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Abstract Location-aware recommender systems that use location-based ratings to produce recommendations

have recently experienced a rapid development and draw significant attention from the research community.

However, current work mainly focused on high-quality recommendations while underestimating privacy issues,

which can lead to problems of privacy. Such problems are more prominent when service providers, who have

limited computational and storage resources, leverage on cloud platforms to fit in with the tremendous number

of service requirements and users. In this paper, we propose a novel framework, namely APPLET, for protecting

user privacy information, including locations and recommendation results, within a cloud environment. Through

this framework, all historical ratings are stored and calculated in ciphertext, allowing us to securely compute

the similarities of venues through Paillier encryption, and predict the recommendation results based on Paillier,

commutative, and comparable encryption. We also theoretically prove that user information is private and will

not be leaked during a recommendation. Finally, empirical results over a real-world dataset demonstrate that

our framework can efficiently recommend POIs with a high degree of accuracy in a privacy-preserving manner.
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1 Introduction

With the development of urban computing [1] and GPS-enabled devices, location-based services (LBSs)

have been widely used, providing us with a convenient way to experience life than ever before. For

example, Foursquare allows users to “check-in” at various point-of-interests (POIs) and leave various

ratings regarding their experience there. Such ratings have motivated an interesting new paradigm of

location-aware recommender systems [2]. Compared with traditional systems, in addition to providing

the recommendation ratings (e.g., for Amazon inventory or Netflix titles), location-aware recommender

systems have to take into account both spatial-temporal and rating information.

The main challenge for location-aware recommender systems is how to securely and efficiently provide

recommendations among a large number of POIs. However, simply applying traditional recommendation
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techniques in an LBS may not be applicable for the following two reasons. First, as spatial data are

ubiquitous and highly evolving, traditional recommender systems require a heavy toll for storing and

computing user recommendations. Thus, many LBS providers have now turned to untrusted clouds for

help. By moving user data and recommendation frameworks to the cloud, service providers can reduce

the overhead of their computational resources while preserving the service quality. For example, Netflix

shut down the last of its data centers this summer and has moved all of its data to Amazon’s cloud [3].

However, this technique has inevitably led to another challenge, namely, privacy. Because user data

and recommendation results include a certain amount of privacy information, such as user locations

and preferences, the cloud can easily infer who is interested in what and where. Thus, the cloud may

track users directly or release their preferential information to advertisers [4]. As a result, users may be

afraid that their sensitive information might be leaked to unauthorized attackers, which would be a huge

barrier for the development and spread of recommender systems. Therefore, it is crucial to protect user

privacy when utilizing a location-aware recommender system. Notably, privacy protection includes not

only users’ privacy information attached with requests, but also the historical ratings and similarities of

venues, which are considered to be the property of the service providers. Unfortunately, until now there

have been limited research efforts or valuable contributions regarding this aspect. State-of-the-art work

either suffers from an inaccurate recommendation quality [5, 6] or low efficiency [7].

In this paper, to address the aforementioned challenges, we propose a privacy-preserving framework

for location-aware recommender system (APPLET). For APPLET, we adopt an item-based collaborative

filtering algorithm and utilize multiple encryption techniques to help service providers generate recom-

mendations in a privacy-preserving manner. We also show that APPLET is sufficiently secure to protect

both user privacy and the profits of the service providers. The main contributions of this paper are as

follows.

• We propose a novel framework, namely APPLET, which allows service providers that have moved

most of their data to a cloud, to generate recommendations without leaking any user privacy to the cloud

itself.

• To reduce the overhead, the service provider would send their historical rating data to the cloud

platform. We then utilize the Paillier homomorphic encryption [8] and enable the cloud to compute the

venue similarities in ciphertext to protect the service provider’s profits. Finally, to protect the users’

privacy regarding their location during a recommendation, we employ a comparable encryption [9] such

that the cloud platform can filter out those venues that fall into the areas of interest of the users purely

through ciphertext. In this way, the computational tasks conducted by the service provider are minimized

and sensitive information on both the users and service provider are not leaked to an untrusted cloud.

• We conducted an analysis of APPLET in terms of both theory and practice. The results indicate

that APPLET can respond to user requests efficiently and effectively.

The rest of this paper is organized as follows. Section 2 provides the system overview and problem

formulation. In Section 3, we present APPLET in detail, followed in Section 4 by an analysis of its

security and efficiency. In Section 5, we empirically test the recommendation quality and computational

costs. Section 6 presents some related work. Finally, we provide some concluding remarks regarding this

paper in Section 7.

2 System overview and problem formulation

As discussed above, simply implementing LBS recommendations over the cloud may invoke unexpected

privacy issues, which becomes a key bottleneck for the development and widespread use of recommender

systems. To this end, we designed APPLET based on multiple encryption methods to help service

providers store and compute their spatial data over a semi-honest cloud environment. In this section, we

first present some preliminaries that serve as the basis of APPLET, and then present the system model,

threat model, and design goals for APPLET. For the reader’s convenience, the notations used in the

sequel are listed in Table 1.
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Table 1 Definitions and notations used in APPLET

Symbol Definition

Rt The rating data collected by SP at time t

Ru uq’s historical ratings data

pks SP’s public key for commutative encryption

sks SP’s private key for commutative encryption

PKs SP’s public key for Paillier encryption

SKs SP’s private key for Paillier encryption

param SP’s or uq’s parameter for comparable encryption

mkey SP’s or uq’s master key for comparable encryption

pku uq’s public key for commutative encryption

sku uq’s private key for commutative encryption

2.1 Preliminaries

2.1.1 Collaborative filtering

Owing to its popularity and widespread adoption in commercial recommender systems (e.g., Amazon),

APPLET uses item-based collaborative filtering (CF) as its primary recommendation technique. Through

the item-based CF algorithm, the recommender system can produce accurate recommendation results

with little computation overhead. Collaborative filtering assumes a set of m users U = {u1, . . . , um}, and
a set of n venues V = {v1, . . . , vn}(m >> n), where each venue has three attributes Avi={viN , vix, viy},
in which viN denotes the ID of vi, vix (resp., viy) denotes the latitude (resp., longitude) of vi. Each user

ui expresses opinions over a set of venues Vui ⊆ V. Opinions can be numeric ratings (e.g., 1 to 5 stars in

Netflix), or unary (e.g., “Like/Unlike” for Facebook). Conceptually, ratings are represented as a matrix

R ∈ Rn×m, where each entry rij ∈ R denotes the rating posted by user uj over vi. Given a requestor uq,

CF produces k recommended venues vs1, . . . , vsk ∈ V in which uq is predicted to like the most.

