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Abstract Recently, many quantum digital signature (QDS) schemes have been proposed to authenticate the

integration of a message. However, these quantum signature schemes just consider the situation for bit messages,

and the signing-verifying of one-bit modality. So, their signature efficiency is very low. In this paper, we propose

a scheme based on an application of Fibonacci-, Lucas- and Fibonacci-Lucas matrix coding to quantum digital

signatures based on a recently proposed quantum key distribution (QKD) system. Our scheme can sign a

large number of digital messages every time. Moreover, these special matrices provide a method to verify the

integration of information received by the participants, to authenticate the identity of the participants, and to

improve the efficiency for signing-verifying. Therefore, our signature scheme is more practical than the existing

schemes.
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1 Introduction

Digital signatures have been invented to play the same role as hand-written signatures [1]. The main

difference between the two is the environment in which they function. For hand-written signatures, a

piece of paper binds the text of a document and a signature. In the computer environment, a digital
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signature needs to bind both the text of a document and the identity of a signer in such a way that

forging the signature is “impossible”. The identity of a signer is a secret key, which is used in the

signing algorithm. A matching public key is used to verify digital signatures. To avoid trivial attacks,

public verification keys need to be certified by a public-key infrastructure (PKI). Digital signatures are

designed using (believed) intractable mathematical problems such as integer factorisation (used in RSA

signatures [2, 3]) or discrete logarithm (applied in ElGamal signatures [4]). Unfortunately, both integer

factorisation and discrete logarithm problems are “easy” on quantum computers [5]. Consequently, both

RSA and ElGamal signatures can be forged at will by quantum algorithms. A growing importance of

digital signatures and their wide-spread applications are the main drivers towards the development of

quantum signatures, which are efficient and whose security is guaranteed by the laws of physics rather

than computational assumptions. In recent years, a few quantum digital signature (QDS) solutions have

been proposed [6–17].

The first QDS algorithm has been proposed by Gottesman and Chuang [7]. They used a quantum

one-way function to build their signature. A weakness of their signature is that it needs a long-term

quantum memory. In the followup research, many authors [10, 12–14] have improved the Gottesman

and Chuang (GC) QDS algorithm. However, their solutions have been developed under an (unrealistic)

assumption that the communication channels are authenticated (in other words, they assume that quan-

tum channels cannot be eavesdropped). Amiri et al. [18] have designed a QDS algorithm with no specific

trust assumptions on quantum channels. Yin et al. [19] have proposed to use a single-photon qubit state

and phase-randomized weak coherent states to remove the assumptions about secure quantum channels.

Recently, Donaldson et al. [20] have implemented a quantum digital signature that allows to communicate

signatures up to a kilometre range using a standard quantum key distribution link.

A digital signature scheme is said to be secure if it is unforgeable, nonrepudiable and non-transferable

[6]. Unforgeability indicates the fact that an adversary cannot create a valid signature for any message.

Nonrepudiation means that the signer of a message cannot deny the action of signing the message after

the fact. Transferability requires any receiver of a valid signature to be able to verify its validity using

public information only and without any interaction with the signer. There are two main differences

between classical and quantum signatures: (1) quantum signatures can be verified once only, while

classical signatures can be verified an arbitrary number of times, and (2) the verification of quantum

signatures requires a one-time verification public key. Note that classical signatures are verified by a

single public key that can be fetched as an appropriate certificate from a PKI.

The signatures schemes developed so far allow to sign a single-bit message and the signer has to know

the message. In many applications (such as electronic elections and notary systems), messages have to

be signed blindly (or without knowing the content of messages). In this paper, we propose an efficient

algorithm for quantum digital signatures without the need for quantum memory. The building blocks

we use are the Simon et al. quantum key distribution (QKD) protocol and the Fibonacci coding [21,22].

The Fibonacci coding is applied to convert the QKD protocol into our QDS protocol. As a research

result of an independent interest, we generalise the Fibonacci binary coding to Fibonacci (or Fibonacci-

Lucas/Lucas) matrix coding. The generalisation enables our QDS to detect and correct transmission

errors, which may occur with a high rate.

The remainder of this paper is organised as follows. In Section 2, three kinds of coding matrices

(Fibonacci, Lucas and Fibonacci-Lucas) are defined and their properties are studied. Next we introduce

Simon’s et al. QKD protocol and an improved version of it in Section 3. Section 4 is the main part of

the work and presents our QDS protocol. Security and efficiency analysis are given in Section 5. Section

6 concludes the work with a brief summary of our contributions.

