
SCIENCE CHINA
Information Sciences

August 2017, Vol. 60 089301:1–089301:3

doi: 10.1007/s11432-016-0009-6

c© Science China Press and Springer-Verlag Berlin Heidelberg 2017 info.scichina.com link.springer.com

. LETTER .

Multisite computation offloading in dynamic mobile

cloud environments

Xiaomin JIN1,2*, Yuanan LIU1,2, Wenhao FAN1,2, Fan WU1,2 & Bihua TANG1,2

1School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications,

Beijing 100876, China

Received November 23, 2016; accepted December 12, 2016; published online February 8, 2017

Citation Jin X M, Liu Y A, Fan W H, et al. Multisite computation offloading in dynamic mobile cloud

environments. Sci China Inf Sci, 2017, 60(8): 089301, doi: 10.1007/s11432-016-0009-6

Dear editor,

With the development of wireless communication
and computer technology, using mobile devices
(MDs) has become more and more popular. How-
ever, due to a series of constraints such as heat dis-
sipation, volume and battery capacity, MDs take
much time and energy to run some applications
and even cannot run heavy applications. As a re-
sult, these constraints hinder the further develop-
ment of MDs. To solve the problem that MDs’
performance is restricted by their own limited re-
sources, mobile cloud computing (MCC) has been
proposed to augment MDs’ capabilities [1]. Com-
pared with the client-server architecture which al-
ways executes components in the server, MCC
needs to make offloading decisions that determine
whether components should be offloaded or not ac-
cording to the optimization objective [2].

How to make offloading decisions can be de-
scribed as an application partitioning problem
which is NP-complete. Compared with the tra-
ditional cloud computing, MCC has its own fea-
tures [3] such as mobility, diversity of network con-
ditions and limited channel bandwidth. These fea-
tures bring changes during applications’ life cycle
and turn the application partitioning of MCC into
the runtime application repartitioning.

In this letter, we focus on multisite computation

offloading in dynamic mobile cloud environments
with the consideration of environmental changes
during applications’ life cycle and relationships
among components of an application. Multisite
computation offloading can migrate components
to multiple servers and it has less consumption
brought by data transmission because consump-
tion on wired networks among servers is quite
small. Decision making of multisite computation
offloading is described as the (k + 1)-way applica-
tion partitioning where k represents the number
of servers and it has a much larger solution space
than single site computation offloading, which in-
creases algorithms’ running time. In runtime ap-
plication repartitioning, the key point is to pro-
pose an algorithm which can make a good tradeoff
between running time and accuracy. To address
this problem, we propose a runtime application
repartitioning algorithm that makes a good bal-
ance between running time and accuracy with the
help of historical offloading strategies based on the
memory-based immigrants [4] adaptive genetic al-
gorithm. Moreover, we explore the using of con-
current multipath transfer (CMT) (e.g., SCTP [5])
which uses multiple physical wireless interfaces to
transfer data in MCC with our algorithm to com-
bat the challenges that wireless links have limited
bandwidth and low robustness.

*Corresponding author (email: jxm@bupt.edu.cn)

The authors declare that they have no conflict of interest.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-016-0009-6&domain=pdf&domain=pdf&date_stamp=2017-7-6
https://doi.org/10.1007/s11432-016-0009-6
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-016-0009-6

Jin X M, et al. Sci China Inf Sci August 2017 Vol. 60 089301:2

Runtime application repartitioning algorithm.
An application (see Appendix A for detail) can
be represented by a graph G = (V,E) whose ver-
texes represent the application’s components and
edges represent interactive relationships among
components. Offloading strategy is represented by
X = {xv|0 6 xv 6 k, v ∈ V }. xv = 0 means that
component cv is executed in the MD and xv = i

(1 6 i 6 k) means that component cv is executed
in cloud server csi. We define the objective func-
tion which represents the weighted total cost as

F (G,X) =
∑

v∈V

(

we

Exv
v

El(G)
+ wt

T xv
v

Tl(G)