To achieve this, we should first compute a similarity score sim(vp, vq) for each pair of objects vp, vq
that have at least one common rating by the same user. The cosine similarity is used to compute the

score [2]: sim(vp, vq) = vp · vq/(‖vp‖ ‖vq‖).
Afterward, using these scores, recommendations are produced by computing the predicted rating of uq,

i.e., P(uq,i), for each venue i not rated by him [10]: P(uq,i) =
∑

ℓ∈L sim(i, ℓ) · rℓ/
∑

ℓ∈L |sim(i, ℓ)|. Notably,
each similarity list L has been reduced to contain only venues rated by uq.

2.1.2 Commutative encryption

Commutative encryption [11] is a useful but rather strict notion of cryptography. In this paper, we

adopt commutative encryption to protect the venue attributes (e.g., names and locations) from leaking

to service providers when a cloud platform replies to a user’s recommendation results. Our commutative

encryption is based on the El-Gamal encryption scheme [12] and contains the following six algorithms:

KeyGen, Encrypt, Re-encrypt, Decrypt and Re-decrypt.

KeyGen. Generate an efficient description of a cyclic group G of order N with generator g. Choose

a random number xi for each user i from 1, . . . , N − 1 and compute yi = gxi . The public key of user i is

then denoted as pki = (G,N, g, yi) and the private key is denoted as ski = (G,N, g, xi). Thus for users

i and j, their public and private keys are pki = (G,N, g, yi), pkj = (G,N, g, yj), ski = (G,N, g, xi), and

skj = (G,N, g, xj).

Encrypt. Upon input pki and plaintextm, uniformly select an element ki ∈ ZN and output: (y1, y2) =

Epki
(m) = (gki(mod N),myki

i (mod N)).

Re-encrypt. With a ciphertext (y1, y2) and pkj , uniformly select an element kj ∈ ZN and output:

(c1, c2, c3) = Epkj
(y1, y2) = (y1, g

kj (mod N), y2y
kj

j (mod N)).

Decrypt. Upon input ski and ciphertext (c1, c2, c3), output: (y
′
1, y

′
2) = Dski

(c1, c2, c3) = (c2, c3(c
xi

1 )−1

(mod N)).

Re-decrypt. Upon input skj and ciphertext (y′1, y
′
2), output:Dskj

(y′1, y
′
2)=y′2(y

′
1
xj )−1(mod N)=m.
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2.1.3 Paillier homomorphic encryption

To ensure that the ratings can be calculated in the form of a ciphertext in a cloud platform, we adopt

Paillier encryption to encrypt the historical ratings. In this way, the cloud platform cannot obtain

the properties of the service providers. After being encrypted by the Paillier encryption scheme, the

ciphertexts satisfy the following properties.

• The product of two ciphertexts will decrypt to the sum of their corresponding plaintexts:

DSKi
(EPKi

(x) · EPKi
(y)) = DSKi

(EPKi
(x+ y)) = x+ y.

• Given constant number a ∈ ZN and ciphertext EPKi
(x), we have the following: DSKi

(EPKi
(x)a) =

DSKi
(EPKi

(a · x)) = a · x.

2.1.4 Comparable encryption

Comparable encryption [9] aims to overcome the weakness of order-preserving encryption (OPE), as the

comparison between data samples is frequently executed in the range queries. Through a comparable

encryption, the results can be attained by executing a query within a single interaction while achieving

the security of the weak indistinguishability defined in [9]. In this paper, we adopt comparable encryption

to compare the locations of venues with users’ requesting areas in the ciphertext. Through comparable

encryption, the cloud platform can filter out the venues which located in users’ interesting area while

not obtaining users’ locations. Given a plaintext num, comparable encryption encrypts it by Der and

Enc functions and produces a token, token, and ciphertext, ciph. Given two ciphertexts {ciph, ciph′}
encrypted through comparable encryption, we can compare their numerical order as follows:

token = Der(param,mkey, num), ciph = Enc(param,mkey, num), ciph′ = Enc(param,mkey, num′),

Cmp (param, ciph, ciph′, token) =















0 if num = num′,

1 if num > num′,

2 if num < num′.

2.2 System model

Before describing APPLET, we formally present the definition of a general location-aware recommender

system as follows.

Definition 1. Given the location (xu, yu) of user uq as well as the requested distance threshold (∆x,∆y)

of the POIs, a location-aware recommender system returns the predicted ratings of uq, i.e., Rp, of venues

located in uq’s interesting area defined by (xu ± ∆x, yu ± ∆y), by taking into account the ratings for

visited venues of uq, i.e., Ru ∈ Rn.

To guarantee the privacy of such a recommendation in a cloud environment, all privacy information

(i.e., (xu, yu), (∆x,∆y), and Rp) should be kept and computed in ciphertext. In this manner, we can

derive the basic components for our privacy-preserving location-aware recommender system as follows

(see Figure 1):

• Trusted authority (TA). TA is an indispensable entity that is trusted by all entities. It distributes

and manages all private keys involved in the framework.

• Cloud platform (CP). CP stores and manages all data in the framework. In addition, CP has to

conduct many calculations over the stored data, especially the recommendation algorithm.

• Service provider (SP). SP owns the venue attributes and collects the correlated historical ratings

from each user at regular intervals. However, SP possesses limited storage and computational resources,

and thus it sends the collected ratings to CP regularly for storage and computation. Finally, with the

help of CP, SP can compute the similarities among venues based on all of the ratings data stored in CP.

• Recommendation users (RUs). RUs send their locations and distance thresholds to CP for recom-

mendations when they request a recommendation service.

Given these parties, APPLET works as follows:
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Service provider (SP) Trusted authority 

(TA)

Encrypted

requests

Encrypted

results

Encrypted

ratings

Recommendation users

(RUs) Cloud platform (CP)

Figure 1 System Framework of APPLET.

