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Abstract With the growing popularity of multimodal data on the Web, cross-modal retrieval on large-scale

multimedia databases has become an important research topic. Cross-modal retrieval methods based on hashing

assume that there is a latent space shared by multimodal features. To model the relationship among heteroge-

neous data, most existing methods embed the data into a joint abstraction space by linear projections. However,

these approaches are sensitive to noise in the data and are unable to make use of unlabeled data and multi-

modal data with missing values in real-world applications. To address these challenges, we proposed a novel

multimodal deep-learning-based hash (MDLH) algorithm. In particular, MDLH uses a deep neural network to

encode heterogeneous features into a compact common representation and learns the hash functions based on

the common representation. The parameters of the whole model are fine-tuned in a supervised training stage.

Experiments on two standard datasets show that the method achieves more effective results than other methods

in cross-modal retrieval.
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1 Introduction

The growing popularity of social media on Web 2.0 in recent years has led to a dramatic increase in the

amount of multimodal data. For example, photographs are usually associated with captions and tags,

videos contain visual and audio signals, and tweets often consist of text, images, and videos. At the

same time, when users search the Internet and acquire information, they want to obtain a comprehensive

result consisting of multiple types of media. Traditional information retrieval systems use text alone as

query input, and so image and video retrieval in most such systems is based on text queries. With the

rapid development of mobile equipment such as telephones and tablet computers, users may now perform

queries using image, audio, or video input rather than text [1, 2]. Therefore, there is an emerging need

for retrieval and search methods based on data entities from multiple modalities.

As a method allowing a system to handle large amounts of multimedia data, hashing has attracted

increasing attention owing to its advantages in reducing both computational cost and storage require-

ments. Most existing hashing methods are designed for unimodal data, such as image hashing [3] and
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In Shijiazhuang, a police car collided 

with a bus, which cause one policeman 

dead and two injured.

The life without plan is the failure of the life! 

The life without goal is a sad life! 

The life without ideal is a confused life! 

The life without friendship is a lonely life! 

The life without love is a lost life! 

(a) (b)

Figure 1 (Color online) Two examples of multimodal data downloaded from Tencent Weibo. (a) The text and image of

a tweet describe the same concept; (b) the two modalities of a tweet contain different semantics.

video hashing [4, 5]. The most well known of these is locality-sensitive hashing (LSH) [6], which uses

random projections to obtain the hash functions. However, LSH usually needs quite a long hash code

and hundreds of hash tables to guarantee good retrieval performance. To address these problems, several

data-dependent learning based methods have been proposed [7]. In recent years, the growth in real-world

applications has led to cross-media retrieval becoming an important research topic. Much work has been

devoted to extending unimodal hashing to multimodal settings [8]. Cross-modal hashing maps data from

different modalities into a shared Hamming space in which the distance between similar objects is small.

In this Hamming space, all data are represented as hash codes and can be searched quickly even for

databases with millions of data. Compared with unimodal hashing, multimodal hashing preserves both

intra- and inter-modal similarity in the Hamming space. The cross-modal hash function preserves not

only the respective information in each modality but also the mutual information in different modalities.

Most previous cross-modal hashing methods have been based on the assumption that the multimodal

data used for hash function learning are available in all the modalities and are semantically consistent

across different modalities. Therefore, these methods are unable to make use of unlabeled data or multi-

modal data with missing values. In real-world applications, however, data on the Internet are very noisy

and may have missing modalities. Figure 1 shows two examples of multimodal data downloaded from

Tencent Weibo. Figure 1(a) shows an ideal situation with regard to multimodal data, in which the text

and image describe the same concept. In contrast, as shown in Figure 1(b), the two modalities of a tweet

contain different semantics. Furthermore, the data generated by users usually have values missing from

some modality (e.g., some pictures uploaded by users lack any tags or words). On the other hand, many

approaches represent multimodal data through clustering [9] or dictionary learning [10], which construct

the corresponding alignments for pair matching between modalities. When a new modality is added to

the system, its relationship with each existing modality has to be learned again.

