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Abstract All-coefficient adaptive control theory and method based on characteristic models have already been

applied successfully in the fields of astronautics and industry. However, the stability analysis of the characteristic

model-based golden-section adaptive control systems is still an open question in both theory and practice. To

investigate such stability issues, the author first provides a method for choosing initial parameter values and

new performances for a projection algorithm with dead zone for adaptive parameter estimation, and develops

some properties of time-varying matrices by utilizing some algebraic techniques. And then a new Lyapunov

function with logarithmic form for time-varying discrete systems is constructed. Finally, the author transforms

the characteristic models of some multi-input and multi-output (MIMO) controlled systems into their equivalent

form, and proves the stability of the closed-loop systems formed by the golden-section adaptive control law based

on the characteristic model using mathematical techniques.
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1 Introduction

Substantial theoretical progress has been made in the area of adaptive control since the first design of

autopilots for high performance aircrafts in the 1950s [1]. Despite the various applications, limitations

of adaptive control system still exist, such as the poor transient response, difficulties in guaranteeing

the convergence of the parameter estimation due to measurement inaccuracies, disturbances. Current

modeling and control theory are based on accurate dynamics analysis and mathematical description, and

the modeling and the control requirements are considered separately, which leads to the above mentioned

problems.

In order to overcome the aforementioned issues, an all-coefficient adaptive control method based on

characteristic model was proposed by Wu [2, 3] from the viewpoint of engineering applications. In the

last 20 years, this theory has been successfully applied to more than 400 systems belonging to 10 kinds of

engineering plants in the fields of astronautics and industry. It is worth mentioning that its application
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to the reentry adaptive control of a manned spaceship has achieved a parachute-opening point accuracy,

which is comparable with the best ones in the world [2, 4, 5]. The uniqueness of this method is that

does not depend on accurate dynamic models of controlled objects. It is a simple, adaptable, and robust

approach that addresses the prevailing issues in the implementation of adaptive control systems in some

way [6]. The key idea of the characteristic model is to use a low-order discrete time-varying system to

capture the core dynamics of a high-order nonlinear/linear system based on the main features of the plant

and the control demands [7].

This technique consists of three aspects [2]: (1) the all-coefficient adaptive control method, (2) the

golden-section adaptive control law, and (3) the characteristic model. It is noted that the golden-section

control law is a novel one, which has the prominent features such as simple construction and easy imple-

mentation.

This law uses the golden section ratio (0.382/0.618) to design controllers; details can be found in [2–4]

or in the next section of this paper. The problem of the stability of the golden-section feedback control

systems based on the characteristic model has received considerable attention since the all-coefficient

adaptive control theory and method based on characteristic models were proposed.

The robust stability of the golden-section control law for the case of a second order single-input and

single-output (SISO) linear invariant system was proved by Xie et al. [8]. The sufficient conditions

for the stability of closed-loop systems formed by the characteristic model-based golden-section control

law were provided by Qi et al. [9], Sun and Wu [10], and Sun [11], for SISO and 3-input-3-output

linear time-invariant systems, respectively. However, it is difficult to verify these sufficient conditions

in real systems. A stability analysis framework for adaptive control based on the characteristic model

was proposed by Wang [12] after investigating the minimum phase with exponential stability and SISO

nonlinear system with second relative degree. By using the stability results of the generalized least square

control system and the Jury stability criteria, Meng et al. [13] investigated the properties of the closed-

loop control system based on the golden-section control law for the characteristic model of a second-order

linear time-invariant continuous SISO system. Based on the stability result of the generalized least-

square control system [14] and the stability theory of matrix polynomial [15], Sun et al. [16] proved the

asymptotic stability of the closed-loop system involving the characteristic model-based golden-section

control law for a multi-input and multi-output (MIMO) minimum phase linear system. The coefficients

of the characteristic models discussed in [13, 16] are constants, and this type of characteristic model may

be merely suitable for second-order linear time-invariant continuous systems. However, the coefficients

of the characteristic models are generally time-varying.

In summary, the stability of the characteristic model based golden-section adaptive control system

has not yet been thoroughly understood due to two main factors, i.e., the time-varying nature of the

coefficients of the characteristic models, and the limitations in the parameter estimation theory from

the closed-loop system stability analysis viewpoint. The stability analysis, especially for MIMO systems,

remains a challenging problem for all-coefficient adaptive control theory despite its successes in practice.

In this paper, we address the above-mentioned difficulties and prove the stability of the closed-loop

systems formed by the characteristic model-based golden-section adaptive control law for MIMO systems

with small sampling period.

The rest of the paper is organized as follows. Section 2 describes the characteristic model and the

use of discrete orthogonal polynomials to approximate its time-varying coefficients. Furthermore, we

provide a golden-section control law based on the characteristic model. The main result is presented in

Section 3. In Section 4, we list the various auxiliary results used to proof of our main theorem. We

provide a numerical example in Section 5. Section 6 concludes the paper with a brief summary of our

contributions.

Throughout this paper, the notations used are mostly standard. In and On denote the n× n identity

matrix and n × n zero matrix, respectively. I and O denote the p × p identity matrix and p × p zero

matrix, respectively. The notation A > B (A > B) indicates that A−B is a positive semi-definite (positive

definite) matrix. λmin (A) and λmax (A) represent the minimum and maximum eigenvalues of the matrix

A, respectively. ρ(A) denotes the spectral radius of the matrix A. ‖a‖ represents the Euclidean norm
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of the vector a = (a1, a2, . . . , ap)
T ∈ R

p, i.e., ‖a‖ = ‖a‖2 =
√

∑p
i=1 |ai|2. Unless stated otherwise, ‖A‖

denotes the Frobenius norm of the matrix A = (aij)p×p ∈ R
p×p, i.e., ‖A‖ = ‖A‖F =

√

∑p
i=1

∑p
j=1 |aij |2.

All vectors and matrices are assumed to be compatible for algebraic operations when their dimensions

are not explicitly stated.

Further notation will be explained when first introduced.

2 Problem formulation

Characteristic modeling is based on the plant dynamic characteristics and control performance require-

ments rather than accurate dynamic analysis of the controlled plant alone. The important features of

the characteristic model are listed as follows [2, 4, 5, 17, 18].

(1) The output of the characteristic model and that of the practical plant are equivalent for the same

input.

(2) The form and order of the characteristic model are mainly dependent on the control performance

requirements except the characteristics of the controlled plant.

(3) The form of the characteristic model is simpler than the dynamical equation of the original plant.

(4) The characteristic model is different from the reduced-order model of a high-order system, in

which all the information of the high-order model is compressed into several characteristic parameters.

Generally, the characteristic model is described by time-varying difference equations.

Consider high-order MIMO linear time-invariant plants and some MIMO nonlinear plants that have a

position keeping or tracking control requirement. Assume that the sampling period is less than a certain

positive number (which is described quantitatively). Then, their characteristic model can be expressed

by the following system of second-order linear time-varying difference equations [4, 5, 7]:

yk+1 = F1,kyk + F2,kyk−1 +Gkuk +Ek, (1)

where yk ∈ R
p and uk ∈ R

p are the system output and the control input, respectively; F1,k, F2,k, Gk ∈
R

p×p are the coefficient matrices; Ek ∈ R
p is the modeling error vector. And yk = y(k) = y(kT ), uk =

u(k) = u(kT ), F1, k = F1(k) = F1(kT ) = (fij(k))p×p, F2, k = F2(k) = F2(kT ) = (fi,p+j(k))p×p,

Gk = G(k) = G(kT ) = (gij(k))p×p, Ek = E(k) = E(kT ). Here T is the sampling period. For simplicity,

other time-varying vectors and time-varying matrices are also denoted by similar notations when no

conflict is caused.