)

+
∑

u∈V

∑

v∈V

(

we

Exu,xv
u,v

El(G)

+ wt

T xu,xv
u,v

Tl(G)

)

. (1)

we is the weight of energy cost and wt is the weight
of time cost. El(G) and Tl(G) respectively rep-
resent the energy and time cost of application G

when it is executed locally. Exv
v and T xv

v respec-
tively represent the energy and time cost when
component cv is executed according to xv. E

xu,xv
u,v

and T xu,xv
u,v respectively represent the energy and

time cost brought by data transmission when com-
ponent cu is executed according to xu and compo-
nent cv is executed according to xv.

The pseudocode of our algorithm is shown in
Appendix B. Core parts of our algorithm are illus-
trated as follows.

(1) Encoding and fitness function. In our al-
gorithm, a chromosome is represented by the of-
floading strategy of offloadable components and its
genes are encoded as integers between 0 and k.
The fitness function is expressed as

fh =
1

F 1
h + F 2

h + F (Gh, Xh)
. (2)

F 1
h represents the cost brought by components that

have been executed at time h. F 2
h represents the

cost brought by the component that is being exe-
cuted. F 2

h is a changing value because the environ-
ment may change during its execution. F (Gh, Xh)
is the cost of components which are not executed
at time h. Appendix C illustrates an example
which is helpful to understand them.

(2) Genetic operations. Crossover and mutation
probabilities are key parameters which affect the
performance of genetic algorithms seriously. How-
ever, in the standard genetic algorithm, crossover
and mutation probabilities are constants so that
it has shortcomings of slow convergence rate and
easy to fall into local optimal solutions. To avoid

bad solutions are stored in the memory, we ap-
ply adaptive probabilities of crossover and muta-
tion [6] in our algorithm.

(3) Memory. Historical offloading strategies
stored in the memory (Appendix D helps to un-
derstand it) are used as the base to create immi-
grants to replace worst chromosomes in the current
population. The memory contains |V | sets of data
which consists of three parts: component index,
maximum and minimum parameters (environmen-
tal parameters and F 1

h), m elements. An element is
made up by six parts which are component index,
uplink and downlink throughput between MD and
cloud servers, cost of executed components, chro-
mosome and fitness. Similarity of parameters de-
termines whether a new element should be added
into the memory or not when updating the mem-
ory. Parameters of element ex are normalized by

Yex =

(

F
1,ex
h

F
1,max
h

,
t
up
1,ex

t
up
1,max

,
tdown
1,ex

tdown
1,max

,

. . . ,
t
up
k,ex

t
up
k,max

,
tdown
k,ex

tdown
k,max

)

. (3)

Similarity between element ei and ej is calculated
by degree of grey relation which is expressed as

s =
1

2k + 1

2k+1
∑

n=1

σ + ξθ

∆(n) + ξθ
, (4)

where ∆(n) =
∣

∣Yei(n)− Yej (n)
∣

∣ (n = 1, 2, . . . , 2k+
1), θ = max∆(n), σ = min∆(n) and ξ = 0.5.
When updating the memory, all existing elements
will be traversed. If the similarity between the
new element and an existing element in the mem-
ory is larger than or equal to the similarity thresh-
old sth and the fitness of the new element is larger
than that of the existing element, the new element
will be added by replacing the existing element. If
similarities between the new element and all exist-
ing elements are smaller than sth and there is free
space, the new element will be directly added.

Experiment. To simulate the dynamic mobile
cloud environments, we propose a mobility model
illustrated in Appendix E to generate users’ tra-
jectories and a trajectory with 30 min is used
in the experiment. Figure 1 illustrates the per-
formance of our algorithm and the improvement
brought by using CMT (Wi-Fi + LTE). MIAGA
represents our algorithm and others are compar-
ison algorithms. We also evaluate our algorithm
and the using of CMT through other different ex-
periments in Appendix F.