To address these problems, in this paper, we propose a multimodal deep-learning-based hashing

(MDLH) algorithm, which learns the common feature space of different modalities using a deep neu-

ral network. Multimodal deep learning can learn a compact and robust “semantic” representation of

multimodal data, and is able to handle both noisy data and data with missing modalities. Experiments

on two realistic datasets show that the proposed method can realize cross-modal hashing effectively.

The rest of the paper is organized as follows: In Section 2, we review related work. In Section 3, we

elaborate the proposed method. In Section 4, we demonstrate the use of our approach in cross-modal

retrieval and describe the experimental results. Finally, we conclude the paper in Section 5.
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2 Related work

Previous work on cross-modal hashing and multimodal deep learning will be reviewed in the following

subsections.

2.1 Cross-modal hashing

Hashing can be categorized as unimodal hashing, multimodal hashing, or cross-modal hashing. In uni-

modal hashing, the most well-known methods are LSH [6] and spectral hashing [7]. Multimodal hashing

compares the multimodal features of data and returns the search results for each modality. For example,

when retrieving an image according to multimodal descriptors (color, scale-invariant feature transform

(SIFT), and bag of words (BOW)), multimodal hashing projects each feature into a Hamming space

and combines the multiple results together. Cross-modal hashing focuses on analyzing the relationship

between modalities and provides cross-modal queries. For example, given the color feature of an image as

the input, the system returns results according to the SIFT descriptor. Here, the modality is the feature

or media type, so cross-modal in this context means cross-feature or cross-media.

Existing unimodal data hashing methods involve two steps. First, the original data are projected

into a low-dimensional space. Then, the new representation is quantized into hash codes. For unsu-

pervised situations, many embedding methods have been proposed, such as random projection [6] and

spectral decomposition [7]. Multimodal data hashing also involves two steps, but with more restrictions.

Bronstein et al. [11] proposed the first cross-modal hashing model, cross-modality similarity-sensitive

hashing (CMSSH). Given two modalities, CMSSH learns two groups of hash functions that are such that

similar data (in different modalities) are separated by smaller distances in the Hamming space, while

dissimilar data (in different modalities) are separated by larger distances. CMSSH retains the relation-

ship between data in different modalities, but ignores similarities in the same modality. Kumar and

Udupa [12] extended spectral hashing to a multimodal setting and proposed cross-view hashing (CVH),

which minimizes the distance between similar data both in the same modality and in different modalities.

In multimodal latent binary embedding (MLBE) [8], a probability-generating model is used to represent

the data, and the latent factors learned are used as the hash codes. There is no independent restriction

on the hash codes, so these may have a high redundancy. In the approach adopted by Yu et al. [10],

dictionary learning is used to represent data in different modalities, and the hash function is learned based

on sparse codes. Dictionaries for different modalities are connected through a coupled dictionary space.

In iterative multiview hashing (IMVH) [13], both intra- and inter-similarity of the data are retained.

Song et al. [14] proposed inter-media hashing, in which a set of corresponding images and text are used

as the inter-media to learn the relations among multiple modalities. Unlike most approaches, in which

optimization of the quantizer is performed independently of correlation modeling, quantized correlation

hashing (QCH) [15] optimizes the two processes simultaneously. Owing to their ability to capture high-

level representations, deep learning techniques have shown advantages in describing multimodal data.

Kang et al. [16] exploited deep networks for hashing and proposed deep multiview hashing (DMVH).

Wang et al. [17] imposed an orthogonal regularizer on the weighting matrices of the model to reduce the

amount of redundant information lying in the multimodal representations.

These methods learn cross-modal relations with different techniques. However, most existing multi-

modal hashing algorithms assume that each data example appears in all modalities. Wang et al. [18]

proposed a hashing approach to deal with partial multimodal data, in which data consistency among

different modalities is ensured via latent subspace learning and inter-similarity is preserved through the

use of a graph Laplacian.