In engineering practice, characteristic models are often chosen shown in formula (1) [4, 5]. The following

formulae give the limit characteristics of the coefficient matrices of the characteristic model (1) [5]:

lim
T→0

F1,k = 2I, lim
T→0

F2,k = −I, lim
T→0

Gk = Op, (2)

where I is the p × p identity matrix. For any prescribed positive constant ε0, if the sampling period is

less than certain positive number, the modeling error vector Ek = (E1(k), E2(k), . . . , Ep(k))
T satisfies

|Ei(k)| < ε0 (i = 1, 2, . . . , p). During the transient phase, we have Ej(k) = O(T ); after the steady state

has been reached, Ej(k) = O(T 2). Here, O(T ) and O(T 2) denote infinitesimals of the same order for T

and T 2, respectively. Formula (2) implies that the sum of all the coefficient matrices of the characteristic

model is an identity matrix. This provides priori information for the designer of controller based on the

characteristic model.

We consider a set-point control problem in this paper, i.e., our objective is to design an adaptive

controller such that the controlled plant output y(t) is a constant vector y∗
d in steady state.

It is well-known that a continuous function defined over a closed interval can be approximated to a

prescribed accuracy by a polynomial that consists of a linear combination of a finite number of orthogonal

polynomial basis functions. The identification of time-varying parameters can be achieved by identifying

the constant coefficients in the linear combinations, and this is an effective method to identify time-varying

parameters [19]. We use the following transformation (one-to-one mapping):

zijk = zij(k) = fij(k)/ [1 + |fij(k)| ], i = 1, 2, . . . , p; j = 1, 2, . . . , 2p;
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zijk = zij(k) = gij(k)/ [1 + |gij(k)| ], i = 1, 2, . . . , p; j = 2p+ 1, . . . , 3p.

Thus, it is clear that zijk ∈ (−1, 1) for k ∈ [1,+∞), and fij(k) = zijk/[1− |zijk| ] can be regarded

as a functions of zijk. This transformation ensures that the unknown functions fij(k) and gij(k) are

approximated by polynomials defined on a fixed finite interval. We choose one among the Legendre,

Chebyshev, Laguerre, and Hermite polynomials for clarity as the basis function denoted by P0(zijk),

P1(zijk), . . .. Note that P0(zijk) = 1 for all these basis functions.

Thus, the time-varying elements fij(k), fi, p+j(k) and gij(k) of F1,k, F2,k and Gk are given by the

following expressions:

fij(k) =

q
∑

s=0

aijsPs(zijk) + ωfij(zijk), i = 1, 2, . . . , p; j = 1, 2, . . . , 2p.

gij(k) =

q
∑

s=0

bijsPs(zi, 2p+j,k) + ωgij(zi, 2p+j,k), i = 1, 2, . . . , p; j = 1, 2, . . . , p.

Here, ωfij(zijk) and ωgij(zi, 2p+j,k) are approximate errors, and they satisfy the inequalities:

|ωfij(zijk)| < ε/
√

3p, |ωgij(zi, 2p+j,k)| < ε/
√

3p, (3)

where ε is a prescribed positive constant.

For the sake of brevity, we assume that the number of required basis functions for approximating each

fij(k) and gij(k), to achieve the prescribed approximation accuracy in (3), are all of order q + 1. If the

number of required basis functions is only q0(< q + 1) in order to achieve the prescribed approximation

accuracy for approximating some of fij(k) or gij(k), then we let aijs = bijs = 0 for s > q0.

Denote that

f̄ij(k) =

q
∑

s=0

aijsPs(zijk), i = 1, 2, . . . , p; j = 1, 2, . . . , 2p.

ḡij(k) =

q
∑

s=0

bijsPs(zi, 2p+j,k), i = 1, 2, . . . , p; j = 1, 2, . . . , p.

F 1,k = (f̄ij(zijk))p×p, F 2,k = (f̄i,p+j(zi,p+j,k))p×p, Gk = (ḡij(zi, 2p+j,k))p×p,

ω1F = (ωfij(zijk))p×p, ω2F = (ωfi,p+j(zi,p+j,k))p×p, ωG = (ωgij(zi, 2p+j,k))p×p. (4)

Then, formula (1) can be rewritten as

yk+1 = F 1,kyk + F 2,kyk−1 +Gkuk + ω̄(k) +Ek, (5)

where

ω̄(k) = (ω̄1(k), ω̄2(k), . . . , ω̄p(k))
T,

ω̄i(k) = ωi(k)
Tφ(k) = φ(k)Tωi(k), i = 1, 2, . . . , p;

ωi(k)
T =(ωfi1(zi1k), . . . , ωfip(zipk), ωfi,p+1(zi,p+1, k), . . . ,

ωfi,2p(zi,2p,k), ωgi1(zi, 2p+1, k), . . . , ωgip(zi,3p,k)),

φT
k = φ(k)T = (y(k)T,y(k − 1)T,u(k)T). (6)

Also denote that

θT
i = (ai10, . . . , ai1q, . . . , aip0, . . . , aipq, ai,p+1,0, . . . , ai,p+1,q, . . . , ai,2p,0, . . . ,

ai,2p,q, bi10, . . . , bi1q, . . . , bip0, . . . , bipq),

Li(k) = diag[li1(k), . . . , li ,3p(k)][3p (q+1)]×(3p),
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ϕi,k = ϕi(k) = Li(k)φ(k), (7)

where lij(k) = (P0(zijk), . . . , Pq(zijk))
T. Thus, we have

yi(k + 1) = θT
i ϕi(k) + ω̄i(k) + Ei(k) = ϕi(k)

Tθi + ω̄i(k) + Ei(k), i = 1, . . . , p. (8)

The estimation of θi is denoted by θ̂i(k), namely,

θ̂i(k)
T = (âi10(k), . . . , âi1q(k), . . . , âip0(k), . . . , âipq(k), . . . , âi,p+1,0(k), . . . , âi,p+1,q(k),

âi,2p,0(k), . . . , âi,2p,q(k), b̂i10(k), . . . , b̂i1q(k), . . . , b̂ip0(k), . . . , b̂ipq(k)).

Let

f̂ij(k) =
∑q

s=0
âijs(k)Ps(zijk), i = 1, 2, . . . , p; j = 1, 2, . . . , 2p.

ĝij(k) =
∑q

s=0
b̂ijs(k)Ps(zi, 2p+j,k), i = 1, 2, . . . , p; j = 1, 2, . . . , p.

F̂1,k = F̂1(k) = (f̂ij(k))p×p, F̂2,k = F̂2(k) = (f̂i,p+j(k))p×p, Ĝk = (ĝij(k))p×p.

Now, we can design the golden-section controller as follows:

uk = u0,k + ug,k, (9)

where

u0,k = Ĝ−1
k

(

y∗
d − F̂1,ky

∗
d − F̂2,ky

∗
d

)

, (10)

ug,k = Ĝ−1
k

(

L1F̂1,kỹk + L2F̂2,kỹk−1

)

. (11)

Here L1 = (3 −
√
5)/2 ≈ 0.382, L2 = (

√
5 − 1)/2 ≈ 0.618, ỹk = y∗

d − yk, and F̂1,k, F̂2,k and Ĝk are

estimations of F 1,k, F 2,k and Gk, respectively.

Comments on a method to overcome the possible singular problem of the controller and the bounded-

ness of Ĝ−1
k are mentioned in Remark 5.

3 Main result

In order to obtain the controller (9), we must identify the parameters in the characteristics. The parameter

vector adaptive laws are chosen using the following projection algorithm with dead zone:

θ̂i(k) = θ̂i(k − 1) +
ai(k − 1)ϕi(k − 1)[yi(k)−ϕi(k − 1)Tθ̂i(k − 1)]

c+ϕi(k − 1)Tϕi(k − 1)
, i = 1, 2, . . . , p, (12)

where c > 0, and

ai(k − 1) =

{

1, if |yi(k)−ϕi(k − 1)Tθ̂i(k − 1)| > 2∆(k);

0, if |yi(k)−ϕi(k − 1)Tθ̂i(k − 1)| 6 2∆(k),
(13)

∆(k) = ‖φ(k − 1)‖ε+ ε0.

Here the constant ε is the approximation error bound used in formula (3), and ε0 is the prescribed positive

constant defined below formula (2).

According to formula (2), the choices of all the initial vectors θ̂i(0)(i = 1, 2, . . . , p) in formulas (10)

and (11) satisfy the following property:

Property 1. F̂1(0) → 2I, F̂2(0) → −I, Ĝ(0) → O as T → 0, and Ĝ(0) is invertible.
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Remark 1. As the controller design is directly based on the parameters in the characteristics, a θ̂i(0)

that satisfies Property 1 is easy to be obtained, regardless of whether the system parameters are known

or not. For example, we can choose θ̂i(0) as follows.