• SP sends historical ratings Rt and attributes Av to CP regularly. SP then computes the similarities

of the venues Sim ∈ Rn×n with the help of CP.

• Whenever requesting a recommendation, an RU uq sends his location (xu, yu) and the distance

threshold of POIs (∆x,∆y) to CP.

• CP filters out the venues V ′ ∈ V in the area bounded by the threshold, and sends the aggregated

results to SP.

• Based on the results from CP, SP computes the predicted ratings Rp and sends {(v′N , v′L), Rp} to

uq.

Notably, most of the calculations are executed on CP. SP and RUs are only responsible for a very

limited number of decryption tasks to obtain the results. During the entire procedure, sensitive infor-

mation should be kept secure against internal and external parties (e.g., CP and adversaries). We then

explicitly list the threat model and all design goals that APPLET should satisfy.

2.3 Threat model

In APPLET, SP is curious-but-honest that is interested in uq’s recommendation resultsRp at this time but

provides correct historical rating dataRt that are collected at time t. The third party CP is also considered

as curious-but-honest in two aspects. First, CP is interested in SP’s historical rating data, R, (R =

R1

⋃

R2

⋃ · · ·⋃Rt), and similarities, Sim. Second, CP is also curious about uq’s recommendation results,

Rp, and locations. Notably, CP strictly follows the protocols executed in the framework. Moreover, an

external adversary is interested in all data transmitted in the framework by eavesdropping.

2.4 Design goals

As a privacy-preserving location-aware recommender system, APPLET should fulfill the following re-

quirements.

• Recommendation quality. The proposed framework should return the effective and satisfactory

results of any location-aware recommendation requests from RUs.

• Recommendation efficiency. The proposed framework should return the recommendation results

efficiently to provide a better user experience.

• Security goals. The proposed framework should achieve the privacy requirements in terms of the

following aspects:

(1) Privacy of SP. When the similarity computation ends, CP obtains the processed similarities of

venues F and the encrypted attributes. The adversary and CP should learn nothing beyond F and these

encrypted attributes.
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Figure 2 Overall APPLET procedure.

(2) Privacy of RUs. When the prediction ends, RUs obtain the recommendation results Rp. The

adversary, CP, and SP should learn nothing beyond what can be derived from their outputs and private

inputs in the protocol.

3 Construction of APPLET framework

In this section, we present the details of APPLET, which mainly consists of two phases: privacy-preserving

similarities computation (Phase A) and privacy-preserving ratings prediction (Phase B). The overall

procedure is shown in Figure 2.

3.1 Privacy-preserving similarities computation (Phase A)

In this phase, SP computes the similarities of the venues and uploads them along with the attributes

to CP. To protect such private information, the ratings Rt and attributes Av are encrypted and sent

to CP in a ciphertext. Notably, we have to guarantee the recoverability of Av under the premise of

comparing their locations with user’s interesting area. Thus, we extend the tuple Av = {vN , vx, vy}
into A′

v = {(vN , vx, vy), (vx, vy)} = {(vN , vL), vL}. The attributes Av and extended locations {vL}
are then encrypted through commutative encryption [13] and comparable encryption [9,14], respectively.

Moreover, we construct an efficient and privacy-preserving protocol in Pailliar homomorphic encryption [8]

to compute the venue similarities, Sim, securely.

3.1.1 Encrypting the venue attributes

For all venues, their extended attributes can be denoted as {(vN , vL), vL}. We adopt commutative

encryption and comparable encryption to allow SP to encrypt {vN , vL} and {vL}, respectively. SP then

sends ciphertext {Epks
(vN , vL),Enc(vL)} to CP.
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Figure 3 The aggregation of venues (@CP).

3.1.2 Similarity computing protocol

Because the historical rating data are considered as assets of SP and contain the private information of

users, such data must be calculated in the form of a ciphertext by CP. The similarity computing protocol

is thus as follows.

Step-I(@SP). We encrypt Rt in Paillier encryption using the public key of SP, PKs, producing

EPKs
(Rt). In addition, we also process a copy of R in the following way [15].

Given security parameters k1, k2, a large prime p, and another large prime α, such that |α| = k1, a

large random number s ∈ Zp, and n ·m random numbers cij , i ∈ [1, n], j ∈ [1,m], with |cij | = k2. For

each rij ∈ Rt, calculate aij = s · (rij ·α2 + cij) mod p, resulting in a new matrix, At ∈ Rn×m. Afterward,

SP keeps s−1 mod p and α secret, and sends {EPKs
(Rt), At} to CP.

Step-II(@CP). When receiving {EPKs
(Rt), At}, CP integrates the inbound data {EPKs

(Rt), At}
into the original historical rating data {EPKs

(R), A}, (R ∈ Rn×v′

), which has been stored here, and

calculates the aggregated ciphertext as follows, i ∈ [1, v], j, k ∈ [1, n], (v ≫ m ≫ n, v = m + v′): bjk =

Πv
i=1 EPKs

(rji)
aki mod N2 = EPKs

(
∑v

i=1 rji · s(rki · α2 + cki) mod p) mod N2.

The detailed process of this is shown in Figure 3, and the matrix of the aggregated results is represented

as B ∈ Rn×n. In this way, the dimensions of the rating data are reduced from n× v to n× n. CP then

sends B to SP for the remaining computation. As n ≪ m ≪ v, the space requirements for SP are

significantly reduced.

Step-III(@SP). After receiving aggregated matrix B, SP decrypts it and produces the decrypted

aggregated result b′jk: b
′
jk = DSKs

(bjk) =
∑v

i=1 rji · s · (rki · α2 + cki) mod p.

Then, SP will conduct the following for j, k ∈ [1, n]: djk =
s−1·b′jk−s−1·b′jk mod α2

α2 =
∑v

i=1 rjirki. Thus,

the venue similarities are simjk = djk/(
√

djj ·
√
dkk).

Suffering from limited computation resources, SP sends the similarities to CP to respond to the requests

of RUs quickly. However, the similarities are considered the private property of SP. Hence, SP needs to

preprocess the similarities before outsourcing. In APPLET, the preprocess is as follows:

Choose n · n random numbers wjk for j, k ∈ [1, n], with |wjk | = k2. For each simjk, calculate fjk =

s · (simjk · α2 + wjk) mod p.