2.2 Multimodal deep learning

In deep learning, a layer network structure is constructed to simulate the human brain, and representations

for data are learned from the bottom upward. Each layer of the network corresponds to a representation.

Recently, deep learning has been widely used in many applications, including speech recognition [19], face
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Figure 2 (Color online) Framework of the multimodal feature deep learning hashing.

recognition, image classification [20], and object recognition, and impressive results have been achieved.

Representative deep learning approaches include deep belief networks (DBN), autoencoders, stacked

denoising autoencoders, deep Boltzmann machines (DBMs), and deep energy models. Ngiam et al. [21]

used a DBM to learn cross-modal representations of video and audio data, and reconstructed the data

of a missing modality. Srivastava and Salakhutdinov [22] proposed a DBN to learn representations of

multimodal data. Sohn et al. [23] proposed an improved multimodal deep learning model.

This previous work has focused on solving the data reconstruction problem in the case of a missing

modality. Our work focuses on learning the relations between different modalities and proposing a

semantic and common representation of multimodal data. The work most similar to ours is that by

Wu et al. [24], in which deep learning is used to learn the optimal combination of different modalities.

However, in contrast to their approach, we focus on learning a common representation of multimodal

data using a deep neural network.

Deep learning techniques have also been used to learn low-dimensional representations for multimodal

retrieval. Wang et al. [25] proposed an effective mapping technique in which multimodal stacked autoen-

coders (MSAEs) are used to project high-dimensional features into a common low-dimensional space.

To solve the problem of cross-modal retrieval, a correspondence autoencoder (corr-AE) [26] has been

proposed for correlating hidden representations of two unimodal autoencoders.

3 MDLH algorithm

In this section, we present the details of the MDLH algorithm. Figure 2 shows the framework of our

method. First, the multimodal features of multimodal data are extracted as inputs. Then, we use

the multimodal deep learning method to learn the common representation for them. Finally, the hash

function of each modality is used to map the data into the Hamming space. In the following, the notation

and problem formulation are introduced, and the model of multimodal deep learning is then presented,

followed by a description of the hashing function learning.

3.1 Notation and problem definition

We are given a set of multimodal data O = {O1, . . . , Op, . . . , OM} (p = 1, . . . ,M) consisting of N

multimodal data, where Oi is the ith datum in O. Each multimodal data Oi = {O1
i , . . . , O

p
i , . . . , O

M
i }

contains M modalities, where Op
i (p = 1, . . . ,M) is the pth modality of Oi. We extract different features

for different modalities, and use Xp = (xp1 , . . . , x
p
Np

) ∈ ℜDp×Np to represent the features of the pth

modality, where Dp is the dimension of the feature space and Np is the number of data in the pth

modality. MDLH aims to learn a series of hash functions Xp → Bp = (0, 1)c for which similar data have

similar hash codes both intra-and inter-modally. Here, c is the length of the hash code. Note that all the

modalities have the same length.
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Figure 3 (Color online) Multimodal deep learning model.

As in the middle part of Figure 2, we project the original multimodal features to the shared space via

multimodal deep learning. We denote the shared representation of the multimodal data by S and define

the projections as

f
p
1 : Xp → Sp, f

p
2 : Sp → Y p, (1)

where fp
1 and fp

2 denote the projections for each modality and cross-modality, respectively. Data for each

individual modality are first converted into representations for a single modality, denoted by Sp. The

process aims to preserve the intra-similarity for each modality. Then, data of all modalities, represented

by Sp, are mapped into a common space Y p, where the relations between multiple modalities are learned.