First, âij0(0), . . . , âijq(0) are determined using the expressions:

âii0(0)P0(zii0) + · · ·+ âiiq(0)Pq(zii0) = 2, (14)

âij0(0) = · · · = âijq(0) = 0, and j 6= i. (15)

Also, note that P0(zij0) = 1. By assuming âii0(0) = 2 and âiis(0) = 0 for s 6= 0, it follows that formula

(14) holds. Therefore, F̂1(0) = 2I.

Next, âi,p+j,0(0), . . . , âi,p+j,q(0) are determined by

âi,p+i,0(0)P0(zi,p+i, 0) + · · ·+ âi,p+i,q(0)Pq(zi,p+i,0) = −1, (16)

âi,p+j,0(0) = · · · = âi,p+j,q(0) = 0, and j 6= i. (17)

Similarly, let âi,p+i,0(0) = −1 and âi,p+i,s(0) = 0 for s 6= 0, this satisfies formula (16). Therefore,

F̂2(0) = −I.

To choose Ĝ(0) as an invertible matrix that also satisfies Ĝ(0) → O as T → 0, let Ĝ(0) = TI.

b̂ij0(0), . . . , b̂ijq(0) are determined by using the expressions:

b̂ii0(0)P0(zi, 2p+i, 0) + · · ·+ b̂iiq(0)Pq(zi, 2p+i, 0) = T, (18)

b̂ij0(0) = · · · = b̂ijq(0) = 0, and j 6= i. (19)

Depending on which P0(zi,2p+i, 0) = 1, by taking b̂ii0(0) = T and b̂iis(0) = 0 for s 6= 0, it follows that

formula (18) holds. Therefore, Ĝ(0) = TI.

In the following theorem, we state the main result of this paper, which will be proved in the next

section.

Theorem 1. Consider a system (1) with the golden-section controller (9)–(11), and let the parameter

vector θ̂i(k) be adjusted according to the adaptive law (12) with initial parameter vector θ̂i(0) satisfying

Property 1. Then the following properties are guaranteed:

(i) The estimates of parameter vectors are bounded.

(ii) The tracking error converges to a small neighborhood of the origin, i.e., there exists a infinite time

instant k̄ such that for all k > k̄, the tracking error is given by

‖yk − y∗
d‖ 6

√

(ep̄/K − 1)/(µλmin(Λk+1)),

where µ and K are all positive constants; p̄ is a small positive constant number, and the size of p̄ depends

on the size of the sampling period T . Λk is a sequence of uniformly bounded and positive definite matrices

satisfying the relationship ÂT
kΛk+1Âk − Λk = −Q− I for a given positive definite matrix Q.

The expressions for the positive constants µ, K, p̄ and the matrix Âk can be found in the proof of

Theorem 1.

4 Proof of the main result

4.1 Important lemmas

Before presenting the proof of the main result, we consider the following linear time-varying discrete

system and introduce some lemmas:

xk+1 = Akxk, k > 1, (20)

where Ak ∈ R
p×p, and xk ∈ R

p.
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Lemma 1 ([20]). Let Ak ∈ R
p×p, k > 1. We assume that Ak satisfies

(1) ρ0 = limk→∞ sup ρ(Ak) < 1,

(2) aM = supk>0 ‖Ak‖ < ∞.

Under these conditions, there exists a positive number δ0 that depends only on p, ρ0 and aM , provided

that

lim
k→∞

sup ‖Ak −Ak−1‖ 6 δ0.

Then the equilibrium solution of the system (20) is exponentially stable.

It is well-known that the following assertion is true.

Lemma 2 ([21]). If the trivial solution of the system (20) is uniformly asymptotically stable and if Qk

is a sequence of uniformly bounded and positive definite matrices, then there is a sequence of positive

definite matrices Λk satisfying the relationship:

AT
kΛk+1Ak − Λk = −Qk,

and there exist constants m > 0 and M > 0 such that

mI 6 Λk 6 MI.

Now let us establish the following two results in connection with the theory of time-varying matrices.

Lemma 3. Let Ak, Hk ∈ R
p×p, and suppose that the entries of Ak are bounded and that each Hk is a

symmetric matrix. Also, let Hk 6 MI, where M is a constant. Then,

(1) the supremum supk>1{λmax(Hk)} of the largest eigenvalue λmax (Hk) of Hk exists;

(2) the supremum supk>1{λmax

(

AT
kHk+1Ak

)

} of the largest eigenvalue λmax

(

AT
kHk+1Ak

)

of

AT
kHk+1Ak exists, and

(3) for Γ =
[

O

I

]

, the supremum supk>1{λmax(Γ
THkΓ )} exists, and supk>1{λmax(Γ

THkΓ )} > 0.

Proof. Using the properties of the matrix eigenvalues, and noting the fact that the eigenvalues of a

matrix are continuous functions of its entries, the proof is readily achieved by using the least upper

bound axiom.

Lemma 4. Let Ak, Hk ∈ R
p×p. Suppose that all Ak and Hk are symmetric matrices and that the

entries of Ak are bounded. Also, let Hk > mI, where m > 0 is a constant. Then,

(1) there exists a positive constant µ0 such that µ0I > Ak, i.e., for any nonzero vector x ∈ R
p,

xT(µ0I −Ak)x > 0;

(2) there exists a positive constant µ1 such that µ1Hk > Ak, i.e., for any nonzero vector x ∈ R
p,

xT(µ1Hk −Ak)x > 0.

Proof. Note that there exists an orthogonal matrix T (k) such that T (k)−1AkT (k) = diag[λ1(k),

. . . , λp(k)] for any fixed k > 1, where λ1(k), . . . , λp(k) are all the eigenvalues of Ak. Let λ0 =

max06i6p{supk>1 |λi(k)|} and µ0 = λ0 + 1. Then we can easily prove this lemma.

We now generalize the result of a time-invariant system to that of a time-varying system, and correct

a mistake in formula (A2) of [22].

Lemma 5. Let Ak ∈ R
p×p, k > 1, and suppose that the entries of Ak are bounded. If the equilibrium

solution of the system

xk+1 = Akxk + Γvk

is asymptotically stable when vk = 0, then for all positive definite matrices Q and all positive constants

µ there exist a sequence of uniformly bounded and positive definite matrices Λk and a positive constant

c0 such that the function

V (xk) = ln
(

1 + µxT
kΛkxk

)

satisfies

V (xk+1)− V (xk) < µ
−xT

kQxk + c20v
T
k Γ

TΛk+1Γvk

1 + µxT
kΛkxk

,

where c20 = τ0 + 1 + supk>1 λmax

(

AT
kΛk+1Ak

)

. Here τ0 is an arbitrary positive constant.
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Remark 2. From Lemma 3, c20 is well-defined.

Proof. See Appendix A.

Now we introduce the following notations:

θ̃i(k) = θ̂i(k)− θi, (21)

ei(k) = yi(k)−ϕi(k − 1)Tθ̂i(k − 1) = ϕi(k − 1)Tθi + ω̄i(k − 1) + Ei(k − 1)−ϕi(k − 1)Tθ̂i(k − 1)

= −ϕi(k − 1)Tθ̃i(k − 1) + ω̄i(k − 1) + Ei(k − 1). (22)

Lemma 6. Considering algorithm (12) with respect to (7) and (8), it follows that

(1)

‖θ̂i(k)− θi‖ 6 ‖θ̂i(k − 1)− θi|| 6 ‖θ̂i(0)− θi‖, k > 1. (23)

This implies that each θ̂i(k) is bounded.

