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Appendix A Preliminaries

In the following, we present some basic terminologies and algorithms that are adopted in our scheme.

Appendix A.1 Compressed Sensing

Compressed sensing (CS), also known as compressive sensing or compressed sampling, is a novel sensing/sampling paradigm

that goes against the common wisdom in data acquisition. CS asserts that one can recover certain signals from far fewer

samples or measurements than traditional methods use [1]. The underlying assumption that makes it possible is sparsity.

Given a vector f ∈ Rn, it can be expressed in terms of an orthonormal basis Ψ as f = Ψx, where x is the vector of

transformation coefficients and x = ΨT f . Then f is said to be sparse if the coefficients are mostly zero or close to zero.

And the sparsity of x in terms of Ψ is quantified by the number of significant (nonzero) coefficients, k. We measure the

signal by taking inner products with a set of m vectors Φ : {φi, i = 1, 2, · · · ,m} that are incoherent with the sparsity basis

Ψ. Here we refer to Φ as the sensing matrix, and by incoherent we mean that none of the vectors in Φ have a sparse or

compressible representation in terms of Ψ. Then we can obtain the m random measurements y = Φf = ΦΨx = Θx,

where Θ = ΦΨ is a m× n measurement matrix. Seminal results in compressed sensing show that it is possible to recover

a k-sparse signal x from m = O(klogn/k) linear measurements, as long as the measurement matrix Θ is chosen to satisfy

the restricted isometry property (RIP) [2].

There are two broad classes of techniques to recover the sparse signal from its unique measurements, Basis Pursuit

(BP) [3] and Matching Pursuit (MP) [4]. For the BP method, on the one hand, it may take a long time to solve the

linear program even for signals of moderate length. On the other hand, when off-the-shelf optimization software is not

available, the implementation of optimization algorithms may demand serious effort. However, numerical experiments have

demonstrated good performance using MP for reconstruction even though there are no theoretical guarantee. Therefore,

we adopt the popular MP method in our paper. The matching pursuits iteratively identify the nonzero indices of x. One

of the fundamental matching pursuit techniques is Orthogonal Matching Pursuit (OMP).

Appendix A.2 Orthogonal Matching Pursuit

In the problem of CS recovery using OMP, it is known a priori that the measured signal x is k-sparse, which means x has

non-zero entries only at k unknown indices. Let Ω be the support set that composed of the locations of all non-zero entries

of x, then ||x||0 = |Ω| = k. We refer to the columns θj in Θ corresponding to the indices j ∈ Ω as correct columns, and

rest θj : j /∈ Ω as wrong columns. It has been shown that OMP will exactly recover the support set of a sparse signal x

from the measurement vector y = Θx, if certain requirements are satisfied with the coherence parameter or the restricted

isometry property [5, 6].

The key idea of OMP lies in the attempt to reconstruct the support set Ω of x iteratively by starting with Ω0 = Ø.

At iteration t, the inner products between the columns of Θ and the residual rt−1 are calculated, and the index of the

largest absolute value of inner products is added to Ω. That is to find the column that is most strongly correlated with the

residual rt−1. Here, the residual rt−1 from the former iteration represents the component of the measurement vector y

that cannot be spanned by the columns of Θ indexed by Ω. That means the residual rt−1 is always orthogonal to all the

selected columns ΘΩt−1
. Thus at iteration t, OMP will select an column that is linearly independent from the previously
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Algorithm A1 OMP algorithm

Input: y ∈ Rm and Θ ∈ Rm×n;

Output: x ∈ Rn;

1: Initialize the residual r0 = y and the set of selected column Ω0 = Ø. Let the iteration counter t = 1.

2: Find the index jt that solves the easy optimization problem jt = arg max
j
| 〈rt−1,θj〉 |.

3: Augment the index set Ωt = Ωt−1 ∪ {jt}.
4: Solve a least-squares problem min

x
‖y − ΘΩtx‖2 to obtain a new signal estimate xt = (ΘH

Ωt
ΘΩt )−1ΘH

Ωt
y, where

ΘΩt = [θj1 , · · · ,θjt ], j1, · · · , jt ∈ Ωt.

5: Update the residual rt = y −ΘΩtxt.