After the shared representations have been learned, they are mapped into Hamming space using a linear

projection:

gp : Y p → Bp. (2)

We learn the projection such that inter-similarity is preserved and then transform the values in binary

form into Hamming space. We take a training dataset T = (xmi

i , x
mj

j )k (k = 1, . . . ,K) from O, where

xmi

i and x
mj

j are the features of omi

i ∈ Omi and o
mj

i ∈ Omj , respectively. Lij is an indicator that is equal

to 1 if two data omi

j and o
mj

j belong to the same class; otherwise Lij = −1. The distance between two

data in Hamming space is defined as

d(xmi

i , x
mj

j ) = ‖Bmi

i −B
mj

j ‖2F . (3)

We then formulate the problem of learning the projection as the following optimal problem with object

function:

min
f

K
∑

k=1

Lijd
(

xmi

i , x
mj

j

)

. (4)

3.2 Feature learning based on multimodal deep learning

Multimodal deep learning consists of two components: (1) feature learning for each single modality; (2)

shared feature learning for multimodal features. In the following, we first describe the multimodal deep

learning model and compare it with other models. Then we describe the two components of the model.

3.2.1 Multimodal deep learning models

Figure 3 shows the deep neural network for multimodal deep learning. The whole model is learned in

three steps: First, the unlabeled data U of each modality is used to pre-train the deep learning network
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Figure 4 (Color online) Multimodal deep learning models based on RBMs. (a) Deep RBM; (b) multimodal DBM;

(c) multimodal DBN.
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Figure 5 (Color online) Correspondence cross-modal autoencoder.

using a stacked denoising autoencoder (SDA) (see Subsection 3.2.2). Then, the multimodal data O is

represented using the SDA of each modality, and the outputs are input into the restricted Boltzmann

machine (RBM) to learn the relationship between multiple modalities. Finally, the training dataset T is

used to update the parameters of the model.

There are several multimodal deep learning models, including deep autoencoders [21], multimodal

DBMs [22], multimodal DBNs (mDBNs) [17] and correspondence cross-modal autoencoders (corr-cross-

AEs) [26]. Ngiam et al. [21] used a deep RBM (Figure 4(a)) to learn features over multiple modalities.

They trained the deep autoencoder network using an augmented dataset that had only a single modality

as input. Their work was aimed at learning high-dimensional latent features to perform discriminative

classification tasks. Srivastava and Salakhutdinov [22] extended an mDBM to model joint distributions

over image and text inputs. They used separate two-layer DBMs for each modality, as shown in Fig-

ure 4(b), and combined the two models by adding an additional layer of binary hidden units on top

of them. Another way of using a deep model to combine multimodal inputs is through an mDBN [17]

(Figure 4(c)) that is composed of a DBN for each modality, with the joint RBM capturing the correla-

tions among multiple modalities. The corr-cross-AE [26] replaces the basic autoencoders by cross-modal

autoencoders, as illustrated in Figure 5. All of these models use only one kind of basic unit, whereas

our model combines the autoencoder with the RBM. The deep autoencoder and corr-cross-AE use only

autoencoders, while the DBM and mDBN use only use RBMs in the network structure. The proposed

multimodal deep learning framework adopts autoencoders for individual modalities, and it models the

multimodal relation with an RBM.

3.2.2 Feature learning for a single modality

For different modalities, data have different feature representations and statistical properties in the low-

level feature space. For example, images can be described with color, SIFT visual features, and so on,

while the text surrounding the images can be represented using the the BOW feature. These low-level

features are diverse in dimension and representation (e.g., SIFT with 128 dimensions and color with

512 dimensions) and have a “semantic gap” with the high-level semantic concepts. Therefore, we use

a modality-specific structure to learn features for each modality separately, with the aim of learning a

compact and robust high-level representation. The higher level of the structure corresponds to high-level
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Figure 7 (Color online) RBM.

features, which are further correlated for multimodal feature learning.