(2) (i)
∆(k)2

c+ϕi(k − 1)Tϕi(k − 1)
=

[‖φ(k − 1)‖ε+ ε0]
2

c+ϕi(k − 1)Tϕi(k − 1)
6 s20i, (24)

where s0i =
ε
√
c+ε0√
c

·
√

max{1, 1/λmin(Li(k)TLi(k)) }, λmin(Li(k)
TLi(k)) = inf{λmin(Li(k)

TLi(k))}.
(ii) ai(k−1)ei(k)

[c+ϕi(k−1)Tϕi(k−1)]1/2
is bounded, i.e., there exists a constant Mei > 0 such that for any k > 1,

ai(k − 1) · |ei(k)|
[c+ϕi(k − 1)Tϕi(k − 1)]1/2

6 Mei, (25)

where Mei =
√

M + 4s20i, and M is a positive constant.

(iii) For any ∈> 0, there exists an integer k0 > 1 such that when k > k0,

ai(k − 1) · |ei(k)|
[c+ϕi(k − 1)Tϕi(k − 1)]1/2

6 M ei, (26)

where M ei =
√

∈ +4s20i. By taking ∈= 5s20i in Mei, we have

ai(k − 1) · |ei(k)|
(c+ϕi(k − 1)Tϕi(k − 1))1/2

6 3s0i. (27)

In this case, M ei = 3s0i.

(3)

lim
k→∞

sup ‖θ̂i(k)− θ̂i(k − 1)‖ 6 M ei, (28)

where M ei is the above given positive constant.

(4) By choosing one among the Legendre, Chebyshev, Laguerre, or Hermite polynomials as the basis

function, we can set s0i = s0 = ε
√
c+ε0√
c

.

Remark 3. From the proof of Lemma 6, it can be seen that the parameter vector adaptive laws (12)

can guarantee that ‖θ̂i(k)− θi|| is non-increasing.
Proof. See Appendix B.

4.2 Proof of Theorem 1

From the first assertion in Lemma 6, the estimates of the parameter vectors are bounded, and thus we

can establish (i).

In the following discussion, we shall prove the second assertion. The proof will be carried out in three

steps.

Step 1. Transforming the characteristic model (1) into its equivalent form.
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For the convenience of stability analysis, we can rewrite (1) as

−yk+1 =
(

F̂1,k − F1,k

)

yk +
(

F̂2,k − F2,k

)

yk−1 +
(

Ĝk −Gk

)

uk −Ek − F̂1,kyk − F̂2,kyk−1 − Ĝkuk.

Substituting (9)–(11) into the above equality and noting that 1− L1 = L2 and 1− L2 = L1, we have

ỹk+1 = L2F̂1,kỹk + L1F̂2,kỹk−1 + (F̂1,k − F1,k)yk + (F̂2,k − F2,k)yk−1 + (Ĝk −Gk)uk −Ek. (29)

Let

vk =
(

F̂1,k − F1,k

)

yk +
(

F̂2,k − F2,k

)

yk−1 +
(

Ĝk −Gk

)

uk −Ek. (30)

Then Eq. (29) can be rewritten as

ỹk+1 = L2F̂1,kỹk + L1F̂2,kỹk−1 + vk. (31)

Let xk =
[

ỹk−1

ỹk

]

, then Eq. (31) becomes

xk+1 = Âkxk + Γvk, (32)

where

Âk =

[

O I

L1F̂2,k L2F̂1,k

]

, Γ =

[

O

I

]

. (33)

Step 2. Proving the uniformly asymptotic stability of the system (32) when vk = 0.

To obtain the Lyapunov function for analyzing the stability, we need first to verify that Âk satisfies

the conditions in Lemma 1. Using the fact that L2
2 = [(

√
5− 1)/2]2 = L1, and according to [23], we can

obtain the characteristic polynomial of Âk as

det
[

λI2p − Âk

]

= Lp
1 det

[

λ̄2Ip − λ̄F̂1,k − F̂2,k

]

, (34)

where λ̄ = λ/L2.

It can be proved that F̂1,k → 2Ip, F̂2,k → −Ip as T → 0 and approximate errors ωfij(zijk) → 0,

ωgij(zi, 2p+j,k) → 0. In fact,

‖F̂1,k − 2Ip‖ 6 ‖F̂1,k − (F 1,k + ω1F )‖+ ‖F1,k − 2Ip‖ 6 ‖F̂1,k − F 1,k‖+ ‖ω1F ‖+ ‖F1,k − 2Ip‖, (35)

where the definition of ω1F is as in (4), and

‖F̂1,k − F 1,k‖ = ‖F̂1,k − F 1,k‖F 6 p

√

max
16i,j6p

{|f̂ij(k)− f̄ij(k)|2}, (36)

f̂ij(k)− f̄ij(k) = (âij0(k)− aij0, . . . , âijq(k)− aijq)( P0(zijk), · · · , Pq(zijk) )
T. (37)

Thus, |f̂ij(k)− f̄ij(k)| 6 ‖θ̂i(k)−θi‖
√

P0(zijk)2 + · · ·+ Pq(zijk)2. By using (23), we have ‖θ̂i(k)−θi‖ 6

‖θ̂i(0)− θi‖. According to the above formula , it is clear that

|f̂ij(k)− f̄ij(k)| 6 ‖θ̂i(0)− θi‖
√

P0(zijk)2 + · · ·+ Pq(zijk)2. (38)

Notice that F1,k → 2Ip, F2,k → −Ip and Gk → O as T → 0. Therefore, as T → 0 and ω1F → O,

‖F 1,k − 2Ip‖ = ‖F1,k − ω1F − 2Ip‖ 6 ‖F1,k − 2Ip‖+ ‖ω1F ‖ → 0.

In other words, F 1,k → 2Ip as T → 0 and ω1F → O. Similarly, F 2.k → −Ip as T → 0 and ω2F → O, and

Gk → O as T → 0 and ωG → O.

Therefore, using the definition of θi introduced in Section 2, and the fact that F 1,k → 2Ip, F 2,k → −Ip,

and Gk → O as T → 0, ω1F → O, ω2F → O and ωG → O, we can conclude that if T and ε are all
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sufficiently small, we obtain ‖θ̂i(0) − θi‖ → 0 by using θ̂i(0) that satisfy Property 1. Also, notice

that
√

P0(zijk)2 + · · ·+ Pq(zijk)2 is bounded (see the proof of Lemma 6). From (38) it follows that

|f̂ij(k) − f̄ij(k)| → 0 as T → 0, ω1F → O, ω2F → O, and ωG → O. Thus, according to (36), we have

‖F̂1,k − F 1,k‖ → 0 as T → 0, ω1F → O, ω2F → O, and ωG → O. Also, since F1,k → 2Ip as T → 0, it

follows from (35) that F̂1,k → 2Ip as T → 0, and the approximate errors ωfij(zijk), ωgij(zi, 2p+j,k) → 0.

Similarly, we can prove that F̂2,k → −Ip and Ĝk → O as T → 0 and the approximate errors ωfij(zijk),

ωgij(zi, 2p+j,k) → 0. Therefore, from (34) it follows that

det(λI2p − Âk) → Lp
1 det

(

λ̄2Ip − 2λ̄Ip + Ip
)

, (39)

as T → 0 and the approximate errors ωfij(zijk), ωgij(zi, 2p+j,k) → 0. It is easy to see that

det
(

λ̄2Ip − 2λ̄Ip + Ip
)

=
(

λ̄2 − 2λ̄+ 1
)p

=
(

λ̄− 1
)2p

. (40)

As the eigenvalues of a matrix are continuous functions of its entries, by combining (39) and (40), we can

conclude that the eigenvalue of the matrix Âk is λ = L2λ̄ → L2 × 1 = L2 as T → 0 and the approximate

errors ωfij(zijk), ωgij(zi, 2p+j,k) → 0. Therefore, ρ(Âk) → L2 as T → 0 and the approximate errors

ωfij(zijk), ωgij(zi, 2p+j,k) → 0. So, ρ0 = limk→∞ sup ρ(Âk) = L2 < 1, as T → 0 and the approximate

errors ωfij(zijk), ωgij(zi, 2p+j,k) → 0.