All fjk form a new matrix F ∈ Rn×n. Afterward, SP sends F to CP. All processes of Phase A are

listed in Algorithm 1. In order to obtain the correct result, we define the following constraints:

v
∑

i=1

rji · (rki · α2 + cki) < p and

v
∑

i=1

rji · cki < α2.

3.2 Privacy-preserving ratings prediction (Phase B)

Whenever a request is issued, the area of interest and three secure parameters are uploaded to CP for

recommendation. However, such information may disclose the user’s privacy. Thus, RUs must encrypt

their area of interest in advance.

Step-I(@RUs). Before sending a request to CP, the requestor uq will generate the tuples as follows:
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Algorithm 1 Privacy-preserving similarity computation

Input: SP has an n ·m historical rating data matrix Rt, public key PKs, private key SKs, security parameters k1, k2, and

a large prime p, and CP holds the original encrypted rating data and the processed copy data.

Output: CP obtains the processed venue similarities.

1: (@SP):

2: Make a copy of Rt.

3: Choose a large prime α such that |α| = k1, and choose a large random number, s ∈ Zp.

4: for i ∈ [1, n] and j ∈ [1,m] do

5: Encrypt rij through PKs to obtain EPKs
(rij).

6: Choose a random number cij with |cij | = k2 and for each copy rij , calculate aij = s · (rij · α2 + cij) mod p.

7: end for

8: Send {EPKs
(Rt), At} to CP.

9: (@CP):

10: Integrate the inbound data {EPKs
(Rt), At} into the original historical data {EPKs

(R), A} stored in CP.

11: Aggregate the historical rating data as follows: B = Πv
i=1 EPKs

(R)A mod N2.

12: Send the aggregated result matrix B to SP.

13: (@SP):

14: Decrypt matrix B to obtain B′ = DSKs
(B).

15: for j, k ∈ [1, n] do

16: Calculate djk =
s−1

·b′jk−s−1
·b′jk mod α2

α2
.

17: end for

18: for j, k ∈ [1, n] do

19: Calculate simjk = djk/(
√

djj ·
√
dkk).

20: Choose a random number wjk with |wjk| = k2 and calculate fjk = s · (simjk · α2 + wjk) mod p.

21: end for

22: return matrix F to CP.

• For the area of interest, the comparable encryption is used to encrypt {xu±∆x, yu±∆y}, producing
Enc(xu ±∆x, yu ±∆y) and Der(xu ±∆x, yu ±∆y).

• When registering as a recommendation user from SP, uq will receive the parameter α sent by SP.

Then, given the security parameters k1, k2, and a large prime p, uq chooses two other large primes, β and

γ, such that |β| = |γ| = k1 and a large random number s′ ∈ Zp.

Finally, uq sends {Enc(xu ±∆x, yu ±∆y),Der(xu ±∆x, yu ±∆y), s′, β2, α2γ} to CP through a secure

channel.

Step-II(@CP). Once {Enc(xu ±∆x, yu ±∆y),Der(xu ±∆x, yu ±∆y), s′, β2, α2γ} are received, CP

filters the venues that are located in the area of interest of uq. CP will then aggregate these venues with

the rating data of uq and send the intermediate results to SP.

• Filtering out the venues. First, CP traverses all of the venues to filter out those located in the

area of interest of uq. For each venue vi, if the following conditions are satisfied, CP will append it to H :























Cmp(param,Enc(xu −∆x),Enc(vix),Der(xu −∆x)) = 2 or 0,

Cmp(param,Enc(xu +∆x),Enc(vix),Der(xu +∆x)) = 1 or 0,

Cmp(param,Enc(yu −∆y),Enc(viy),Der(yu −∆y)) = 2 or 0,

Cmp(param,Enc(yu +∆y),Enc(viy),Der(yu +∆y)) = 1 or 0.

In this way, all venues in set H are those located in the area of interest of uq, and we denote |H | = h.

CP then re-encrypts the encrypted attributes of these venues using the public key of uq, pku, to obtain

Epku
(Epks

(v′N , v′L)).

• Aggregating venues. After filtering out the venues, CP needs to predict the ratings of these

venues by uq. Since CP does not know the plaintext of the similarities or the historical ratings of uq,

only the intermediate results of the prediction can be calculated in CP, which is as follows:

- Select the venues that uq has rated and extract his encrypted ratings as EPKs
(Ru), |Ru| = L. Each

element in Ru, shown as rℓ, represents the opinion of uq regarding venue ℓ.
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- Then, choose h · L random numbers ziℓ, i ∈ [1, h], ℓ ∈ [1,L], and for each venue in H , calculate

ti =

L
∑

ℓ=1

fiℓ =

L
∑

ℓ=1

s(simiℓ · α2 + wiℓ) mod p,

qui =

L
∏

ℓ=1

EPKs
(rℓ)

s′(fiℓβ
2+ziℓα

2γ)
mod N2

= EPKs

( L
∑

ℓ=1

s′(s(simiℓrℓα
2β2 + wiℓrℓβ

2) + rℓziℓα
2γ)

)

mod N2.

The intermediate results are denoted as T ∈ Rh andQ ∈ Rh. CP then sends {Epku
(Epks

(v′N , v′L)), T,Q}
to SP.

Step-III(@SP). When receiving the information {Epku
(Epks

(v′N , v′L)), T,Q}, SP operates as fol-

lows:

• For the encrypted attributes of the venues in H , SP decrypts the inner encryption of {Epku
(Epks

(v′N ,

v′L))} using the private key sks of the commutative encryption: Dsks
(Epku

(Epks
(v′N , v′L))) = Epku

(v′N , v′L).

• For T and Q, SP conducts the following for i ∈ [1, h]: r′pi =
s−1·DSKs (qui)−s−1·DSKs (qui) mod α2

s−1·ti−s−1·ti mod α2 =
∑L

ℓ=1 s
′(simiℓrℓβ

2 + s−1rℓzilγ) mod p/
∑L

ℓ=1 simiℓ.

Because SP cannot absolutely decrypt the attributes of the venues in H , the location and preference

privacy of uq are not leaked to SP. Moreover, SP does not know s′−1 mod p or β, and thus cannot calculate

the predicted ratings either. The encrypted recommender results are represented as R′
p, and SP sends

{Epku
(v′N , v′L), R

′
p} to uq for the remaining process.