We use a SDA [27] as the modality-specific structure, which is a type of autoencoder. Autoencoders

have been widely used in unsupervised feature learning and classification tasks. They can be seen as

special neural networks with three layers: an input layer, a latent layer, and a reconstruction layer

(Figure 6(a)). A denoising autoencoder (DAE) adds noise to the training data, as shown in Figure 6(b).

First, a noisy version of x is constructed through a stochastic mapping. Then the noisy version x′ is

mapped through an autoencoder to a hidden representation y = ϕ(x′), and y is used to reconstruct a

clean version of x by z = ψ(y). We use a nonlinear one-layer neural network as the unit of the SDA, with

the encoding function being given by

y = ϕ(x) = sigmoid(Qx+ r) (5)

and the decoding function by

z = ψ(y) = sigmoid(Q′y + t). (6)

Several DAEs are stacked to build a layer structure in which the output of each layer is the input to

the layer above. Once the encoding function has been learned, the encoding function is no longer needed.

3.2.3 Multimodal feature learning

After learning the representation of each modality, we use an RBM [28] to model the relations between

different modalities and learn their shared representation.

An RBM is an undirected graphical modal with stochastic visible unit v and stochastic hidden unit h

(Figure 7). Each visible unit connects to each hidden unit, but there are no connections among hidden

variables or among visible variables. The structure of the model is shown in Figure 6. The model defines

the following energy function E:

E(v, h; θ) = −aTv − bTh− vTWh, (7)

where θ = a, b, and W are the model parameters. The joint distribution over the visible and hidden

units is defined by

p(v, h; θ) =
1

Z(θ)
exp[−E(v, h; θ)], (8)
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where Z(θ) is a normalization constant. The jth hidden node is set equal to 1 with probability

p(hj |v) = sigmoid

[

1

σ2
(bj +WT

j v)

]

. (9)

According to the activation probabilities of the hidden units, the model can reconstruct the original

data. We minimize the loss function between the original and reconstructed data, and learn the parameter

using contrastive divergence [29].

The training procedure for the MDLH is similar to those of other deep networks [30]. We pre-train

each layer in a greedy pairwise approach [1]. First, we train the parameters for the bottom two layers

and fix the learned parameters. Then we repeat the process for the next two layers, and so on until we

reach the top layer.

After pre-training each layer of the MDLH, we fine-tune the model using annotated data, in which each

pair of samples describes the same object in two modalities (text and image). In practice, we first clamp

examples that have two modalities available, and require the network to reconstruct both modalities.

Then we zero-out one of the input modalities separately, still requiring the network to reconstruct both

modalities.

The model generates the shared representation by estimating p(h|v). The activation probabilities of

hidden units constitute the joint representation of the inputs. After obtaining the shared representation

y by means of the multimodal deep learning model, we update the parameters of the last layer. Finally,

we use back-propagation [17, 31] to update the parameters in the lower layers of the network.

3.3 Hash function learning

Denoting the shared representation for the data by s, the linear transformation from s to the hash

code is

g(s) = sign
(

P
Ts

)

, (10)

where P is the projection matrix.

Denoting by Y i = [Y i
1 , . . . , Y

i
K ] and Y j = [Y j

1 , . . . , Y
j
K ] the representations for all datasets, the cor-

responding hash codes are Bi and Bj , respectively. To preserve the maximal consistency of different

modalities, the objective function is defined as

min
Bi,Bj

‖Bi −Bj‖
2
F . (11)

The optimization problem in (11) is equivalent to a balanced graph partitioning problem and is NP-hard.

We solve the derived objective function on Y i and Y j as

min
P

‖P ∗ Y i −P ∗ Y j‖2F . (12)

This can be converted into an eigenvalue problem. However, it has a high time complexity and cannot

be used to learn hash functions when K is large. To handle this problem, an approach based on sparse

characteristics is proposed in [22]. Since our representations Y i and Y j are sparse, we follow the method

of Ref. [22] to learn the projection matrix P. Algorithm 1 summarizes the multimodal deep-learning-

based cross-modal hashing. Given new data, the hash code is generated in two steps: First, the features

of the data are extracted and multimodal deep learning is used to represent the data. Then, the linear

projection function g is used to compute the hash code of the data.