By Lemma 6, θ̂i(k) is bounded, and since P0(zijk), . . ., and Pq(zijk) are all bounded in (0, 1), ‖Âk‖
is bounded. This implies that aM = supk>0 ‖Âk‖ < ∞. Therefore, the system xk+1 = Âkxk satisfies the

two conditions in Lemma 1. Hence, there exists a positive number δ0 that only depends on p, ρ0 and aM ,

provided that

lim
k→∞

sup ‖Âk − Âk−1‖ 6 δ0, (41)

the system xk+1 = Âkxk is exponentially stable. In the following discussion, we prove that Eq. (41) does

hold true. From (33), it follows that

‖Âk − Âk−1‖ =

∥

∥

∥

∥

∥

[

O O

L1(F̂2,k − F̂2,k−1) L2(F̂1,k − F̂1,k−1)

]∥

∥

∥

∥

∥

.

Thus, ‖Âk − Âk−1‖ → 0 as T → 0 and approximate errors ωfij(zijk), ωgij(zi, 2p+j,k) → 0. Therefore, it

is easy to see that as T → 0 and approximate errors ωfij(zijk), ωgij(zi, 2p+j,k) → 0, formula (41) holds.

Hence, by Lemma 1, the equilibrium solution of the system xk+1 = Âkxk is exponentially stable, and

thus the equilibrium solution of the system is uniformly asymptotically stable.

Step 3. Constructing the Lyapunov function and proving the convergence of the tracking errors.

In this step, we construct a Lyapunov function based on Step 2 to analyze stability, and provide the

convergence radius of the tracking error. By using the results from Step 2 and Lemma 5, we can see that

for a given positive definite matrix Q and all positive constants µ, there exists a sequence of uniformly

bounded and positive definite matrices Λk such that

V (xk) = ln
(

1 + µxT
kΛkxk

)

, (42)

which satisfies

V (xk+1)− V (xk) < µ
−xT

kQxk + c20v
T
k Γ

TΛk+1Γvk

1 + µxT
kΛkxk

, (43)

where c20 = τ0+1+ supk>1 λmax(Â
T
kΛk+1Âk). From (A1), Λk satisfies the discrete type Lyapunov matrix

equation:

ÂT
kΛk+1Âk − Λk = −Q− I.

Since the entries of Âk are bounded according to (23), c20 is well-defined by Lemma 3.

Let θ̃(k) = (θ̃1(k), . . . , θ̃p(k))
T and xθ(k) = [xT

k θ̃(k)T]T.
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Choose a Lyapunov function of the form

V (xθ(k)) = θ̃(k)Tθ̃(k) +K ln(1 + µxT
kΛkxk), (44)

where µ and K are positive constants. From (12) and (43), we have

∆V = V (xθ(k + 1))− V (xθ(k))

<

p
∑

i=1

2ai(k)θ̃i(k)
Tϕi,kei(k + 1)

c+ϕT
i,kϕi,k

+

p
∑

i=1

ai(k)
2ei(k + 1)2ϕT

i,kϕi,k

[c+ϕT
i,kϕi,k]2

+µK
−xT

kQxk + c20v
T
k Γ

TΛk+1Γvk

1 + µxT
kΛkxk

.

Applying (22) and substituting ai(k)
2 = ai(k), the above formula becomes

∆V <

p
∑

i=1

−ai(k)ei(k + 1)2

c+ϕT
i,kϕi,k

+

p
∑

i=1

2ai(k)[ω̄i(k) + Ei(k)]ei(k + 1)

c+ϕT
i,kϕi,k

+µK
−xT

kQxk + c20v
T
k Γ

TΛk+1Γvk

1 + µxT
kΛkxk

. (45)

In order to further enlarge inequality (45), we use the expressions:

φk =
(

yT
k ,y

T
k−1,u

T
k

)T
=
(

(yk − y∗
d)

T, (yk−1 − y∗
d)

T, uT
g,k

)T
+
(

y∗T
d ,y∗T

d ,uT
0,k

)T
,

and

xk =
(

(yk − y∗
d)

T, (yk−1 − y∗
d)

T
)T

, φ∗
k =

(

y∗T
d ,y∗T

d ,uT
0,k

)T
. (46)

Thus, we have

φk =
[

xT
k ,u

T
g,k

]

+ φ∗
k, (47)

We further notice that
[

xk

ug,k

]

=

[

xk

Ĝ−1
k (L1F̂1,kỹk + L2F̂2,kỹk−1)

]

=

[

xk

−Ĝ−1
k [L1F̂1,k L2F̂2,k]xk

]

= Bk xk, (48)

where Bk =
[

I2p

−Ĝ
−1
k

[L1F̂1,k L2F̂2,k ]

]

.

By using (47) and (48), we obtain

ϕT
i,kϕi,k = φT

kLi(k)
TLi(k)φk = [(xT

k uT
g,k) + φ∗T

k ]Li(k)
TLi(k) ·

[(

xk

ug,k

)

+ φ∗
k

]

= xT
kB

T
k Li(k)

TLi(k)Bkxk + (Li(k)Bkxk)
TLi(k)φ

∗
k

+(Li(k)φ
∗
k)

TLi(k)Bkxk + (Li(k)φ
∗
k)

TLi(k)φ
∗
k.

Since aTb 6
aTa+bTb

2 (The column vectors a and b have the same number of dimensions), it is easy to

see that

ϕT
i,kϕi,k 6 2xT

kB
T
k Li(k)

TLi(k)Bkxk + 2φ∗T
k Li(k)

TLi(k)φ
∗
k.

It is obvious that

xk =

[

O −I

−I O

](

y∗
d − yk−1

y∗
d − yk

)

=

[

O −I

−I O

]

xk = Ĩxk, Ĩ =

[

O −I

−I O

]

.

From this, we have

ϕT
i,kϕi,k 6 2xT

k Ĩ
TBT

k Li(k)
TLi(k)Bk Ĩxk + 2φ∗T

k Li(k)
TLi(k)φ

∗
k.
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Using Lemma 4, we can introduce a constant µ1 > 0, such that µ1Λk > (Li(k)Bk Ĩ)
TLi(k)Bk Ĩ . As the

components of φ∗
k are all bounded and Li(k) defined over [1,+∞] is also bounded, there exists positive

constants c2ri such that φ∗T
k Li(k)

TLi(k)φ
∗
k 6 c2ri. Let c2r = max{c2r1, . . . , c2rp}. From these fact, we have

ϕT
i,kϕi,k 6 2µ1x

T
kΛkxk + 2c2r. Hence,

−ei(k + 1)2

c+ϕT
i,kϕi,k

6
−ei(k + 1)2

c+ 2c2r + 2µ1x
T
kΛkxk

. (49)

Let

µ =
2µ1

c+ 2c2r
, K =

1

2µ1c20M1
, M1 = sup

k>1
{λmax(Γ

TΛk+1Γ )}.

We know that M1 is well-defined, and M1 > 0 by Lemma 3. Thus, we obtain the expression

µK · c
2
0v

T
k Γ

TΛk+1Γvk

1 + µxT
kΛkxk

6
1

c+ 2c2r
· 1

M1
·
supk>1{λmax(Γ

TΛk+1Γ )}vT
k vk

1 + µxT
kΛkxk

=
vT
k vk

c+ 2c2r + 2µ1x
T
kΛkxk

. (50)

According to (45), (49), and (50), it is clear that

∆V <

p
∑

i=1

−ai(k)ei(k + 1)2

c+ 2c2r + 2µ1x
T
kΛkxk

+

p
∑

i=1

2ai(k)[ω̄i(k) + Ei(k)]ei(k + 1)

c+ϕT
i,kϕi,k

+µK
−xT

kQxk

1 + µxT
kΛkxk

+
vT
k vk

c+ 2c2r + 2µ1x
T
kΛkxk

. (51)

We need to find the relationship between e(k + 1) and vk, where e(k) = (e1(k), . . . , ep(k))
T. Note that

e(k + 1) = F1,kyk + F2,kyk−1 +Gkuk +Ek − F̂1,kyk − F̂2,kyk−1 − Ĝkuk. From (30), it can be seen that

e(k + 1) = −vk. (52)

Case 1. Each ai(k) = 1.

