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Imaging technology plays a significant role in vari-
ous fields such as astronomy, monitoring, and med-
ical treatment. The traditional Shannon/Nyquist
sampling theorem specifies that one must sample
at least two times faster than the signal band-
width to avoid loss of information when captur-
ing an image. This makes compression a necessity
prior to storage or transmission [1] and may be
prohibitively expensive or even infeasible with cur-
rent hardware capabilities. Recently, compressed
sensing has been proposed to reduce the processing
time and accelerate the scanning process [2]. It al-
lows reducing the number of samples required for
high dimensional signal acquisition while retain-
ing important information. However, the trade-
off is that the image recovery process could be
computationally demanding. Owing to the limited
resources, performing such computationally inten-
sive image recovery tasks is impractical from the
viewpoint of sensors and end users.

With cloud computing being more widely uti-
lized, it provides a feasible solution to cost- and
time-saving associated with image recovery for
resource-constrained sensors and end users. How-
ever, this brings some new challenges. On the one
hand, the image signal usually contains confiden-
tial or sensitive information. Outsourcing the im-
age recovery task to the untrusted cloud server di-
rectly may pose a considerable amount of concern

for potential privacy leakage. On the other hand,
the user is likely to lose some level of control over
the computing process. Therefore, the results re-
turned from the public cloud may not be trusted.

Harnessing the cloud for secure outsourcing
computations has been widely studied in the liter-
ature [3–5]. To the best of our knowledge, Wang
et al. [6] were the first to investigate the privacy-
assured outsourcing of image recovery service un-
der the compressed sensing framework. Based on
the basis pursuit (BP) technique, they proposed
an outsourced image recovery service (OIRS) ar-
chitecture. They claimed to protect sensitive in-
formation while shifting the expensive computing
workload from data users to the cloud. However,
the problem transformation mechanism in their
scheme still demands significant computation and
storage on the sensor side, which is impractical for
hardware implementation.

Motivated by the above observations, in this
work, we propose a new practical privacy-
preserving image recovery scheme based on the
popular iterative greedy method, i.e., orthogonal
matching pursuit (OMP) [7]. We first encrypt the
acquired image signal on the sensor side by addi-
tively splitting the signal into two parts randomly
and outsourcing them to two independent cloud
servers. Then, we design a new collaborative OMP
protocol by leveraging the garbled circuit [8], al-
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lowing the two servers to collaboratively perform
image signal reconstruction over the encrypted sig-
nals. Finally, by utilizing the additive property of
the encrypted image, the user can recover the orig-
inal image from the encrypted ones generated by
the two cloud servers.

System model. In our scheme, we consider four
main entities: the image sensor O, cloud server S1,
cloud server S2, and end user U , as illustrated in
Figure 1. The current compressed sensing frame-
work chooses to shift the image recovery task to
the image user U , while U would like to outsource
the image data set and computationally intensive
image recovery task to the cloud by leveraging
its abundant storage and computation resources.
Here, we assume S1 and S2 to be two independent
and non-colluding cloud servers. However, each
one is considered honest-but-curious, which means
that it will honestly follow the designated protocol
while curiously inferring private information of in-
terest based on the data stored and processed on
it.

Our scheme. For an image, we can first stack
it into a vector f ∈ R

n according to the lex-
icographical order. Under the compressed sens-
ing framework, image sensor O can measure sig-
nal y = Φf ∈ R

m, where Φ ∈ R
m×n is the

sensing matrix. Let Ψ denote the basis, and we
have f = Ψx, and transformation coefficients
x = Ψ

Tf are mostly zero or close to zero. Fur-
ther, y = Φf = ΦΨx = Θx. Note that Θ = ΦΨ

and Θ ∈ R
m. Here, we assume that the columns

of Θ are normalized, so that ‖θi‖2 = 1 for i =
1, 2, . . . , n and Θ satisfies the restricted isometry
property.

The process of privacy-preserving image recov-
ery can be divided into four phases: (1) signal en-
cryption; (2) signal reconstruction; (3) image re-
covery; (4) result verification.

(1) Signal encryption. To protect the privacy
of the original image contents, image sensor O en-
crypts y based on the splitting technique. Specif-
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Figure 1 System architecture.

ically, O first randomly generates an m-
dimensional vector y′ whose elements are in the

same range as those of y. Then, O encrypts y by
computing y′′ as y′′ = y′ − y. Consequently, we
have y = y′ − y′′. That is, acquired signal y has
been split into two component signals y′ and y′′.
After that, O will send two component vectors y′

and y′′ to two independent cloud servers S1 and
S2, respectively.

(2) Signal reconstruction. Upon receiving two
components y′ and y′′, two cloud servers S1 and
S2 are to reconstruct the original signal. As the
acquired y is explicitly divided into two compo-
nents, applying the OMP method directly is not
straightforward. Therefore, we propose a collab-
orative OMP strategy allowing S1 and S2 to per-
form the iterative process collaboratively.

Our collaborative OMP protocol also consists of
several steps in OMP. The most unique part of our
algorithm is the identification step that determines
the column of Θ that is most strongly correlated
with the residual in each iteration and then recon-
structs support set Ω of x iteratively. Specifically,
our collaborative OMP protocol can be stated as
follows.

Step 1. S1 and S2 initialize residual r′
0 = y′

and r′′
0 = y′′, respectively. Then they initialize

support set Ω0 = ∅.