6: Increment t, and return to Step 2 if t < k, where k is the sparsity of the signal.

7: The estimate x̂ for the ideal signal has nonzero indices at the components listed in Ωk. The value of the estimate x̂ in

components jt equals the t-th component of xt.

selected columns ΘΩt−1
. In this way, the columns of Θ that are “the most relative” to y are iteratively selected. The

procedure is described in Algorithm A1.

Appendix A.3 Garbled Circuits

Secure two-party computation enables two parties to compute a function collaboratively without either party learning

anything other than the output of the function. In the 1980’s, Yao presented the first general solution using garbled circuits

for the problem of secure two-party computation in the presence of semi-honest adversaries.

Let f be a polynomial-time function, and x1 and x2 be the respective inputs of the two parties P1 and P2. Yao’s

garbled circuits protocol first models the function f as a Boolean circuit C that will be computed gate by gate, from the

input wires to the output wires. Then P1 garbles the truth table for each gate in C and generate a garbled version of the

circuit, Cg . This is accomplished by replacing all Boolean values except the final outputs in C with identically distributed

pseudo-random values. In this way, all gates in the circuit become a function mapping two random input values to a random

output value. And the mapping should have the property that given two input values of a gate, it is only possible to learn

the output value that corresponds to the output of the gate (the other output value must be kept secret) [7]. To facilitate

the secure computation, on the one hand, P1 sends to P2 the random value corresponding to his input Boolean value; on the

other hand, P2 engages in a 1-out-of-2 oblivious transfer (OT) protocol with P1 to obtain the random value corresponding

to her input Boolean value. Thus, P1 does not know P2’s inputs, nor does P2 know P1’s input. Once P2 has the garbled

circuit and both garbled inputs, she can straight forwardly compute the entire circuit Cg . And the outputs will be finally

shared by P1 and P2.

In this paper, f refers to a simple comparison function. For two inputs x1 and x2, f will output 1 if x1 > x2; otherwise

output 0. Although Yao’s original approach was too computationally expensive for practical use, a great deal of work has

gone into optimizing the protocol in the past decades [8–10]. Especially, the recently proposed Half Gates method [10] can

significantly reduce the total time and energy of the garbled circuit technique. Therefore, we employ it in our scheme to

implement the secure outsourcing image recovery.

Appendix B The Collaborative OMP Protocol

See Algorithm B1 for the details of our collaborative OMP protocol, where we use f1 and f2 to distinguish between the

two rounds of comparisons.

Appendix C Theoretical Analysis

Appendix C.1 Correctness Analysis

In this subsection, we will provide a theoretical examination of the correctness of our scheme.

In our scheme, to encrypt the acquired compressed sensing signal, y is divided into two parts by y = y′−y′′. Intuitively,

for a underdetermined system y = Θx, even if y′ = Θx′ and y′′ = Θx′′, we don’t necessarily have x = x′ −x′′. However,

through our collaborative design, we can ensure that the final result satisfies the above equation.

In step 1, we initialize the residual r0
′ = y′ and r0

′′ = y′′ in the two cloud servers S1 and S2, respectively. Then we

have r0 = r0
′ − r0

′′ = y′ − y′′.
In step 2, since the most correlated column is determined collaboratively by S1 and S2, the result are same in S1 and

S2. Therefore, ΘΩt are consistent in S1 and S2.

In step 3, since ΘΩt are consistent in S1 and S2, the solution of the minimization problem minx ‖y −ΘΩtx‖ can be

acquired by computing

xt = (ΘH
Ωt

ΘΩt )−1ΘH
Ωt
y

= (ΘH
Ωt

ΘΩt )−1ΘH
Ωt

(y′ − y′′)

= xt
′ − xt

′′
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Algorithm B1 Collaborative OMP

Input: y′ ∈ Rm, y′′ ∈ Rm, and Θ ∈ Rm×n;

Output: x′ ∈ Rn, x′′ ∈ Rn;

1: S1 and S2 initialize the residual r0
′ = y′ and r0

′′ = y′′, respectively; and they both initialize the set of selected column

Ω0 = Ø. Let the iteration counter t = 1. Repeat the following steps until the stop criterion is satisfied.