From (51) and (52), we have

∆V <

p
∑

i=1

2ai(k)[ω̄i(k) + Ei(k)]ei(k + 1)

c+ ϕT
i,kϕi,k

+ µK
−xT

kQxk

1 + µxT
kΛkxk

. (53)

Before further analysis, inequality (53) must be enlarged. First, we note that |ω̄i(k− 1)+Ei(k− 1)| <
‖φk−1‖ · ε+ ε0 = ∆(k). Therefore,

ai(k)[ω̄i(k) + Ei(k)]ei(k + 1)

c+ϕT
i,kϕi,k

<
ai(k)∆(k + 1)|ei(k + 1)|

c+ϕT
i,kϕi,k

=
ai(k) |ei(k + 1)|
(c+ ϕT

i,kϕi,k)1/2
· ∆(k + 1)

(c+ϕT
i,kϕi,k)1/2

. (54)

It follows from (24) that
∆(k + 1)2

c+ϕT
i,kϕi,k

6 s20i. (55)

When we choose one among the Legendre, Chebyshev, Laguerre, and Hermite polynomials as the basis

function, we can take s0i = s0 from (4) in Lemma 6.

From (25), we have [ai(k)|ei(k + 1)|]/[(c + ϕT
i,kϕi,k)

1/2] 6 Mei. According to (27), Mei can be taken

as M ei = 3s0i = 3s0 (In the following derivation process, Mei is taken as Mei). Using (54) and (55),

and taking ε = ε0, it is obvious that

ai(k)[ω̄i(k) + Ei(k)]ei(k + 1)

c+ϕT
i,kϕi,k

< Meis0 = 3s20 = 3
[ε
√
c+ ε0]

2

c
= 3ε20

[
√
c+ 1]2

c
= 3ε20s1, (56)

where s1 = [
√
c+1]2

c .
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Therefore, from (53) and (56), we obtain the following expression:

∆V < 6ps1ε
2
0 + µK

−xT
kQxk

1 + µxT
kΛkxk

6
−µ[Kλmin(Q)− 6pµs1ε

2
0 · supk>1{λmax(Λk)}] · ‖xk‖2 + 6ps1ε

2
0

1 + µxT
kΛkxk

.

Let d0 = Kλ
min

(Q)− 6pµs1ε
2
0 · supk>1{λmax(Λk)}. Then the above formula can be written as

∆V <
−µd0‖xk‖2 + 6ps1ε

2
0

1 + µxT
kΛkxk

.

Note that λmin(Q) > 0 and supk>1{λmax(Λk)} > 0. Therefore, when ε20 < Kλmin(Q)
6pµs1·supk>1{λmax(Λk)} , the

coefficient of ‖xk‖2 is negative. Thus, when ‖xk‖2 >
6ps1ε

2
0

µd0
, ∆V < 0.

Case 2. Each ai(k) = 0.

In this case, from (13) and (22) it is obvious that |ei(k)| = |yi(k) − ϕi(k − 1)Tθ̂i(k − 1)| 6 2∆(k). It

follows from (51) and (52) that

∆V < µK
−λmin(Q)‖xk‖2 + c20 supk>1{λmax(Γ

TΛk+1Γ )} · 4∆(k + 1)2

1 + µxT
kΛkxk

. (57)

For further analysis, inequality (57) must be enlarged. Since φk =
(

xT
k , 01×p

)T
+
(

y∗T
d ,y∗T

d ,uT
k

)T
, we

get ‖φk‖ 6 ‖xk‖ + ‖
(

y∗T
d ,y∗T

d

)T‖+ ‖ug,k‖+ ‖u0,k‖ . Note that ug,k = Ĝ−1
k (L1F̂1,kỹk + L2F̂2,kỹk−1) =

−Ĝ−1
k (L1F̂1,k L2F̂2,k)xk. We have ‖ug,k‖ 6 ‖Ĝ−1

k (L1F̂1,k L2F̂2,k)‖ · ‖xk‖ . Because the estimation

of the parameter θ̂i(k) is bounded according to Lemma 6, ‖Ĝ−1
k (L1F̂1,k L2F̂2,k)‖ is also bounded, and

‖
(

y∗T
d ,y∗T

d

)T ‖ and ‖u0,k‖ are all bounded quantities. Then, we have

‖φk‖ 6 M2‖xk‖+M3, (58)

where M2 and M3 are all positive constants. Note that, in the expression ∆(k + 1) = ‖φk‖ε+ ε0, ε has

been taken as ε0, and ‖xk‖ = ‖xk‖ (The components of xk and xk differ in order, and are opposite in

sign). From (58), we have

∆(k + 1)2 6 [(M2‖xk‖+M3)ε+ ε0]
2
6 [M2

2 ‖x(k)‖2 + 2M2(M3 + 1)‖xk‖+ (M3 + 1)2]ε20. (59)

Thus, it follows from (57) and (59) that

∆V < µK
−d1‖xk||2 + 8d2‖xk‖+ 4d3

1 + µxT
kΛkxk

,

where

d1 = λmin(Q)− 4c20ε
2
0M

2
2 · supk>1{λmax(Γ

TΛk+1Γ )},
d2 = c20M2(M3 + 1)ε20 · supk>1{λmax(Γ

TΛk+1Γ )},
d3 = c20(M3 + 1)2ε20 · supk>1{λmax(Γ

TΛk+1Γ )}.

It is clear that the coefficient of ‖xk‖2 is negative when ε20 < λmin(Q)
4c20 supk>1{λmax(ΓTΛk+1Γ )}·M2

2
. Then when

‖xk‖ >
4d2+2

√
4d2

2+d1d3

d1
, we have ∆V < 0.

Case 3. Some ai(k) = 0, and the others ai(k) = 1.

Without loss of generality, we can assume that ai(k) = 1, i = 1, . . . ,m, m < p; and ai(k) = 0,

i = m+ 1, . . . , p.

Let the i-th component of vk (i.e., v(k)) be denoted by vi(k). It follows from (51), (52) and (56) that

∆V <
−2µ1µ[Kλmin(Q)− 6ms1 · supk>1{λmax(Λk)} · ε20] · ‖xk‖2 + 12mµ1s1ε

2
0 + µ

∑p
i=m+1 vi(k)

2

2µ1(1 + µxT
kΛkxk)

.
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From (52), we have vi(k) = −ei(k + 1). Thus, for i = m + 1, . . . , p, we have |vi(k)| 6 2∆(k + 1), since

|ei(k)| 6 2∆(k). Therefore, from (59), we obtain the following inequality:

∆V <
−µd4‖x(k)‖2 + 2d5‖xk‖+ d6

µ1(1 + µxT
kΛkxk)

,

where d4 = µ1Kλmin(Q)− 6µ1ms1ε
2
0 · supk>1{λmax(Λk)}− 2(p−m)M2

2 ε
2
0, d5 = 2(p−m)µM2(M3+1)ε20,

d6 = 6mµ1s1ε
2
0 + 2(p−m)µ(M3 + 1)2ε20.

Thus, when ‖xk‖ >
d5+

√
d2
5+µd4d6

µd4
, ∆V < 0.

In the following discussion, we prove that the tracking error converges to a small neighborhood of the

origin, and present the convergence radius.

Let ē(k) = [xT
k , θ̃(k)

T)]T. For Cases 1–3, let δ1 = ε0

√

6ps1
µd0

, δ2 =
4d2+2

√
4d2

2+d1d3

d1
, and δ3 =

d5+
√

d2
5+µd4d6

µd4
, respectively. It is easily shown by differentiating δi with respect to ε0 that δ1, δ2 and

δ3 decrease with decreasing ε0. It follows from (23) that ‖θ̃i(k)‖ 6 ‖θ̂i(0) − θi||, i.e., θ̃i(k) is bounded.

Thus, we can suppose that ‖θ̃i(k)‖ 6 Wi, where Wi is a positive constant. We can define the following

closed set Bj = {ē(k) | ‖xk‖ 6 δj , ‖θ̃i(k)|| 6 Wi, i = 1, . . . , p}, j = 1, 2, 3. Let

S(p0j) = {ē(k) | V (xθ(k)) 6 p0j , ‖θ̃i(k)‖ 6 Wi, i = 1, . . . , p}, (60)

where p0j is a positive constant. Also, define the closed set S(p
j
) = {ē(k) | V (xθ(k)) 6 p

j
, ‖θ̃i(k)‖ 6

Wi, i = 1, . . . , p}. Here p
j
=
∑p

i=1 W
2
i +K ln(1 + µ supk>1{λmax(Λk)}δ2j ). S(p

j
) is the smallest closed

set containing the closed set Bj with the form (60). Now we choose an arbitrary constant p̄j > p
j
.