Step-IV(@RUs). After receiving {Epku
(v′N , v′L), R

′
p}, uq will conduct the following for i ∈ [1, h]:

• For the encrypted attributes Epku
(v′N , v′L), uq decrypts them using the private key sku of the com-

mutative encryption: Dsku
(Epku

(v′N , v′L)) = {v′N , v′L}.
• The predicted ratings for the venues in H can be computed as follows: rpi =

s′−1r′pi−s′−1r′pi mod β2

β2 =
∑L

ℓ=1 simiℓrℓ
/
∑L

ℓ=1 simiℓ.

Afterward, uq will select the top-k venues ranked by rpi. The detailed process in Phase B is listed in

Algorithm 2. To guarantee the result, we define the following constraints:















∑L
ℓ=1 s

′(simiℓrℓα
2β2 + wiℓrℓβ

2 + s−1rℓziℓα
2γ) < p,

∑L
ℓ=1 s

′ · wiℓ · rℓ · β2 < α2,
∑L

ℓ=1 s
−1 · rℓ · ziℓ · γ

/
∑L

ℓ=1 simiℓ < β2.

4 Security and efficiency analysis

In this section, we theoretically show that APPLET fulfills the security and efficiency requirements

illustrated in Subsection 2.4.

4.1 Security analysis

To study the security of APPLET, we adopt a simulation model [16, 17] that is defined in secure two-

party protocols for semi-honest adversaries, and widely used to prove the security of multi-party protocols.

Intuitively, we say a protocol is secure if each party participating in it can be computed based on its

input and output only. We require that a party’s view in a protocol execution be simulated only when

the input and output are given. This implies that the parties learn nothing from the execution of the

protocol itself.

Theorem 1. Both Phase A and Phase B in APPLET are secure in curious-but-honest model.

Proof. The proof is given in Appendix A.
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Algorithm 2 Privacy-preserving ratings prediction

Input: User uq in RUs has area of interest {xu±∆x, yu±∆y}, private key sku, comparable encryption parameters param,

master key mkey, SP’s secure parameter α, security parameters k1 and a large prime p. CP has processed similarities F ,

encrypted ratings EPKs
(R), uq’s public key pku, encrypted attributes of venues {Epks

(vN , vL),Enc(vL)}, comparable

encryption parameters param and security parameters k2. SP holds private key SKs, sks, s−1 mod p, and α.

Output: uq obtains the recommendation results.

1: (@RUs):

2: Generate Enc(xu ±∆x, yu ±∆y) and Der(xu ±∆x, yu ±∆y) using param, mkey.

3: Choose two large primes β and γ such that |β| = |γ| = k1, and choose a large random number s′ ∈ Zp.

4: Send {Enc(xu ±∆x, yu ±∆y),Der(xu ±∆x, yu ±∆y), s′, β2, α2γ} to CP.

5: (@CP):

6: Step-1 (Filtering out venues)

7: Select the venues located in (xu ±∆x, yu ±∆y) through comparable encryption and append them to H.

8: Encrypt Epks
(v′N , v′L) in H by pku, obtaining: Epku

(Epks
(v′N , v′L)).

9: Step-2 (Aggregating venues)

10: Select the venues rated by uq and extract his encrypted ratings: EPKs
(Ru).

11: for i ∈ [1, h] do

12: Choose h · ℓ random numbers ziℓ with |ziℓ| = k2 and aggregate the similarities with EPKs
(Ru) as follows: ti =

∑
L

ℓ=1 fiℓ, qui =
∏

L

ℓ=1 EPKs
(rℓ)

s′(fiℓβ
2+ziℓα

2γ) mod N2.

13: end for

14: Send {Epku
(Epks

(v′N , v′L)), T, Q} to SP.

15: (@SP):

16: Decrypt the inner encryption of Epku
(Epks

(v′N , v′L)) using sks: Dsks
(Epku

(Epks
(v′N , v′L))) = Epku

(v′N , v′L).

17: Then, R′
p =

s−1
·DSKs

(Q)−s−1
·DSKs

(Q) mod α2

s−1·T−s−1·T mod α2
.

18: Send {Epku
(v′N , v′L), R

′
p} to uq.

19: (@RUs):

20: Decrypt the encrypted attributes Epku
(v′N , v′L) by sku for i ∈ [1, h] : Dsku

(Epku
(v′N , v′L)) = {v′N , v′L}.

21: Calculate Rp = (s′−1 ·R′
p − s′−1 ·R′

p mod β2)/β2.

22: return top-k venues ranked by Rp and draw them on the map.

4.2 Efficiency analysis

In this section, we study the communication costs and storage overhead in APPLET. The security

parameter of the encryption techniques used is 1024 bits in size. At the beginning of Phase A, all

historical ratings and attributes of the venues should be sent to CP, which costs O(m · n) to transmit.

CP then aggregates the venues and spends O(n · n) to transmit the aggregated matrix to SP. Afterward,

SP computes the similarities of n venues and sends them to CP, which costs O(n · n). Thus, the total

communication cost of Phase A is O(n · (m + 2n)). In addition, each ciphertext tuple in Phase A

requires 1024-bit to be stored. Hence, in Phase A, it costs SP 2n · (m + n + 1) · 1024-bit to store all

of the data. In all, another 2n · (m + n + 1) · 1023-bit is needed in SP owing to the adoption of the

privacy-preserving technique. Notably, a traditional scheme without any privacy-preserving technique

also requires O(n · (m+ 2n)) communication overhead in Phase A.

When uq requests a recommendation service in Phase B, only his area of interest and three parameters

will be sent to CP, which costs O(1) to transmit. After filtering, CP spends O(h) to transmit the selected

venues to SP. Additionally, SP also spends O(h) to send the encrypted recommendation results to uq.

Thus, the total communication cost of Phase B is O(2h). In addition, CP also spends 3h · 1024-bit to

store the aggregated results, and SP spends 2h · 1024-bit to store the recommendation results. Thus, it

costs 5h · 1024-bit to store the ciphertext in Phase B. Hence, such storage costs an extra 5h · 1023-bit
owing to the use of the encryption technique. Notably, the total communication cost of a traditional

scheme without any privacy-preserving technique for Phase B is O(2h).