2: for i = 1 to n do

3: S1 computes pi
′ = 〈rt−1

′,θi〉 and sends them to S2 in encrypted form;

4: S2 computes pi
′′ = 〈rt−1

′′,θi〉 and obtains the encrypted form from S1 through oblivious transfer;

5: S2 computes f1(pi
′, pi′′) using the garbled circuit;

6: end for

7: for i = 1 to n− 1 do

8: for j = i + 1 to n do

9: S1 computes pi
′ + pj

′ and pi
′ − pj

′ and sends them to S2 in encrypted form;

10: S2 computes pi
′′ + pj

′′ and pi
′′ − pj

′′ and obtains the encrypted form from S1 through oblivious transfer;

11: end for

12: end for

13: jt = 1;

14: for i = 2 to n do

15: if f1(pi
′, pi′′) = 1 and f1(pjt

′, pjt
′′) = 1 then

16: S2 computes f2(pi
′ − pjt

′, pi′′ − pjt
′′) using the garbled circuit;

17: else if f1(pi
′, pi′′) = 1 and f1(pjt

′, pjt
′′) = 0 then

18: S2 computes f2(pi
′ + pjt

′, pi′′ + pjt
′′) using the garbled circuit;

19: else if f1(pi
′, pi′′) = 0 and f1(pjt

′, pjt
′′) = 1 then

20: S2 computes f2(pi
′′ + pjt

′′, pi′ + pjt
′) using the garbled circuit;

21: else

22: S2 computes f2(pi
′′ − pjt

′′, pi′ − pjt
′) using the garbled circuit;

23: end if

24: if f2 = 1 then

25: jt = i;

26: end if

27: end for

28: Ωt = Ωt−1 ∪ {jt};
29: ΘΩt = [θj1 , · · · ,θjt ], j1, · · · , jt ∈ Ωt;

30: S1 computes xt
′ = (ΘH

Ωt
ΘΩt )−1ΘH

Ωt
y′. Update rt′ = y′ −ΘΩtxt

′;

31: S2 computes xt
′′ = (ΘH

Ωt
ΘΩt )−1ΘH

Ωt
y′′. Update rt′′ = y′′ −ΘΩtxt

′′;

32: Set t← t + 1.

In step 4, both S1 and S2 will update the residual. Therefore we have

rt = y −ΘΩtxt

= (y′ − y′′)−ΘΩt (xt
′ − xt

′′)

= rt
′ − rt′′

This will also ensure the subsequent iteration process be correct.

Up to now, we can see that each signal x the data user derives by computing x = x′ −x′′ is consistent with the original

OMP algorithm. Therefore, the data user is able to reconstruct the original image signal correctly in this way.

In addition, we design an efficient result verification method. The image data user only needs to perform a simple

matrix-vector multiplication to verify the correctness of the returned result from the two cloud servers.

Appendix C.2 Efficiency Analysis

The compressed sensing framework entails a computationally expensive recovery process, therefore, in our scheme, we shift

the image reconstruction task to the cloud side to make the compressed sensing technique much more practical. Compared

with the transformation based design in [11], which needs to perform the time-consuming matrix-matrix operations, in

our scheme, through the splitting based image encryption design, the sensor side and the user side only need to do simple

addition and subtraction operations. Moreover, there will be no difference even for different sizes of images. Therefore, our

design can reduce the computation burden of the sensor side and the end user side tremendously.

As for the storage overhead at the sensor side, we can save much more space than the scheme in [11]. They need to

generate the random matrix to transform the original linear program each time, however, in our scheme, we consider the

measurement matrix to be public and don’t need extra space to implement the encryption of the signal.

At the cloud side, we must point out that the two cloud servers have to interact with each other to exchange the

intermediate result and determine the most correlated column in the measurement matrix collaboratively. However, as

noted above, we can reduce the number of rounds of interactions by computing the results in each iteration all at once.

Then S1 can encrypt and transmit all the intermediate results to S2 based on the garbled circuits and oblivious transfer
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(a) (b) (c) (d) (e)

Figure D1 Images: (a) Moon surface; (b) Airport; (c) Cameraman; (d) Lena; (e) MRI Brain.

technique. Consequently, the number of rounds of interaction required in each iteration are a constant, i.e. 2. And the

most costly part lies in the comparison process in S2. In each iteration, S2 will need to perform (2n − 1) comparisons.