According to [24], ē(k) is uniformly and ultimately bounded with respect to S(p̄j), i.e., there exists a

non-negative constant T (ē(kj), S(p̄j)) such that

ē(k) ∈ S(p̄j), (61)

for all k > kj + T (ē(kj), S(p̄j)). Here kj is a positive integer.

From K ln(1 + µλmin(Λk+1)‖xk‖2) 6 K ln(1 + µxT
kΛkxk) 6 V (xθ(k)) 6 p̄j , we have

‖yk − y∗
d‖ 6 ‖xk‖ 6

√

(ep̄j/K − 1)/(µλmin(Λk+1)).

We have proved that if the sampling period T is sufficiently small, then ‖θ̂i(0) − θi‖ → 0 can be

ensured by choosing a θ̂i(0) that satisfies Property 1 (see Step 2). Thus, we can assume Wi to be a

sufficiently small positive number. When T is sufficiently small, ε0 will be sufficiently small [4,6]). Thus,

δj will also be sufficiently small, and so will be p
j
. Therefore, p̄j can be taken as a small positive number.

Consequently, the tracking error converges to a small neighborhood of the origin, and the radius of the

neighborhood depends on the sampling period T . The result is proved by taking p̄ = max{p̄1, p̄2, p̄3} and

k̄ = max{k1, k2, k3}.
Remark 4. It is readily seen from the proof of Theorem 1 that our proposed proof methodology is also

suitable for tracking bounded time-varying reference signals.

Remark 5. It should be mentioned that to avoid possible controller singularity problem, Ĝk in (10)

and (11) can be replaced by σ0I + ĜT
k Ĝk, where σ0 is a prescribed positive constant. Theorem 1 would

still holds in this case. The upper bound for ‖(σ0I+ĜT
k Ĝk)

−1‖ is determined by the following discussion.

Let ĜT
k Ĝk = (bij(k)). Since the estimated parameters are bounded according to Conclusion 1 of

Lemma 6, we can assume that |bij(k)| 6 b̄ij , where each b̄ij is a positive constant. Let σ0 be a positive

constant that satisfies the inequality σ0 >
∑p

j=1,j 6=i b̄ij + τ , i = 1, 2, . . . , p; where τ is a prescribed positive

constant. Therefore, we have σ0 + bii(k) > σ0 >
∑p

j=1,j 6=i b̄ij + τ >
∑p

j=1,j 6=i |bij(k)|+ τ > τ > 0, which

implies that σ0I + ĜT
k Ĝk is a strictly diagonally dominant matrix. From formula 1 in [25], we have

‖(σ0I + ĜT
k Ĝk)

−1‖∞ 6 1/τ . Therefore, ‖(σ0I + ĜT
k Ĝk)

−1‖F 6 p · ‖(σ0I + ĜT
k Ĝk)

−1‖∞ 6 p/τ .
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Figure 1 Reference trajectory and system outputs (time

t = 10 s).
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Figure 2 Reference trajectory and system outputs (time

t = 20 s).

In summary, the above-mentioned method can not only avoid possible controller singularity problem,

but also conveniently estimate the upper bound for ‖(σ0I + ĜT
k Ĝk)

−1‖. By analyzing the expression

(9)–(11) for uk, we conclude that the control input is bounded.

From the proof of Theorem 1, we can guarantee the convergence of the estimations of the coefficient

matrices of the characteristic model (1) if the initial values of parameter estimation satisfy the Property 1

and the sampling period and approximate errors are all sufficiently small. From this viewpoint, we can

avoid non-convergence of parameter estimation by considering modeling and control simultaneously.

Finally, note that the results from Theorem 1 can be applied to the SISO case. In this scenario, Case 3

will vanish from the proof of Theorem 1.

5 Simulation

In this section, we will validate the efficiency of the golden-section controller (9) based on the characteristic

model by using a numerical example. Consider the following non-affine nonlinear system.

ẋ1 = x1u1u2 + 0.2u3,

ẋ2 = x1 + x2
2 + x3 + 3u1 + u2,

ẋ3 = x1 + 2x2 + 3x1x3 + u1 + 2(2 + 0.5 sinx1)u2.

Here, u1 and u2 are the control inputs. We use law (9) to control the states x1, x2 and x3 of the system

to approach zero signal. The initial state is [x1, x2, x3] = [0, 0, 0]. Let q =0, and the initial parameter

vectors in controller (9) be F̂1(0) = 2I, F̂2(0) = −I, and Ĝ(0) = 500TI. Thus, the initial parameter

vectors satisfy Property 1. Let c = 0.5 in (12), and ai(k − 1) = 1 for simplify. Taking T = 0.001, the

corresponding simulation results are shown in Figures 1 and 2. It can be observed from the simulation

results that the proposed method is effective. It is well-known that it is difficult to design a controller

for non-affine nonlinear system because the nonlinear function of its state equation implies control input.

When the controller is designed based on characteristic model, we can overcome the above-mentioned

difficulty and achieve good control performance.

6 Conclusion

In this study, we undertook the stability analysis of the characteristic model-based golden-section feedback

control system, which is an unsolved problem in all-coefficient adaptive control theory. First, we studied

the properties of the parameter vector adaptive laws and time-varying matrices. A new Lyapunov function

was introduced to study this problem. Using this, we proved the stability of the closed-loop systems

formed by the golden-section adaptive control law based on the characteristic model for MIMO controlled
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systems. The proof was carried out in three steps. In the first step, we transformed the characteristic

model (1) into its equivalent form. In the second step, we proved the uniformly asymptotic stability of

the system when the nonlinear term is zero. In the last step, we proved the convergence of the tracking

errors by using the constructed Lyapunov function and some mathematical techniques. In addition, we

discussed a method to avoid possible controller singularity problem. The effectiveness of the proposed

method is verified by a numerical simulation.
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Appendix A Proof of Lemma 5

Since the system xk+1 = Akxk is uniformly asymptotically stable, by Lemma 2, for any given positive definite matrix Q,

there is a sequence of uniformly bounded and positive definite matrices Λk satisfying the relationship:

AT
k Λk+1Ak − Λk = −Q− I. (A1)

Let c21 = supk>1 λmax
(

AT
k
Λk+1Ak

)

and c2 =
√

c21 + τ0. From Lemma 3, c21 and c2 are well-defined, and c2 > 0. As Λk

is a positive definite matrix, according to Corollary 7.2.91), there exists a unique nonsingular lower triangular matrix Uk

with positive diagonal entries such that Λk = UT
k
Uk, which is the Cholesky factorization of Λk. Let Fk = 1

c2
Uk+1Ak and

Dk = c2Uk+1Γ . Thus we have

xT
k+1Λk+1xk+1 − xT

k Λkxk =
(

xT
k AT

k + vT
k ΓT

)

Λk+1 (Akxk + Γvk)− xT
k Λkxk

= xT
k

(

AT
kΛk+1Ak − Λk + FT

k Fk

)

xk − (Fkxk −Dkvk)
T · (Fkxk −Dkvk)

+vT
k

(

DT
k Dk + ΓTΛk+1Γ

)

vk.