5 Performance evaluations

In this section, we present a series of empirical results of APPLET conducted over a real-world dataset,

which indicate that APPLET can effectively and efficiently fulfill the design goals described in Subsec-

tion 2.4. APPLET was implemented using Java and MySQL. The experiments were conducted on a
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machine with a 2.66 GHz quad-core processor and 8 GB of RAM, along with an Android simulator with

an Intel Atom (x86) CPU and 2 GB of RAM.

Dataset. We adopted a real data set consisting of user ratings expressed as one to five stars for spatial

venues derived from Foursquare user histories. The Archive Team extracted the data from the Foursquare

application through the public API, which owns 2809581 location-based ratings from 2153471 users for

1143092 venues in the State of Minnesota from July 2012 to September 2013 [18].

5.1 Recommendation quality

To measure the quality, we first randomly selected some users and extracted their ratings for 50% of the

venues, which are viewed as the ground-truth. We then computed the similarities of the venues using

the remaining dataset. Simultaneously, we selected an area as the user’s area of interest. Finally, we

simulated the recommendation process using this area of interest as input.

To evaluate the prediction accuracy, we focus on how many locations which have the same predicted

ratings with the ground-truth appear in the recommendation results. So we use the probabilistic method

[19] to measure the recommendation quality, which was evaluated based on the probability of difference

between the predicted ratings and the ground-truth: Pd =
∑h

i=1 (|rpi − ri| = d)/h, where d = 0, . . . , 5. In

the equation above, h represents the number of venues located in the user’s area of interest; rpi represents

the predicted rating for venue vi; ri represents the veritable rating for venue vi; and d represents the

difference between the predicted rating and the ground-truth. The simulation results are shown in Figure

4(a). In Figure 4(a), the x-axis shows the recommendation error d, and the y-axis shows the numbers

and probabilities (%) of d. Clearly, the probability of d = 0 is as high as 78.3%. At d = 4 and d = 5,

Pd is only 7.5% and 3.8%, respectively. This indicates that the recommendation quality of APPLET is

sufficiently high to meet the user requirements.

5.2 Recommendation efficiency

To test all factors affecting the efficiency of our APPLET, we randomly selected 1051 location-based

ratings from 90 users for 40 venues. In APPLET, there are four factors that affect the efficiency: the

number of users in R : v, the number of venues in R : n, the number of ratings in Ru : L, and the distance

threshold (1◦) of the POIs: (∆x,∆y).

During the simulation, we evaluated the run time (including the total time for Phase A and the

recommender time for Phase B, the preprocessing time for Phases A and B, and the decryption time of

uq for Phase B) of APPLET using varying factors. In Figures 4(b) and (c), we plot the run time when

varying v. Only the total time of Phase A clearly increased, and Phase B was not affected. This is

because Phase A needs to calculate more samples for the similarities, which requires more computational

resources, whereas Phase B is not affected. As a preprocess, it is believed that the run time of Phase A

is reasonable, especially when deploying it on a cloud.

In Figures 4(d) and (e), we plot the run time by varying n. The simulation results show that the total

time for Phase A and the recommender time for Phase B clearly increase with n. As n increases, SP and

CP need more computational resources to compute the similarities in Phase A. Additionally, in Phase B,

CP traverses more venues to filter out those venues that are located in the area of interest of uq. Then,

with an increase in h, CP and SP spend more time to compute the intermediate results, and uq will also

need to spend more time decrypting the ciphertext. Nevertheless, the results show that the efficiency is

also sufficiently high to meet the demands of uq.

In Figures 4(f) and (g), we plot the run time by varying L. The results show that the run time of Phase

A substantially remains unchanged, because R is not affected by L. On the other hand, when varying L,
CP needs to aggregate more ratings in Phase B. However, the entire recommender time in Phase B only

has a slight change, and because h is unchanged, the decryption time of uq also remains constant.

In Figures 4(h) and (i), we plot the run time by varying (∆x,∆y). Figure 4(h), the total and pre-

process time of Phase A remain constant, because R is not affected by (∆x,∆y). From Figure 4(h),

the recommender time of Phase B and the decryption time of uq clearly increase with (∆x,∆y). The
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Figure 4 The effectiveness and efficiency of APPLET. (a) Recommendation quality of APPLET; (b) n=10, L=5,

(∆x,∆y)=(0.01, 0.01); (c) n=10, L=5, (∆x,∆y)=(0.01, 0.01); (d) v=30, L=5, (∆x,∆y)=(0.01, 0.01); (e) v=30, L=5,

(∆x,∆y)=(0.01, 0.01); (f) v=50, n=35, (∆x,∆y)=(0.01, 0.01); (g) v = 50, n = 35, (∆x,∆y) = (0.01, 0.01); (h) v=50, n=35,

L=15; (i) v=50, n=35, L=15.

reason for this is that the change in (∆x,∆y) will lead to that of h. Therefore, CP and SP have to spend

more time to recommender in Phase B. Moreover, uq also needs more time to decrypt the ciphertext as h

increases. However, the increase in the decryption time of uq is also reasonable when varying (∆x,∆y).

In conclusion, the results show that APPLET is sufficiently efficient to answer the request of uq (in

seconds). In addition, the privacy-preserving scheme does not bring about an overburden computation

for the whole recommendation system.

5.3 Discussion with other schemes

In this section, we discuss the efficiency of APPLET along with two other state-of-the-art privacy-

preserving recommendation systems. The first is a privacy-preserving personalized tweet recommendation

framework (pTwitterRec) [20]. The other is a privacy-preserving friend recommendation (PPFR) system

for online social networks [21]. Both systems adopt several encryption techniques to protect the user’s

privacy. Because these schemes are implemented under completely different settings (e.g., the number

of clouds), they cannot be applied to our particular problem. Hence, we only discuss their efficiency,

especially the response time, for uq, because the user experience is the most important aspect of a

recommender system. To be fair, we compared the efficiency using the same amount of data (i.e., 1000
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items, and 30 historical ratings by uq).