3.4 Extension of new modality

Since different datasets contain different modalities, it is essential that the hashing method be easily

extended to more modalities. The proposed MDLH can add new datasets and modalities based on the

existing model.

We denote the new multimodal data by A = {A1, . . . , AN}, which consists of T modalities. In par-

ticular, the modality t is a new modality. The procedure of adding the dataset A for training is as

follows:
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Figure 8 (Color online) Adding a new modality to the existing model.

Algorithm 1 Multimodal deep-learning-based cross-modal hashing

Input: multimodal data O, training data U ;

Output: projection fp, projection gp;

1: for m = 1 : M do

2: pre-training the SDA for modality m;

3: end for

4: pre-training the RBM;

5: while object function is not converged do

6: for k = 1 : K do

7: (xi, xj) ⇐ T ;

8: update the parameters W, b;

9: update the parameter in the lower layer using back-propagation;

10: end for

11: end while

12: Compute P.

(1) Pre-train the stacked autoencoder for the new modality t.

(2) Add the units in the highest layer of the stacked autoencoder to the visible layer of the existing

model (as shown in Figure 8).

(3) Fine-tune the MDLH model using data in A with all the modalities.

(4) Learn the hash function as described in Subsection 3.3.

4 Experiments

We evaluate our method on two real-world datasets for a cross-modal similarity search and analyze the

results. In detail, the datasets consist of text and images, and we use text as query to search similar

images and image as query to search similar texts. First, we introduce the dataset and the experimental

setup. We then show the results and compare them with the results of other methods.

4.1 Datasets and settings

Two datasets are used in our experiment: Wikipedia–Picture of the Day and NUS-WIDE. Both include

two modalities (pictures and text). Wikipedia–Picture of the Day [32] includes 2866 multimedia docu-

ments collected from the Wikipedia website, in which each document includes one picture and at least 70

words. The dataset provides the topic probability of each text on 10 categories, computed using latent

Dirichlet allocation (LDA) [33]. Previous experiments used the topic probability as a text feature, but

this is too sparse to be a suitable input to deep learning. Therefore, we extract the vector space modality

of each text as a feature. The feature of images uses a SIFT descriptor [34] based on a bag-of-visual-words

model, which quantizes the descriptors into 1000-dimensional vectors.

The NUS-WIDE dataset is a real-world image dataset collected by the laboratory for media search

at the National University of Singapore [35]. It includes 81 categories and 269648 images. Each image
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Table 1 Evaluation of the mean average precision of MDLH with different numbers of hidden layers

Number of hidden layers Wikipedia–Picture of the Day NUS-WIDE

1-layer 0.3745 0.4398

2-layer 0.3776 0.4502

3-layer 0.3844 0.4512

4-layer 0.3783 0.4565

Table 2 Number of units in the model

Dataset Image pathway Text pathway

Wikipedia–Picture of the Day 1000–512–128 1000–512–128

NUS-WIDE 1000–512–128 1000–512–128

corresponds to multiple tags, and each image–text pair is annotated by at least one category. The image

is represented by 1000-dimensional bag-of-visual-words/SIFT descriptors, and the text corresponding to

the image is represented by a 1000-dimensional vector of tags.

To select the number of layers and the dimensionality settings of the hidden layers, we evaluate the

impact of the number of layers on the deep networks for the proposed MDLH algorithm. Table 1 shows

the mean average precision (mAP) performance on two datasets. It can be seen that three-layer deep

networks tend to achieve better performance than those with other numbers of layers. For both datasets,

the model consists of a three-layer image pathway, a three-layer text pathway, and a joint RBM. In detail,

the number of units in each layer is summarized in Table 2.