Note that this can be performed simultaneously in S2, therefore it is affordable for a cloud server that has large amounts

of computation resources.

Appendix C.3 Security Analysis

To prevent the cloud servers from learning the contents of the image signal, in the signal encryption step, the signal y is

encrypted by splitting into two parts y′ and y′′ which are sent to two independent cloud servers. However, only when y

is given is it possible to reconstruct x from the underdetermined linear system of equations. In our scheme, no one except

the sensor knows the signal y. Although the measurement matrix is designed to be public in our scheme, given y′ or y′′,

no one can solve x at all. Therefore, revealing the measurement matrix does not affect the privacy preservation. And if the

servers use the brute-force approach to recover the signal, for an image whose size is 256× 256 and each pixel has 8 bits, it

will need 256256×256 operations and is computationally-infeasible in practice.

As for our collaborative OMP protocol, the secure comparison is implemented by using garbled circuit that is provably

secure under our honest-but-curious model, so neither server can learn anything about each other’s input. Both servers do

know the result of each comparison, however, they are unable to compute the specific value of the signal at all. Therefore,

we claim that the confidentiality of the sensed signal is well protected. Correspondingly, the cloud servers cannot recover

the original image content either.

Appendix D Empirical Evaluation

In this section, we evaluate the performance of our scheme on five grayscale images (Moon surface, Airport, Cameraman,

Lena, and MRI Brain) of size 256×256 that are found frequently in the literature, as shown in Figure D1 . We implement the

sensor/user side process in MATLAB and the cloud side protocol in the C language. And we implement our collaborative

OMP protocol with the Obliv-C system [12] using the latest optimizations [10]. All experiments are done on the same

workstation with an Intel Core i5 CPU running at 2.90 GHz and 6GB RAM. We only focus on the computational evaluations

and ignore the communication latency between the image sensor, the end user, and the cloud servers.

In our work, instead of bothering with the imaging system, we simulate the compressed sensing process at the sensor

side. The image can be stacked into one or several long vectors according to the lexicographical order, but here we treat

the 256 × 256 image as 256 vectors. We generate the sensing matrix Φ by sampling i.i.d. entries from the Gaussian

distribution N(0, 1). As for the orthogonal basis Ψ, it is well known that images may be represented sparsely in a discrete

cosine basis as well as a wavelet basis [13]. Compared with the discrete cosine transform, the wavelet transform is a much

sparser representation for photograph-like images. Moreover, it can be applied and inverted in O(n) computations, by

exploiting the multi-scale structure of the wavelet basis. This is even faster than the O(nlogn) cost of the fast Fourier

transform [14]. Therefore, we represent the images in a wavelet basis in our experiments. Then we derive Θ = ΦΨ that is

used to reconstruct the sparse signal at the cloud side.

Appendix D.1 Effectiveness Evaluation

We first assess the effectiveness of our scheme, including the correctness and the privacy assurance of our scheme.

Since there are many works to determine how many measurements m are necessary to recover an s-sparse signal in Rn

with high probability. We also perform several trials with several measurement ratios, m/n. Since some studies have shown

that the peak signal-to-noise ratio (PSNR) has the best performance in measuring the quality of noisy images, we measure

the recovery performance in terms of PSNR between the recovered and original images. And the excellent range of values

for the PSNR in lossy image compression is from 30dB to 50dB, provided the bit depth is 8 bits. As shown in Table D1, the

reconstructed image quality increases along with the number of measurements and iterations. When m = 180 and t = 56,

the PSNR mean value was 31.16dB, which becomes acceptable in evaluating the performance of the compressed sensing

image recovery. Certainly, we must point out that the recovery effect would be better as m and t increases. However, we still

adopt m = 180 at the sensor side and we set t = 56 at the cloud side in the following experiments. Figure D2 illustrates the

example visual results when m = 180 and t = 56. Figure D2(a) gives the original “Lena” image, while Figure D2(f) depicts

the recovery result based on the collaborative OMP protocol at the user side. We can see that fairly good performance can

be obtained with such a configuration.
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Table D1 Effectiveness evaluation of our scheme in terms of PSNR (dB) at varying number of measurements and iterations