The pTwitterRec framework [20] was tested on a smartphone with a 1.512 GHz quad-core Krait CPU

and 2 GB of RAM, and the results showed a computational overhead for users of 84.0911 s. PPFR [21] was

implemented in C and tested on an Intel Xeon 6-Core 3.07 GHz PC with 12 GB of memory. The results

show that users will require 3.57 s to compute a recommendation over 1000 items. In comparison, we also

tested APPLET on the same sized dataset, the results of which indicate that users of ordinary Android

devices only have to spend 10.96 s to receive a recommendation. Therefore, APPLET is sufficiently

efficient to answer requests by uq.

6 Related work

In the past few years, POI recommendation, also referred to as location-aware recommendation, has been

recognized as an essential application in recommender systems [22]. For instance, by taking into account

the locations of users and the items they like, Foursquare provides recommendations of places around

the current location of the user. However, as the location privacy of users becomes more important,

traditional location-aware recommender systems are facing a significant challenge, namely, how to protect

the location privacy of users while preserving the recommendation quality. In this section, we review the

state-of-the-art researches on location privacy and recommender systems.

Location privacy. There are several studies that have achieved location privacy, which are based on

anonymity, differential privacy, and encryption schemes. The authors of [23–25] proposed some location-

privacy preserving mechanisms (LPPMs) based on anonymity to protect the user’s location privacy. Al-

though these anonymity mechanisms are diversiform, each of them assumes the adversaries own specific

prior knowledge. To solve the shortcomings of the above schemes, the authors of [26–28] introduced dif-

ferential privacy mechanisms to protect the user’s exact location independently from any side information

that the adversary might possess. In addition, Shao et al. [29] proposed a fine-grained privacy-preserving

LBS framework based on encryption, called FINE, for mobile devices. Notably, none of the work above

can be directly used to protect the privacy in a recommender system, which also includes some other

sensitive information. As a general encryption framework for SQL queries, CryptDB [30] can be used

to query the ranges of positions in ciphertext using OPE. However, it cannot be used to implement a

privacy-preserving recommendation because CryptDB only supports additional homomorphic encryption

using Paillier encryption. However, during the recommendation process, we must multiply the ratings

first and then sum the products to compute the similarities. Assuming that CryptDB is adopted to

achieve the same purpose, we must query the database to obtain the plaintext first, and then imple-

ment the recommendation based on the plaintext. It is clear that this cannot achieve the security goals

described in Subsection 2.4. Thus, CryptDB cannot be used to achieve the purpose of our scheme.

Recommender system. Some work (e.g., [31, 32]) has shown that a recommender system may

obtain user privacy during a recommendation. In addition, Staff et al. [33] indicated that one key

challenge was in balancing privacy, utility, and the overhead for end users when designing recommender

systems. Thus, many researchers have devoted their efforts to studying a privacy-preserving recommender

system. In [5, 34], they presented two privacy-preserving solutions based on anonymity and obfuscation

techniques. In addition, Refs. [35–37] proposed some strong and formal privacy-preserving mechanisms

based on differential privacy to protect user’s privacy during a recommendation. Moreover, Refs. [20,

21, 38, 39] also introduced cryptology to protect user privacy in recommender systems. In addition,

Guo et al. [40] proposed a trust-based fine-grained privacy-preserving friend recommendation scheme for

OSNs. Xin et al. [41] explored a two-tiered notion of privacy, including a small set of “public” users

and a large set of “private” users. Ma et al. [42] revised the user-based collaborative filtering technique,

and proposed two privacy-preserving recommendation approaches fusing user-generated tags and social

relations in a novel way. Aı̈meur et al. [43] presented a privacy-preserving hybrid recommender system,

consisting of serval different recommender algorithms. In [44], the authors also designed a mobile APP

recommender system that considered the APPs’ popularity and the security preference of users. However,
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none of these researchers have designed a specialized privacy-preserving mechanism for a location-aware

recommender system. Moreover, their methods also suffer from the inaccurate recommendation quality

or low efficiency. In comparison, our APPLET perfectly protects the user’s privacy by utilizing multiple

encryption techniques while providing a high-quality recommendation.

7 Conclusion

The disclosure of user preferences in a recommender system seriously threatens users’ personal privacy,

especially when service providers move their user data to an untrusted cloud. In this paper, we presented

a novel solution, called APPLET, to address the significant challenges in privacy-preserving location-

aware recommender systems. For APPLET, we introduced multiple cryptography methodologies for

protecting the privacy of the RUs without affecting the recommendation quality. Moreover, we evaluated

the effectiveness and performance of APPLET, the results of which indicate that APPLET is an effective

and efficient solution. As part of our future work, we may extend the framework to more complex

recommendation services.
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Appendix A Proof of Theorem 1

Phase A. Construct a simulator S1
SP that can simulate a view indistinguishable from the real view of SP, V π1

SP (R, PKs,

SKs, k1,2, p; s, α,C,W, coins;B) (where coins is a random tape for Paillier encryptions). Here, S1
SP conducts as follows:

(1) Pick random numbers s̃, α̃, and an n×m random matrix C̃.

(2) Generate an n×m random Paillier encryption matrix: B̃.

(3) Generate a random number matrix: W̃ .

(4) Generate a random tape for n×m Paillier encryptions: c̃oins.

(5) Output: (R, PKs, SKs, k1,2, p; s̃, α̃, C̃, W̃ , c̃oins; B̃).

We define the following hybrids:

• H0 = V π1
SP (R, PKs, SKs, k1,2, p),

• H1 = (R, PKs, SKs, k1,2, p; s̃, α̃, C̃, W̃ , c̃oins;B),

• H2 = S1
SP (R, PKs, SKs, k1,2, p, F ).

Given that (s̃, α̃, C̃, W̃ , c̃oins) are generated according to the same distribution as (s, α, C,W, coins), and that Paillier

encryption is semantic secure, the hybrids H0
c≡H1. Similarly, the distribution of (B̃, W̃ ) and (B,W ) are exactly the same,
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and the Paillier encryption is secure, and thus H1
c≡H2. Hence, we showed that V π1

SP

c≡S1
SP .

Then, a simulator S1
CP is constructed that can simulate a view indistinguishable from CP’s real view V π1

CP (EPKs
(R), A;F ).

Here, S1
CP conducts as follows:

(1) Generate a n×m random Paillier encryption matrix ẼPKs
(R) and a n×m random large number matrix Ã.