2 Quantum coding matrices

In this section, we define three classes of coding matrices, i.e., Fibonacci Qn
p -matrix, Lucas Rn

p -matrix,

and Fibonacci-Lucas T n
p -matrix and investigate their properties.
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2.1 Fibonacci matrices

Fibonacci numbers Fn [23] are an infinite sequence of integers defined by the following recursion:

Fn = Fn−1 + Fn−2, n > 2, (1)

where the first two elements of the sequence are F0 = 0 and F1 = 1. Taking the first three integers

F0, F1, F2 of the Fibonacci sequence, we can construct a 2× 2 Fibonacci matrix:

Q1 =

(

F0 F1

F1 F2

)

=

(

0 1

1 1

)

, (2)

where det(Q1) = F0F2 − F 2
1 = −1. Using recursion (1), we can compute the nth power of the Fibonacci

matrix Q1 as follows:

Qn
1 =

(

Fn−1 Fn

Fn Fn+1

)

. (3)

Since det(An) = (det(A))n, we have det(Qn
1 ) = (det(Q1))

n = (−1)n. This means that Fibonacci

matrices Qn
1 are invertible and their inverse matrices are given as

Q−2k
1 =

(

F2k+1 −F2k

−F2k F2k−1

)

, for n = 2k, (4)

Q
−(2k+1)
1 =

(

−F2k+2 F2k+1

F2k+1 −F2k

)

, for n = 2k + 1. (5)

Construction of Qp. We define a new class of Fibonacci matrices Qp, where p = 2, 3, . . . and Q1 is

given by (2). The class satisfies the following relation:

Qp =





















Q1 Q1 · · · Q1 Q1

O I O · · · O

O O I
. . . O

...
...

. . .
. . . O

O O · · · O I





















,

where the 2 × 2 matrix O contains zero entries only and the 2 × 2 matrix I is an identity matrix. It is

easy to prove that matrices Qn
p satisfy the following properties in terms of (3):

det(Qn
p ) = (det(Qp))

n = (−1)
pn
. (6)

Note that according to (6), Qn
p (where p = 1, 2, 3, . . .) is invertible and its inverse can be calculated using

(4) and (5), which are as follows:

Q−n
p =





















Q−n
1 −I · · · −I −I

O I O · · · O

O O I
. . . O

...
...

. . .
. . . O

O O · · · O I





















.
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2.2 Lucas matrices

Lucas numbers Ln [24] are an infinite sequence of integers, defined by the following recursion holds

Ln = Ln−1 + Ln−2, n > 2, (7)

where the integers L0 = 2 and L1 = 1 start the sequences and n = 1, 2, . . .. Lucas and Fibonacci numbers

share the following conjugate relation [24]:

Ln = Fn+1 + Fn−1. (8)

Let us define a 2× 2 matrix R1 as

R1 =

(

2 1

1 3

)

. (9)

According to (1) and (3), we can define the nth power of R1 as

Rn
1 =

(

Ln−1 Ln

Ln Ln+1

)

= Qn
1 ×

(

−1 2

2 1

)

, (10)

det(Rn
1 ) = det

(

Qn
1 ×

(

−1 2

2 1

))

= 5× (−1)n+1
. (11)

The above relations imply that Rn
1 is invertible and its inverse matrix R−n

1 can also be derived using the

properties of Lucas sequences. They are

R−2k
1 =









L2k+1

5
−
L2k

5

−
L2k

5

L2k−1

5









, for n = 2k, (12)

R
−(2k+1)
1 =









−
L2k+2

5

L2k+1

5

L2k+1

5
−
L2k

5









, for n = 2k + 1. (13)

Construction of Rp. We use matrix R1 to build a new class of Lucas matrices Rp that satisfy the

following relation:

Rp =





















R1 R1 · · · R1 R1

O I O · · · O

O O I
. . . O

...
...

. . .
. . . O

O O · · · O I





















,

where the 2 × 2 matrix O contains zero entries only and the 2 × 2 matrix I is an identity matrix. It is

easy to prove that matrices Rn
p satisfy the following properties:

det(Rn
p ) = (detRp)

n = (−1)p(n+1)5p. (14)

Note that according to (14) Rn
p are invertible and their inverses can be calculated using (12) and (13),

where p = 1, 2, 3, . . .. Their inverses are as follows:
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Table 1 Terms of Fibonacci and Lucas sequences

n 1 2 3 4 5 6 7 8 9 10

Fn 1 1 2 3 5 8 13 21 34 55

Ln 1 3 4 7 11 18 29 47 76 123

R−n
p =





















R−n
1 −I · · · −I −I

O I O · · · O

O O I
. . . O

...
...

. . .
. . . O

O O · · · O I





















.