Step 2. At iteration t, S1 and S2 collaboratively
determine column θjt that solves maximization
problem jt = argmaxj |〈rt−1, θj〉| and add column
θjt to the set of selected columns ΘΩt

. Both S1

and S2 should update support set Ωt = Ωt−1∪{jt}.

Step 3. Let Pt = ΘΩt
(ΘH

Ωt
ΘΩt

)−1
Θ

H
Ωt

denote
the projection onto the linear space spanned by
the elements of ΘΩt

. S1 updates r′
t = (I − Pt)y

′,
and S2 updates r′′

t = (I − Pt)y
′′, where I is the

identity matrix.

Step 4. If the stopping condition is achieved,
stop the algorithm. Otherwise, set t = t + 1 and
return to Step 2.

Note that the key point is in Step 2, where
rt−1 is composed of two components r′

t−1 and
r′′
t−1. For column θj in the measurement matrix

Θ, S1 can only obtain value p′j =
〈

r′
t−1, θj

〉

, while

S2 can only obtain value p′′j =
〈

r′′
t−1, θj

〉

. Cor-
respondingly, for two columns θi and θj , to de-
termine which one satisfies the above maximiza-
tion problem, S1 and S2 need to compute compar-
ison function f(| 〈rt−1, θi〉 |, | 〈rt−1, θj〉 |) collabo-
ratively without revealing the values held by each
other, where rt−1 = r′

t−1 − r′′
t−1.

As we need to compare the absolute values, we
have to perform the comparison process with the
following four instances.

(i) f(| 〈rt−1, θi〉 |, | 〈rt−1, θj〉 |) = f(p′i−p′j, p
′′
i −

p′′j ), if p
′
i > p′′i and p′j > p′′j .
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(ii) f(| 〈rt−1, θi〉 |, | 〈rt−1, θj〉 |) = f(p′i+p′j, p
′′
i +

p′′j ), if p
′
i > p′′i and pj

′ < pj
′′.

(iii) f(| 〈rt−1, θi〉 |, | 〈rt−1, θj〉 |) = f(p′′i +p′′j , p
′
i+

p′j), if p
′
i < p′′i and p′j > p′′j .

(iv) f(| 〈rt−1, θi〉 |, | 〈rt−1, θj〉 |) = f(p′′i −p′′j , p
′
i−

p′j), if p
′
i < p′′i and p′j < p′′j .

Therefore, S1 and S2 first need to work to-
gether to compute comparison function f(p′i, p

′′
i )

and f(p′j , p
′′
j ) by using the garbled circuit. Then,

they perform the simple addition or subtrac-
tion for their respective components. To deter-
mine the larger value between | 〈rt−1, θi〉 | and
| 〈rt−1, θj〉 |, S1 and S2 continue to work together
to compute comparison function f(p′i+p′j, p

′′
i +p′′j )

or f(p′i − p′j, p
′′
i − p′′j ) to obtain the result of

f(| 〈rt−1, θi〉 |, | 〈rt−1, θj〉 |). If the output of f

is 1, | 〈rt−1, θi〉 | > | 〈rt−1, θj〉 | and θi will be
added to the set of selected columns ΘΩ; oth-
erwise, | 〈rt−1, θi〉 | < | 〈rt−1, θj〉 | and θj will be
added to the set of selected columns ΘΩ.

To reduce the rounds of interaction between S1

and S2, they can compute p′i±p′j and p′′i ±p′′j for all
columns in Θ simultaneously. Then S1 can send
all the garbled inputs of both S1 and S2 with the
garbled circuits to S2 all at once. Therefore, iden-
tifying all the correct columns in the measurement
matrix requires only a constant number of rounds
of interaction.

(3) Image recovery. After performing the col-
laborative OMP protocol, S1 will output the re-
constructed x′ and residual r′; and S2 will output
x′′ and r′′. For non-exactly sparse image signal,
x′ and x′′ are only the sparse coefficient vectors.
Therefore, S1 will further compute f ′ = Ψx′, and
S2 will compute f ′′ = Ψx′′, which are the two
components of the original image signal. Then,
both components f ′ and f ′′ will be sent to the
image data user, who can recover the original im-
age signal by simply computing f = f ′ − f ′′.

(4) Result verification. To avoid the cloud
servers being lazy or intentionally corrupting the
computation result, we propose to design a result
verification method to handle these two malicious
behaviors. After the end user recovers original f ,
he only needs to perform a simple matrix-vector
multiplicationΦf and verify whether ‖Φf−y‖2 6
ǫ. If so, the results returned from the two cloud
servers are trusted; otherwise, we can consider that
the cloud servers are cheating.

Experiment. We evaluate the performance of
our scheme on images of size 256 × 256. We rep-
resent the images in a wavelet basis and gener-
ate sensing matrix Φ by sampling i.i.d. entries
from Gaussian distribution N(0, 1). The details
of our experiment are available in Appendix D.
The proposed collaborative OMP scheme can re-

cover the images correctly while providing a good
enough privacy-assurance. Moreover, compared
with Wang et al.’s scheme [6], our scheme has
much lower time costs on the sensor side and the
end user side, which are nearly constant values.

Conclusion. In this work, we propose a prac-
tical privacy-preserving compressed sensing image
recovery scheme in the cloud. To get the most out
of the benefits of compressed sensing with limited
physical resources, we outsource the computation-
ally intensive image recovery process to the cloud
and in the meantime, preserve the privacy of the
images. We design a collaborative OMP proto-
col and utilize two cloud servers to collaboratively
reconstruct the image signal. Through empirical
experiments, we demonstrate the simplicity, effec-
tiveness, and efficiency of our scheme.
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