
. Supplementary File .

SCIENCE CHINA
Information Sciences

Multisite computation offloading in dynamic mobile
cloud environments

Xiaomin JIN1,2*, Yuanan LIU1,2 , Wenhao FAN1,2 , Fan WU1,2 & Bihua TANG1,2

1School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications,

Beijing 100876, China

Appendix A Application model

The application model is the abstract of mobile applications and is composed of many components (e.g., classes, functions).

An application can be represented by a graph G = (V,E) illustrated in Figure A1. A vertex v (v ∈ V ) is modeled as a

3-tuple {wv , lv , ov}. wv is the amount of component cv ’s instructions or CPU cycles which can be obtained by application

analysis. lv represents whether component cv is offloadable or not. Some components of an application cannot be offloaded

because they need to operate local hardware resources. For example, some components need to operate sensors of the

mobile device. In this case, these components must be executed in the mobile device. These slash-filled circles in Figure A1

denote the unoffloadable components and we assume that the first component is always executed in mobile devices. ov is

the index of component cv and indicates the execution order of component cv . For instance, component c2 will be executed

after the completion of component c0 and component c1, and needs the output data of these two components. An edge

e = (u, v) (u, v ∈ V ) represents the interactive relationship between component cu and component cv and its weight du,v
denotes the amount of interactive data. If two components have no interactive relationship, the edge weight will be set to

zero. In some cases, the last component cN has output data which will be passed to component c0 before the application’s

completion.

j

N

0 1

3

2i

d0,1

d0,2

d0,3

d0,j
d1,2

d2,3

d2,i

d3,i

d3,j

di,j

dj,N

dN,0

Figure A1 Application model.

Appendix B Pseudocode of our algorithm

Algorithm B1 illustrates the pseudocode of our runtime application repartitioning algorithm. When a component of an

application is about to be executed, a request is sent to our algorithm for obtaining the offloading strategy. After receiving

an offloading request, our algorithm returns the offloading strategy of that component. Then the component is executed

according to the offloading strategy returned.

*Corresponding author (email: jxm@bupt.edu.cn)



2 Jin X M, et al. Sci China Inf Sci

Algorithm B1 Our runtime application repartitioning algorithm

1: calculate chromosome length cl0, energy costEl(G), time cost Tl(G);

2: initializememoryM(0) and populationP (0);

3: while simulting do

4: if receive the strategy request then

5: //BP (h) is the best chromosome

6: sendStrategy(X,BP (h));

7: //env represents the environmental parameters

8: updateMemory(M(h), F 1
h , env,BP (h));

9: end if

10: if environment changes then

11: recalculate F 2
h andupdate environmental parameters;

12: end if

13: genetic operations;

14: //memory − based immigrants

15: //BM (h) is the bestmemory

16: PI(h) = mutateBestMemory(BM (h), ri ×M,prim);

17: evaluate(PI(h), F
1
h , F

2
h );

18: //Pn(h) is the new population after genetic operations

19: replace(Pn(h), PI(h));

20: P (h+ 1) = Pn(h);

21: end while

Appendix C Objective function in dynamic mobile cloud environments

Figure C1 illustrates an example of the objective function in dynamic mobile cloud environments.

1

h
F

2

h
F

 

Figure C1 Example of objective function in dynamic mobile cloud environments.

Appendix D Memory and element

The memory and element are illustrated in Figure D1.

0
ci max minand parameters

0 1 1
, ,...,

m
element element elment

 

1
ci max minand parameters

0 1 1
, ,...,

m
element element elment

 

... ...

N
ci max minand parameters

0 1 1
, ,...,

m
element element elment

 

memory

1
,...,

up up

k
t t

 component index

1
,...,

down down

k
t t

1

h
F

chromosome

f

environmental

parameters

element

Figure D1 Memory and element.

Appendix E Mobility Model

In this letter, we propose a mobility model to simulate the dynamic mobile cloud environments. Different from models in [1]

and [2], the trajectory generated by our mobility model is unknown and users keep moving during applications’ life cycle.



Jin X M, et al. Sci China Inf Sci 3

We use a 3-tuple {s,∆t, γ} to represent a user’s mobility and the mobility model is illustrated in Figure E1. s represents the

area where the user locates. To simplify the network environment, network parameters in a square are stable. In square sj ,

network parameters are modeled as a set tj = {(tupi , tdown
i )|i = 1, ..., k} whose element represents the uplink and downlink

throughput between cloud server csi and the mobile device. ∆t is the time that the user take to cross square s. A large ∆t

means that the user crosses square s with a slow speed. On the contrary, a small ∆t means that the user crosses square s

with a fast speed. γ is the probability that the user will still stay in the same square after ∆t. (1− γ)/l is the probability

that the user will cross to an adjacent square where l is the number of a square’s adjacent squares. Users in each square

have eight movement directions which are shown at the right part of Figure E1 and the number of directions decreases in

marginal squares. For example, users in square S12 can move to S6, S7, S8, S11, S13, S16, S17 and S18; users in square

S0 can move to S1, S5 and S6. A user’s trajectory is modeled as a vector tr = {(s1,∆t1), (s2,∆t2), ..., (sn,∆tn)} and a

trajectory (S20 → S9) example is given in Figure E1.