4.2 Evaluation metrics

We use mAP [8] as the evaluation metric for effectiveness in our experiment. This evaluation metric has

been widely used [8,36]. It evaluates the performance of similarity searches, with larger values indicating

better performance and with similar results having high ranks. Given a query and R retrieved instances,

the average precision (AP) is defined as

AP =
1

L

R
∑

r=1

P (r)δ(r), (13)

where L is the number of relevant instances in the result. P (r) is the accuracy of the top r instances. δ(r)

is the indicator function, which is equal to 1 if the rth instance is relevant to the query or 0 otherwise.

mAP is the mean of all the AP values, and we set R = 100 in our experiments.

4.3 Comparison methods

We compare our method with four other cross-modal hash methods: CMSSH, CVH, latent semantic

sparse hashing (LSSH), and IMVH.

• CMSSH [11] constructs two groups of linear hash functions to retain the similarity relationship

between different modalities.

• CVH [12] extends unimodal spectral hashing to a multimodal context, retaining the similarity rela-

tionship between different modalities and in the same modality.

• LSSH [36] uses matrix factorization and sparse coding to map text and image into the latent factor

space separately.

• IMVH [13] retains interior and exterior similarities, while making a clear distinction between data

belonging to different categories.

CMSSH and CVH generate different hash codes for different modalities, but they ensure that hash

codes in the same modality have the same length.
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Table 3 Mean average precision of different methods on the Wikipedia–Picture of the Day dataset

Task Method HCLa) = 16 HCL = 32 HCL = 64

Image query text CMSSH 0.3183 0.3275 0.2750

CVH 0.3140 0.3345 0.2760

LSSH 0.3730 0.3940 0.3887

IMVH 0.3812 0.3921 0.3879

MDLH 0.3919 0.3940 0.4030

Text query image CMSSH 0.3321 0.3173 0.3147

CVH 0.3005 0.3322 0.3107

LSSH 0.3552 0.3559 0.3545

IMVH 0.3642 0.3624 0.3644

MDLH 0.3840 0.3729 0.3604

a) HCL: hash code length.
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Figure 9 Top-N precision of different methods on the Wikipedia–Picture of the Day dataset.

4.4 Results

4.4.1 Results on the Wikipedia–Picture of the Day dataset

We select 90% of the dataset as training data, 5% as unlabeled data, and the rest as the query set for

MDLH. Other methods use 95% of the dataset (training data and unlabeled data for MDLH) as training

data and the rest as the query set. The mAP values of our method and the other methods are shown

in Table 3. We can see that MDLH outperforms most of the other methods for most code lengths. As

the code length increases to 64, the performance no longer increases. This phenomenon has also been

observed and analyzed elsewhere [8,36]. Since most baseline methods use eigenvalue decomposition and

have orthogonality constraints, each bit shows no correlation with the others. Therefore, the first few

projection directions may have higher variance than the other projections. As the code length increases,

the hash codes will become dominated by bits with low variance. Previous studies reported better

performance on the task “text query image” than the task “image query text”, because they used topics

rather than words as the text feature so that the text queries were represented as the 10 topics, which

simplified the research problem. Furthermore, we report the top-N precision curve of the results on the

Wikipedia–Picture of the Day dataset in Figure 9, which shows the variation of precision as the number

of retrieved instances changes.

4.4.2 Results on the NUS-WIDE dataset

Some categories in the NUS-WIDE dataset are scarce, so we select eight categories that contain more

instances than the others. We select 90% of the dataset as the training data, 5% as unlabeled data,

and 5% as the query data for MDLH. The mAP values of all the methods on NUS-WIDE are shown

in Table 4. The performance of all methods increases to some degree on the NUS-WIDE dataset. The

reason is that the text modality of the NUS-WIDE dataset consists of tags rather than paragraphs as

in the Wikipedia–Picture of the Day dataset. First, the tags have less noise than the paragraphs, which
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Table 4 Mean average precision of different methods on the NUS-WIDE dataset

