. Then calculate k6 as well as X6. There is a possibility of 2−128 that the

result matches with the correct X6. Hence, only one value of k9||k8||k7||k6 is expected to survive.

3. Next, we learn k4 from k5. With these two subkeys, one can easily obtain X4.

4. As u3[0 − 3, 12 − 15] is known, we guess the rest unknown bytes of u3 and compute k3||k2. Then for all the 2128

values of k1 and 264 values of k3||k2, decrypt X4 through 2 rounds to obtain the plaintext. Compare the result with

P0. This leaves us with 264 values of k9||k8||k7||k6||k5||k4||k3||k2||k1.

5. To further screen the remainign subkey guesses, we now pick another plaintext P1 by computing P1 = P0 ⊕ 1

and ask its encryption. For each of the 264 values of k11||k10||k9||k8||k7||k6||k5||k4||k3||k2||k1, decrypt the ci-

phertext. Only one of the deduced plaintexts is expected to match with P1. In that case, we claim the right

k11||k10||k9||k8||k7||k6||k5||k4||k3||k2||k1 is found.

Attack Complexity. In the precomputation phase, obviously the time complexity is determined by the construction of

the table T6, which costs 2256−0.7 = 2255.3 encryptions. When in the online phase, due to the post-whitening key addition

module 264 in step 2(a), we have to perform 2128 partial decryptions on 2120 message pairs. Hence, the time complexity

is approximately 2120+128−2.3 = 2245.7 encryptions. Besides, the time complexity of recovering the remaining subkeys is

defined by step 4, which requires 2192 encryptions. All in all, the whole attack has a time complexity of 2255.3 encryptions,

a data complexity of 2113 chonsen plaintexts, and a memory complexity of 2250.8 128-bit blocks.

Data/Time/Memory Tradeoff With data/time/memory tradeoff, the adversary can precompute only 2248−2 = 2246

possible values of the multisets in the table T6. In return, he has to repeat the attack 22 times to offset the probability

of the failure. Thus, the data complexity increases to 2115 chosen plaintexts, while memory requirements decreases to

2248−2×29.8/128 = 2248.8 128-bit blocks. Moreover, now the time complexities of the precomputation and the online phases

are 2255.8−2 = 2253.3 and 2245.7+2 = 2247.7, respectively. To conclude, our attack can be done with 2253.3 encryptions.
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