S7

S0 S1 S2 S3 S4

S5 S6 S8 S9

S10 S11 S13 S14

S15 S16 S17 S18 S19

S20 S21 S22 S23 S24

S12

Figure E1 Mobility model.

Appendix F Experiment

In this section, we conduct other different experiments to evaluate our algorithm and the using of concurrent multipath

transfer (CMT). Experiments run on a PC with Intel Core i5 CPU (4 cores, 3.3GHz, 4.0G RAM). Parameters of our

algorithm are set as: M = 50, ri = 0.2, prim = 0.01, sth = 0.6. We first illustrate the numerical simulation platform where

these experiments are conducted. We then conduct experiments to evaluate our algorithm and explore the using of CMT

with our algorithm. If there is no additional description, we = wt = 0.5. Six runtime application repartitioning algorithms

are used in this part.

ILP1: Algorithm based on integer linear programming (ILP). It resolves the ILP problem when detecting environmental

changes and uses local execution strategy as default.

ILP2: Algorithm based on ILP. It resolves the ILP problem periodically and uses local execution strategy as default.

SGA: Algorithm based on standard genetic algorithm (SGA) which reruns when detecting environmental changes.

AGA: Algorithm based on adaptive genetic algorithm (AGA) which reruns when detecting environmental changes.

MISGA: Algorithm based on memory-based immigrants SGA.

MIAGA: Our algorithm based on memory-based immigrants adaptive genetic algorithm.

Appendix F.1 Numerical simulation platform

The numerical simulation platform is illustrated in Figure F1. The application execution simulation module simulates the

application’s execution. It sends a request to the algorithm module to get the offloading strategy of the component which

is about to be executed. After receiving the offloading strategy request, the algorithm module will return the offloading

strategy of the component to the application execution simulation module. The random trajectory generation module

generates user trajectory according to the mobility model which is introduced in Appendix E. The environment monitoring

module monitors the environmental change and notifies the algorithm module and the application execution simulation

module.

Appendix F.2 Evaluation of our runtime algorithm

Figure F2 shows the weighted total cost of five different applications. Applications’ number of components is 20, 40, 60,

80 and 100, respectively. Results of ILP-based algorithms (ILP1 and ILP2) are close to that of GA-based algorithms when

they are used in Application1. Application1’s number of components is relatively small for ILP-based algorithms so that

they take less time to make offloading decisions, which enables ILP-based algorithms to adapt to environmental changes

timely. However, the performance of ILP-based algorithms becomes bad with the increase in the number of components.

Running time ILP takes to solve a problem is exponential with the number of variables so that ILP-based algorithms

take much more time to partition an application when the application’s number of components is large. Long running

time makes them unable to adapt to environmental changes and provide wrong offloading strategies. The performance of



4 Jin X M, et al. Sci China Inf Sci

Algorithm Module

Environment

Monitoring

Module

Application 

Execution

Simulation Module

environmental

change notification

requests for offloading strategy

returns offloading strategy

Random Trajectory 

Generation Modulegenerates trajectory

environmental

change notification

Figure F1 Numerical simulation platform.

GA-based algorithms is better than that of ILP-based algorithms and the advantage of MIAGA is more obvious when the

number of components is large. Results of AGA-based algorithms (AGA and MIAGA) are better than that of SGA-based

algorithms (SGA and MISGA). The reason is that SGA’s convergence rate is slow and SGA is easy to fall into the local

optimal solution. Although MISGA has a high convergence rate with the help of the memory, it is also easy to fall into the

local optimal solution because its memory stores the SGA’s solutions which are not optimal. Compared with SGA, AGA

can get better solutions by costing little extra time because it just needs a simple calculation of crossover and mutation

probabilities. Results of AGA are a little better than that of MIAGA in Application1 and Application2. This is because

that these two applications’ number of components is relatively small for AGA so that AGA can find optimal solutions

quickly but memory-based immigrants may affect solutions of MIAGA because it needs to increase the diversity to adapt

to environmental changes. This problem can be solved by reducing ri and MIAGA’s advantages are highlighted in the large

scale, poor computing resources and high users’ speed scenarios, which is illustrated in following experiments.

Application1 Application2 Application3 Application4 Application5
50

60

70

80

90

100

110

W
ei

g
h
te

d
 t

o
ta

l 
co

st
 (

%
)

Application

ILP1 ILP2 SGA

MISGA AGA MIAGA

 

5 10 20 50 80 100
60

70

80

90

100

110

W
ei

g
h
te

d
 t

o
ta

l 
co

st
 (

%
)

CPU limit (%)

ILP1

ILP2

SGA

MISGA

AGA

MIAGA

 

Figure F2 Weighted total cost of different applications. Figure F3 Weighted total cost with different CPU limit.

Application repartitioning algorithms may be executed in different types of equipments (e.g., mobile devices, PCs or

cloud servers) and computing resources may become less even in the same equipment because of other programs’ execution.