Task Method HCL = 16 HCL = 32 HCL = 64

Image query text CMSSH 0.4405 0.4389 0.3934

CVH 0.3756 0.3729 0.3619

LSSH 0.4517 0.4437 0.4460

IMVH 0.4520 0.4489 0.4446

MDLH 0.4526 0.4537 0.4555

Text query image CMSSH 0.4113 0.3984 0.3722

CVH 0.3805 0.3629 0.3899

LSSH 0.4271 0.4178 0.4143

IMVH 0.4189 0.4250 0.4130

MDLH 0.4496 0.4478 0.4485
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Figure 10 Mean average precisions of different methods with and without noise.

include many words irrelevant to the topic, and second, tags provide more semantic information than the

words in the paragraphs.

4.4.3 Results on noisy datasets

To evaluate the robustness to noise of each method, we add noises to the Wikipedia–Picture of the Day

and NUS-WIDE datasets separately, and compare the performances on the noisy datasets. For both

datasets, we select a category randomly as the source of the respective noise. Some pictures and words

from them are selected randomly as noise to be added to the rest of the data. In the Wikipedia–Picture

of the Day dataset, we select 2% of the text and one picture as noise each time. In the NUS-WIDE

dataset, we select one tag as the noise. Figure 10 shows the performance before and after the addition

of noise. Compared with the results on the original datasets, the performance on the noisy datasets of

all the methods decreases to some degree, with the mAP of MDLH decreasing less than that of the other

methods. This shows that our method is more robust to noise than the others.

4.4.4 Influence of unlabeled dataset

In real-world applications, new data keep appearing in the database as time goes by. The amount of such

data can be so great that it is impossible to annotate them owing to the cost in time. The ability to

deal with such unlabeled data can enhance the applicability of hashing methods to practical problems.

As mentioned in Subsection 3.2, MDLH use unlabeled data to pre-train the stacked autoencoder for

each modality and learn the common representation. To evaluate the influence of unlabeled data, we

apply the algorithm in two settings: using unlabeled data (MDLH) and using only labeled training data
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Table 5 MAP of two training settings on the Wikipedia–Picture of the Day and NUS-WIDE datasets

Dataset Task Method HCL = 16 HCL = 32 HCL = 64

Wikipedia–Picture of the Day Image query text MDLH-TD 0.4501 0.4403 0.4546

MDLH 0.4526 0.4537 0.4555

Text query image MDLH-TD 0.4370 0.4290 0.4301

MDLH 0.4496 0.4478 0.4485

NUS-WIDE Image query text MLDH-TD 0.3827 0.3912 0.3930

MDLH 0.3919 0.3940 0.4030

Text query image MDLH-TD 0.3785 0.3653 0.3529

MDLH 0.3840 0.3729 0.3604

(MDLH-TD). Table 5 shows the mAP of these two settings. From the table, we can see that unlabeled

data improve the performance. Because the number of unlabeled data is small compared with training

data, the improvement is not very significant. In the future, we shall consider using large numbers of

unlabeled data from different datasets.

5 Conclusion

In this paper, we have proposed a multimodal deep-learning-based cross-modal hash learning method.

The multimodal deep learning is used to model the relationship between multiple heterogeneous data

and learn a shared representation of the multimodal data, which is robust to noise and easy to extend

to multiple modalities. Experiments on two realistic datasets show that our method represents the

multimodal features effectively.

However, the proposed multimodal deep learning structure models the cross-modal relation entirely

on the joint layer, which ignores the relationship between each pair of modalities. Moreover, the feature

learning process for individual modalities could be improved by using multiple features for each modality.

In the future, we will focus on improving the algorithm in two respects: (1) We shall extend the

model to media types such as audio and video. According to their individual characteristics, we shall

consider more features for each modality; (2) We shall consider multiple relationships between modalities

by adding hidden layers to model pairwise relationships.
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