(2) Generate a n× n matrix F̃ .

(3) Output: (ẼPKs
(R), Ã; F̃ ).

We define the hybrids H0 = V π1
CP (EPKs

(R), A) and H1 = (ẼPKs
(R), Ã;F ).

Since Paillier encryption is semantic secure, we have (EPKs
(R), A)

c≡(ẼPKs
(R), Ã) and H0

c≡H1. Hence, V π1
CP

c≡S1
CP .

In addition, we encrypt Av and {vL} through commutative encryption and comparable encryption, respectively. Given

that these encryption schemes are secure, no probabilistic polynomial-time (P.P.T.) adversary can distinguish them. There-

fore, we claim that no P.P.T. adversary can obtain SP’s property and that Phase A in our APPLET is secure.

Phase B. Construct a simulator Suq that can simulate a view indistinguishable from uq’s real view V π2
uq

((xu, yu), (∆x,

∆y), sku,param,mkey, α, k1, p;β, γ, s′, coins;Epku
(v′N , v′L), R

′
p) (where coins is the random tape for comparable encryption).

Here, Suq conducts as follows:

(1) Pick random numbers β̃, γ̃, and s̃′.

(2) Generate an El-Gamal encryption vector Ẽpku
(v′N , v′L), a random vector R̃′

p and a random tape for comparable

encryption c̃oins.

(3) Output: ((xu, yu), (∆x,∆y), sku,param,mkey, α, k1, p; β̃, γ̃, s̃′, c̃oins; Ẽpku
(v′N , v′L), R̃

′
p).

We define the following hybrids:

• H0 = V π2
uq

((xu, yu), (∆x,∆y), sku,param,mkey, α, k1, p),

• H1 = ((xu, yu), (∆x,∆y), sku,param,mkey, k1, p; β̃, γ̃, s̃′, c̃oins;Epku
(v′N , v′L), R

′
p),

• H2 = Suq ((xu, yu), (∆x,∆y), sku,param,mkey, α, k1, p; (v′N , v′L), Rp).

Given that (β̃, γ̃, s̃′, c̃oins) are generated with the same distribution as (β, γ, s′, coins), and the comparable encryption is

secure, the hybrids H0
c≡H1. Because commutative encryption is secure and (Ẽpku

(v′N , v′L), R̃
′
p) follows the same distribu-

tion as (Epku
(v′N , v′L), R

′
p)), we have H1

c≡H2. Thus, V π2
uq

c≡Suq .

Next, we construct a simulator S2
CP that can simulate a view indistinguishable from CP’s view V π2

CP (F,EPKs
(R),

pku, Epks
(vN , vL),Enc(vL), param, k2;Z, coins; Enc({xu±∆x, yu±∆y},Der({xu±∆x, yu±∆y}), s′, β2, α2γ)). Here, S2

CP

conducts as follows:

(1) Generate a random area encrypted through comparable encryption: Ẽnc({xu ± ∆x, yu ± ∆y}), D̃er({xu ± ∆x,

yu ±∆y}), a random matrix Z̃, and random parameters: s̃′, β̃2, α̃2γ.

(2) Run the protocol using Ẽnc({xu ±∆x, yu ±∆y}), D̃er({xu ±∆x, yu ±∆y}), Z̃ and s̃′, β̃2, α̃2γ as input.

(3) Generate a random tape for re-encryption in commutative encryption: c̃oins.

(4) Output: (F,EPKs
(R), pku, Epks

(vN , vL),Enc(vL), param, k2; Z̃, c̃oins; Ẽnc({xu±∆x, yu±∆y}), D̃er({xu±∆x, yu±
∆y}), s̃′, β̃2, α̃2γ).

We define the following hybrids:

• H0 = V π2
CP (F,EPKs

(R), pku, Epks
(vN , vL),Enc(vL), param, k2),

• H1 = (F,EPKs
(R), pku, Epks

(vN , vL),Enc(vL), param, k2; Z̃, c̃oins; Enc({xu ± ∆x, yu ± ∆y}),Der({xu ± ∆x, yu ±
∆y}), s′, β2, α2γ),

• H2 = (F,EPKs
(R), pku, Epks

(vN , vL),Enc(vL), param, k2; Z̃, c̃oins; Ẽnc({xu ± ∆x, yu ± ∆y}), D̃er({xu ± ∆x, yu ±
∆y}), s̃′, β̃2, α̃2γ).

Given Z̃ and c̃oins generated as the distribution of Z and coins, we have H0 = H1. Through the security of compa-

rable encryption and the same distribution of {s̃′, β̃2, α̃2γ} with {s′, β2, α2γ}, we have H1
c≡H2 and H2

c≡S2
CP . Hence,

V π2
CP

c≡S2
CP .

Finally, we construct a simulator S2
SP that can simulate a view indistinguishable from SP’s view V π2

SP (sks, s−1 mod

p, α;Epku
(Epks

(v′N , v′L)), T,Q). Here, S2
SP conducts as follows:

(1) Generate a random re-encrypted vector: Ẽpku
(Epks

(v′N , v′L)), a random Paillier encryption vector: Q̃ and a random

vector: T̃ .

(2) Run the protocol with Ẽpku
(Epks

(v′N , v′L)), Q̃ and T̃ .

(3) Output: (sks, s−1 mod p, α; Ẽpku
(Epks

(v′N , v′L)), T̃ , Q̃).

Then, the hybrids are defined as follows:

• H0 = V π2
SP (sks, s−1 mod p, α;Epku

(Epks
(v′N , v′L)), T,Q),

• H1 = V π2
SP (sks, s−1 mod p, α; Ẽpku

(Epks
(v′N , v′L)), T̃ , Q̃).

Since the security of commutative and Paillier encryption and {Ẽpku
(Epks

(v′N , v′L)), Q̃, T̃} are generated as the distri-

bution of {Epku
(Epks

(v′N , v′L)), Q, T}, we obtain H0
c≡H1 and H1

c≡S2
SP . Hence, V π2

SP

c≡S2
SP .

To summarize, no P.P.T. adversary can distinguish the simulators’ views from their own real views. Hence, no P.P.T.

adversary can obtain uq’s private input or encrypted recommendation results. Moreover, no P.P.T. adversary can obtain

the similarities of venues.
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