Some algorithms may perform well in powerful equipments but not in weak equipments. In this experiment, we limit the

CPU usage of runtime application repartitioning algorithms with a Linux command cpulimit to simulate scenarios with

different types of equipments. Figure F3 shows the weighted total cost of Application3 with different CPU limit. Results of

ILP-based algorithms are close to 100% when CPU limit is 5% and 10%. The reason is that they cost much time to get the

offloading strategy with small CPU limit and use the default local execution strategy. Results of MIAGA are better than

that of other algorithms. MIAGA performs well and its results are relatively stabler (from 75.63% to 68.22%) than that

of AGA (from 81.79% to 69.35%) with different CPU limit. When the CPU limit is 5%, the result of MIAGA (75.63%) is

much better than that of AGA (81.79%). This because that MIAGA can get better solutions quickly with the help of the

historical offloading strategies.

Figure F4 illustrates the weighted total cost with different speed of the user. In this experiment, we use the same

trajectory (moving path is same) with different speed. λ is the coefficient of the time that the user takes to cross a square.

A larger λ represents that the user takes more time to cross a square, which means the user’s speed is slow. Slow speed

brings less environmental changes. Results of ILP-based algorithms decrease (ILP1: from 94.24% to 85.31%; ILP2: from

92.69% to 85.90%) gradually with the decrease of the user’s speed. MIAGA still performs well with different speed. When



Jin X M, et al. Sci China Inf Sci 5

the user’s speed is fast (λ = 0.5), the result of MIAGA (70.34%) is obviously smaller than that of AGA (73.72%).

0.5 0.75 1 1.25 1.5
50

60

70

80

90

100

W
ei

g
h
te

d
 t

o
ta

l 
co

st
 (

%
)

 

ILP1 ILP2 SGA

MISGA AGA MIAGA

 

Figure F4 Weighted total cost with different speed.

Appendix F.3 Computation offloading using CMT

In this part, we explore the using of CMT with our algorithm in computation offloading of MCC. We use two physical

interfaces (Wi-Fi and LTE) in these experiments. The mobile device can use Wi-Fi and LTE to transfer data simultaneously

by using CMT. MIAGA has two functions in the computation offloading of using CMT. One is to determine whether to

offload a component or not. Another is to determine which physical interface should be used to transfer data according to

the optimization objective.

Wi-Fi+LTE Wi-Fi LTE
50

55

60

65

70

75

80

85

E
n
er

g
y
 c

o
st

 (
%

)

Network interfaces used
 

Wi-Fi+LTE Wi-Fi LTE
50

55

60

65

70

75

80

85

90

T
im

e 
co

st
 (

%
)

Network interfaces used
 

Figure F5 Energy cost with different interfaces. Figure F6 Time cost with different interfaces.

Figure F5 illustrates the energy cost (we = 1, wt = 0) with different interfaces. It can be seen that CMT has the smallest

energy cost (61.87%) and LTE has the largest energy cost (82.33%). In this letter, we use formula p = αt+ β [3] to model

the power of wireless network interfaces. In this formula, p represents the uplink (downlink) power, t represents the uplink

(downlink) throughput, α is a constant determined by uplink or downlink, and β is a constant determined by the interface

type. By using this power model, the energy cost brought by data transmission can be expressed as e = p d
t
= d(β

t
+ α)

where d is the amount of data needed to be transferred. βLTE (1288.04mW) is a large value which represents the tail power

consumed by the connection between the mobile device and base station. Large tail power makes LTE much less energy

efficient than Wi-Fi in most cases. That is the reason why the energy cost of only using Wi-Fi is smaller than that of only

using LTE. However, LTE usually has higher uplink and downlink throughput than Wi-Fi, which makes it possible for LTE

to have less energy cost in some cases. This also provides an opportunity to optimize energy consumption by using CMT. In

this experiment, we use energy cost as the optimization objective. MIAGA will determine whether to offload a component

or not and select the optimal interface to transfer data according to this optimization objective, which gives CMT the best

result.

Figure F6 shows the time cost (we = 0, wt = 1) with different interfaces. LTE has higher throughput than Wi-Fi in

most cases, which makes the result of LTE smaller than that of Wi-Fi. It can be observed that CMT brings greatest time

savings (51.04%) and the performance of Wi-Fi (87.59%) is worst. In this experiment, we use time cost as the optimization



6 Jin X M, et al. Sci China Inf Sci

objective. According to this objective, MIAGA will select the optimal interface to transfer data to save as much time as

possible.

References

1 Huang D, Wang P, Niyato D. A dynamic offloading algorithm for mobile computing. IEEE Trans Wirel Commun,

2012, 11: 1991-1995

2 Deng S G, Huang L T, Taheri J, et al. Computation offloading for service workflow in mobile cloud computing. IEEE

Trans Parallel Distrib Syst, 2015, 26: 3317-3329

3 Huang J X, Qian F, Gerber A, et al. A close examination of performance and power characteristics of 4G LTE networks.

In: Proceedings of the 10th international conference on Mobile systems, applications, and services, Low Wood Bay,

2012. 225-238