(n = 256)

Image
m = 128 m = 154 m = 180

t=32 t=40 t=48 t=56 t=32 t=40 t=48 t=56 t=32 t=40 t=48 t=56

Moon surface 27.84 28.02 27.87 27.50 28.83 28.82 28.91 29.09 29.30 29.63 29.89 29.98

Airport 32.56 34.08 34.04 33.71 33.49 35.73 36.36 37.30 34.39 36.20 37.60 38.90

Cameraman 23.02 23.26 23.18 23.27 24.27 24.88 25.01 25.34 24.87 25.77 26.39 26.96

Lena 25.45 25.62 25.59 25.42 26.81 27.47 27.58 27.73 27.23 28.09 28.60 29.06

MRI Brain 26.64 26.56 26.85 26.50 27.67 28.47 28.70 29.09 28.42 29.50 30.00 30.90

(a)

(b)

(c)

(d)

(e)

(f)

Figure D2 Example image recovery of our proposed scheme (m = 180, t = 56): (a) Original Lena (256 × 256); (b) y′

sent to S1 (180× 256); (c) y′′ sent to S2 (180× 256); (d) f ′ reconstructed by S1 (256× 256); (e) f ′′ reconstructed by S2

(256× 256); (f) Recovered Lena (PSNR=29.15, 256× 256).

We also preserve the privacy of the images. To wit, Figure D2(b) presents the part y′ for the “Lena” image that is

outsourced to the cloud server S1 and Figure D2(d) illustrates the reconstructed x′ by S1. Similarly, Figure D2(c) and

Figure D2(e) show the part held by the cloud server S2. On the one hand, It is easy to see that S1 cannot obtain any useful

information from the owned contents, and S2 cannot obtain the original signal either. On the other hand, since the two

cloud servers are independent, they cannot get the corresponding part from the other one.

Therefore, by utilizing the two independent cloud servers, we can recover the images correctly while providing good

enough privacy-assurance on the image content protection.

Appendix D.2 Efficiency Evaluation

We next measure the efficiency of our scheme. We mainly focus on the computational cost of the work done by the sensor

and the end user. The corresponding time costs are shown in Table D2 and all figures are averaged over 10 independent

trials.

The second column displays the time cost of the sensor side, which includes the time to generate the random encryption

vectors in addition to the time required by signal encryption before outsourcing. The third column displays the time cost of

the end user side, which is mainly the decryption step. And we also include the time cost of the original recovery without

outsourcing in the fourth column. Obviously, our scheme has extremely low time costs at the sensor side and the end user

side which are nearly constant values. This implies that the most computationally intensive task is outsourced to the cloud

servers in our scheme.

Then, we present the comparison of the asymmetric speedup (i.e., the total time cost of image recovery without out-

sourcing divided by the total time cost of image signal encryption and decryption at the sensor side and the end user side)

between our scheme and Wang et al.’s scheme [11]. Recall that Wang et al.’s scheme focuses on one randomly selected

image block recovery for each trial. Although we test the recovery of the whole image instead of the block of the image, we

can still see that our scheme can achieve much more noticeable computation cost savings.

Besides, we compare the time cost with different image sizes. Compared with the original recovery process whose

execution time grows linearly with the size of the images, there is little difference with regard to the time cost at the

sensor side and the end user side in our scheme. These are due to the fact that we only need to take simple addition and

subtraction operations at the sensor side and the end user side in our scheme.
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Table D2 Efficiency evaluation results of our scheme

Image size
Secure Outsourcing Without Outsourcing Asymmetric Speedup

tsensor(ms) tuser(ms) toriginal(s)
toriginal

tsensor+tuser

Our scheme

256× 256 1.9 0.22 14.389 6755×
512× 512 2.7 0.57 55.214 16885×

1024× 1024 11.7 2.02 237.665 17322×
Wang et al.’s 32× 32 440 10 1.76 3.9×
scheme[11] 48× 48 4360 24 14.79 3.4×
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