In Figure 1(a), results of MIAGA are smaller
than that of other algorithms, which means that
MIAGA improves MDs’ performance better than

Jin X M, et al. Sci China Inf Sci August 2017 Vol. 60 089301:3

100

90

80

70

60

50

W
ei

g
h
te

d
 t

o
ta

l
co

st
 (

%
)

W
ei

g
h
te

d
 t

o
ta

l
co

st
 (

%
)

80

75

70

65

60

55

50
1 2 3 4 5

The number of cloud servers

Wi-Fi+LTE Wi-Fi LTE

Network interfaces used

(b)(a)

ILP1 ILP2 SGA

MISGA AGA MIAGA

Figure 1 Experimental results. (a) Weighted total cost with different number of cloud servers (we = 0.5, wt = 0.5);
(b) weighted total cost with different interfaces (we = 0.5, wt = 0.5).

other algorithms. MIAGA can get excellent so-
lutions by costing little extra running time be-
cause it just needs a simple calculation of adaptive
crossover and mutation probabilities, which makes
MIAGA store the historical excellent offloading
strategies. These historical offloading strategies
help MIAGA improve its convergence rate and its
ability to adapt to environmental changes. It can
be observed that results of MIAGA decrease (from
81.66% to 62.54%) with the increase in the number
of cloud servers, which highlights the advantage of
multisite computation offloading.

From Figure 1(b), it can be seen that the result
of CMT (64.90%) is smaller than that of Wi-Fi
(78.58%) and LTE (67.82%). When using CMT,
MIAGA determines whether to offload a compo-
nent or not and selects the optimal interface to
transfer data. MIAGA can utilize advantages of
Wi-Fi and LTE to enhance the performance of
computation offloading in MCC.

Conclusion. In this letter, a runtime application
repartitioning algorithm based on memory-based
immigrants adaptive genetic algorithm is proposed
and it performs better than other algorithms in dy-
namic mobile cloud environments. We explore the
using of CMT with our algorithm to combat the
challenges that wireless links have limited band-
width and low robustness. The experimental re-
sults show that using CMT with our algorithm im-
proves the performance of computation offloading
in MCC.

Acknowledgements This work was supported in

part by National Natural Science Foundation of China

(Grant No. 61502050), YangFan Innovative & En-

trepreneurial Research Team Project of Guangdong

Province, Civil Aerospace Science and Technology

Project and Fundamental Research Funds for the Cen-

tral Universities.

Supporting information Appendixes A–F. The

supporting information is available online at info.

scichina.com and link.springer.com. The supporting

materials are published as submitted, without type-

setting or editing. The responsibility for scientific ac-

curacy and content remains entirely with the authors.

References

1 Kumar K, Liu J B, Lu Y H, et al. A survey of com-
putation offloading for mobile systems. Mobile Netw
Appl, 2013, 18: 129–140

2 Kumar K, Lu Y H. Cloud computing for mobile users:
can offloading computation save energy? Computer,
2010, 4: 51–56

3 Qi H, Gani A. Research on mobile cloud computing:
review, trend and perspectives. In: Proceedings of the
2nd International Conference on Digital Information
and Communication Technology and It’s Applications,
Bangkok, 2012. 195–202

4 Yang S. Memory-based immigrants for genetic algo-
rithms in dynamic environments. In: Proceedings of
the 7th Annual Conference on Genetic and Evolution-
ary Computation, Washington, 2005. 1115–1122

5 Iyengar J R, Amer P D, Stewart R. Concurrent multi-
path transfer using SCTP multihoming over indepen-
dent end-to-end paths. IEEE ACM Trans Netw, 2006,
14: 951–964

6 Srinivas M, Patnaik L M. Adaptive probabilities of
crossover and mutation in genetic algorithms. IEEE
Trans Syst Man Cybern, 1994, 24: 656–667

info.scichina.com
info.scichina.com
link.springer.com