Hence it is can be seen that

xT
k+1Λk+1xk+1 − xT

k Λkxk 6 xT
k

(

AT
k Λk+1Ak − Λk + FT

k Fk

)

xk + vT
k

(

DT
k Dk + ΓTΛk+1Γ

)

vk. (A2)

Notice that c22 = c21 + τ0. Applying this, we get

xT
k FT

k Fkxk =
1

c22
xT
k AT

kΛk+1Akxk 6
1

c22
λmax

(

AT
k Λk+1Ak

)

‖xk‖2 6
1

c22
c21 ‖xk‖2 =

c21
c21 + τ0

‖xk‖2 < ‖xk‖2 . (A3)

From (A1), it follows that

xT
k

(

AT
kΛk+1Ak − Λk

)

xk = xT
k (−Q− I)xk = −xT

kQxk − xT
k xk. (A4)

Using (A3) and (A4), we deduce that

xT
k

(

AT
kΛk+1Ak − Λk + FT

k Fk

)

xk = −xT
k Qxk − xT

k xk + xT
k FT

k Fkxk < −xT
k Qxk. (A5)

We note that

vT
k

(

DT
k Dk + ΓTΛk+1Γ

)

vk = vT
k c22Γ

TUT
k+1Uk+1Γvk + vT

k ΓTΛk+1Γvk = c20v
T
k ΓTΛk+1Γvk. (A6)

According to (A2), (A5) and (A6), we have

xT
k+1Λk+1xk+1 − xT

k Λkxk < −xT
k Qxk + c20 v

T
k ΓTΛk+1Γvk. (A7)

Applying (A7), we obtain the following expression:

V (xk+1)− V (xk) = ln

(

1 + µ
xT
k+1Λk+1xk+1 − xT

k
Λkxk

1 + µxT
k
Λkxk

)

< µ
−xT

k
Qxk + c20 v

T
k
ΓTΛk+1Γvk

1 + µxT
k
Λkxk

.

The proof is completed.

Appendix B Proof of Lemma 6

(1) Using a manner similar to that of the proof of (3.6.12)2) , we obtain the following expression:

∥

∥

∥θ̃i(k)
∥

∥

∥

2
6 ‖θ̃i(k − 1)‖2 − 1

2

ai(k − 1)ei(k)2

c+ϕi(k − 1)Tϕi(k − 1)
+

2ai(k − 1)[ω̄i(k − 1) +Ei(k − 1)]2

c+ ϕi(k − 1)Tϕi(k − 1)
.

Since |ωfij(zijk)| < ε√
3p

and |ωgij(zi, 2p+j, k)| < ε√
3p

, we have ‖ωi(k − 1)‖ < ε. Note that |Ei(k)| < ε0. Thus, we have

|ω̄i(k − 1) +Ei(k − 1)| 6 |φT
k−1ωi(k − 1)|+ |Ei(k − 1)| < ‖φk−1‖ · ‖ωi(k − 1)‖+ ε0 < ‖φk−1‖ · ε+ ε0 = ∆(k). (B1)

Hence,

‖θ̃i(k)‖2 6 ‖θ̃i(k − 1)‖2 − 1

2

ai(k − 1)[ei(k)2 − 4∆(k)2]

c+ ϕi(k − 1)Tϕi(k − 1)
.

In view of (13), {‖θ̃i(k)‖2} is a non-increasing sequence bounded below by zero. This establishes (23).

It is obvious that

‖θ̂i(k)‖ = ‖θ̂i(k)− θi + θi‖ 6 ‖θ̂i(k)− θi‖+ ‖θi‖ 6 ‖θ̂i(0) − θi‖+ ‖θi‖, k > 1.

1) Horn R A, Johnson C R. Matrix Analysis. Cambridge: Cambridge University Press, 1985. 345–407.
2) Goodwin G C, Sin K S. Adaptive Filtering Prediction and Control. New Jersey: Prentice-Hall Inc, 1984. 47–105.
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From this, it is easy to see that θ̂i(k) is bounded.

(2) We proceed to (24)–(27). Note first that

∆(k)2

c+ϕi(k − 1)Tϕi(k − 1)
=

[‖φk−1‖ · ε+ ε0]2

c+ϕi(k − 1)Tϕi(k − 1)
6

‖φk−1‖2ε2 + 2‖φk−1‖ · εε0 + ε20
c+ λmin(Li(k)TLi(k))‖φk−1‖2

. (B2)

When ‖φk−1‖ 6
√
c, it follows from (B2) that

∆(k)2

c+ ϕi(k − 1)Tϕi(k − 1)
6

cε2 + 2εε0
√
c+ ε20

c
=

[ε
√
c+ ε0]2

c
. (B3)

When ‖φk−1‖ >
√
c, noting that Li(k)TLi(k) = [li1(k)Tli1(k) + · · ·+ li, 3p(k)Tli,3p(k)]I3p, we see that

λmin(Li(k)
TLi(k)) = li1(k)

Tli1(k) + · · ·+ li, 3p(k)
Tli,3p(k).

Since li1(k), . . . , li, 3p(k) are vectors made up of basis functions, li1(k)Tli1(k) + · · · + li, 3p(k)Tli,3p(k) > 0. Thus

λmin(Li(k)TLi(k)) > 0. From (B2) it follows that

∆(k)2

c+ ϕi(k − 1)Tϕi(k − 1)
<

||φk−1‖2ε2 + 2‖φk−1‖ · εε0 + ε20
λmin(Lk(k)TLk(k))‖φk−1‖2

6
ε2

λmin(Li(k)TLi(k))
+

2εε0

λmin(Li(k)TLi(k))
√
c

+
ε20

λmin(Li(k)TLi(k))c

=
[ε
√
c+ ε0]2

λmin(Li(k)TLi(k))c
. (B4)

Provided that P0(x), . . . , Pq(x) are continuous functions, then P0(zijk), . . . , Pq(zijk) are bounded on [0, 1]. So, Li(k) is

bounded. Therefore, λmin(Li(k)TLi(k)) is also bounded, and its infimum λ̄min(Li(k)TLi(k)) is well-defined.

Since λ̄min(Li(k)TLi(k)) > 0, from (B3) and (B4) we see that Eq. (24) holds. Using a method similar to that followed

in the proof of (3.6.8)2), we obtain

lim
k→∞

ai(k − 1)[ei(k)2 − 4∆(k)2]

c+ ϕi(k − 1)Tϕi(k − 1)
= 0. (B5)

Thus, there exists a constant M > 0 such that for any k > 1,

|ai(k − 1)[ei(k)
2 − 4∆(k)2]|

c+ ϕi(k − 1)Tϕi(k − 1)
6 M. (B6)

As ai(k − 1) = 0 or 1, ai(k − 1)2 = ai(k − 1). From (B6) and (24), it is clear that

ai(k − 1)2ei(k)2

c+ ϕi(k − 1)Tϕi(k − 1)
=

ai(k − 1)(ei(k)2 − 4∆(k)2)

c+ϕi(k − 1)Tϕi(k − 1)
+

4ai(k − 1)∆(k)2

c+ϕi(k − 1)Tϕi(k − 1)
6 M + 4s20i.

This establishes (25).

From (B5) it follows that for any ∈> 0, there exists integer k0 > 1 such that if k > k0, we have

|ai(k − 1)[ei(k)
2 − 4∆(k)2]|

c+ϕi(k − 1)Tϕi(k − 1)
<∈ .

From the previous result, and the method followed in the proof of (25), formula (26) can also be proved, provided that M

in (B6) is replaced by ∈. Especially, by taking ∈ =5s20i in Mei, we have Mei = 3s0i, namely, Eq. (27) holds.

(3) Next, we prove (28).

Applying (12) and (22), and following a method similar to that of the proof of (3.6.13)2) , it is easy to show that

‖θ̂i(k)− θ̂i(k − 1)‖2 =
ai(k − 1)ϕi(k − 1)Tϕi(k − 1) ei(k)

2

[c+ϕi(k − 1)Tϕi(k − 1)]2
6

ai(k − 1)ei(k)
2

c+ϕi(k − 1)Tϕi(k − 1)
.

From this and (26), we have limk→∞ sup ‖θ̂i(k)− θ̂i(k − 1)‖ 6 Mei, namely, formula (28) holds.

(4) We take one among the Legendre, Chebyshev, Laguerre, and Hermite polynomials as the basis function. In this case,

noting that P0(zijk) = 1, then we have

λmin(Li(k)
TLi(k)) = li1(k)

Tli1(k) + · · ·+ li, 3p(k)
Tli,3p(k) > 1.

From (B3) and (B4), it can be easily seen that

∆(k)2

c+ ϕi(k − 1)Tϕi(k − 1)
6

[ε
√
c+ ε0]2

c
.

Hence, we can take s0i = s0 = ε
√

c+ε0√
c

in (24). Because Eqs. (25) and (26) are all deduced by using (24), we can also take

s0i = s0 = ε
√

c+ε0√
c

in (25) and (26). This completes the proof of Lemma 6.
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