2.3 Fibonacci-Lucas matrices

Fibonacci and Lucas sequences can be used jointly (see [25]) to create a new class of matrices, which we

call them Fibonacci-Lucas matrices. They are consecutive powers of T1 and are defined according to the

following recursion:

T n
1 =

(

Fn−1 Fn

Ln−2 Ln−1

)

, (15)

where the first Fibonacci-Lucas matrix T1 is

T1 =

(

F1 F2

L0 L1

)

=

(

1 1

2 1

)

. (16)

As shown in Table 1, Lucas and Fibonacci numbers satisfy the relation Ln−1 = Fn + Fn−2, thus T n
1

can be written as

T n
1 =

(

Fn−1 Fn

Fn−1 + Fn−3 Fn + Fn−2

)

. (17)

We can now calculate the determinant of Fibonacci-Lucas matrices. The following transformations are

self-explanatory:

det(T n
1 ) = det

(

Fn−1 Fn

Fn−1 + Fn−3 Fn + Fn−2

)

= det

(

Fn−1 Fn

Fn−1 Fn

)

+ det

(

Fn−1 Fn

Fn−3 Fn−2

)

= det

(

Fn−1 Fn

Fn−3 Fn−2

)

= (−1) det

(

Fn−3 Fn−2

Fn−1 Fn

)

. (18)

We use the properties of Fibonacci matrices from Subsection 2.1 and arrive at the following result:

det(T n
1 ) = (−1)n−3, n = 4, 5, . . . . (19)

The inverse matrix T−n
1 is

T−2k
1 =

(

L2k+1 −F2k

−L2k F2k

)

for n even, (20)

T
−(2k+1)
1 =

(

−L2k+1 F2k

L2k −F2k

)

for n odd. (21)
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The matrix T n
1 can be used to produce matrices of higher dimensions T n

2 , T
n
3 , . . . , T

n
p .

Construction of Tp. We use matrix T1 to build a new class of Fibonacci-Lucas matrices Tp that

satisfy the following relation:

Tp =





















T1 T1 · · · T1 T1

O I O · · · O

O O I
. . . O

...
...

. . .
. . . O

O O · · · O I





















,

where the 2 × 2 matrix O contains zero entries only and the 2 × 2 matrix I is an identity matrix. It is

easy to prove that matrices Rn
p satisfy the following properties:

det(T n
p ) = (det(T )p)

n = (−1)
pn
. (22)

Note that according to (22) Rn
p are invertible and their inverses can be calculated using (20) and (21),

where p = 1, 2, 3, . . .. Their inverses are as follows:

T−n
p =





















T−n
1 −I · · · −I −I

O I O · · · O

O O I
. . . O

...
...

. . .
. . . O

O O · · · O I





















.

2.4 Matrix encryption

Consider a message that is a sequence of integers {mi}i=1,2,.... Integers of the message can be packed

into a square ℓ × p matrix M . The arrangements of messages in M can be to some extent arbitrary as

integers can be determined by selecting odd or even number of digits. For instance, assume we have a

message 489165723489625471635, then we can create a 3× 4 matrix

M =









48 91 65 723

4 89 6 25

47 16 3 5









.

Given a matrix K matrix encryption can be defined as follows (see [26]):

E = M ×K. (23)

The decryption can be done using the inverse matrix K−1

M = E ×K−1, (24)

where K can be either Qn
p or Rn

p or T n
p . For instance, consider again the message 489165723489625471635

and the key matrix

K = Q7
2 =













8 13 8 13

13 21 13 21

0 0 1 0

0 0 0 1













.
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Then the matrix encryption is

E = M ×K =









48 91 65 723

4 89 6 25

47 16 3 5









×













8 13 8 13

13 21 13 21

0 0 1 0

0 0 0 1













.

Decryption is

M = E ×K−1 =









48 91 65 723

4 89 6 25

47 16 3 5









×













8 13 8 13

13 21 13 21

0 0 1 0

0 0 0 1













×













−21 13 −1 0

13 −8 0 −1

0 0 1 0

0 0 0 1













=









48 91 65 723

4 89 6 25

47 16 3 5









.

The encryption described above is symmetric encryption. Symmetric cryptography needs a secure channel

to distribute secret keys between two communicating parties. Moreover, the above-mentioned matrix

encryption is linear, and can be breakable in a chosen plaintext attack [27].

However, on the one hand, Bennett and Brassard [28] and Ekert [29] showed that key distribution can

be done via an insecure channel using a quantum protocol. Note that if the key matrix K is either Qn
p

or Rn
p or T n

p , then the matrix K can be determined after two elements of the matrix are known. This is

due to the recursive nature of the matrix. The crucial point here is that we use the matrix K to encode

quantum states. On the other hand, we follow Simon et al. [21, 22] who recently proposed a quantum

key distribution (QKD) protocol with Fibonacci coding. The authors use Fibonacci sequences (or Lucas

sequences) to prepare entangled states. Two communicating parties can detect the Fibonacci values for

the entangled states with the designated sorters. More importantly, Qn
p or Rn

p or T n
p can be used just

one time, and their order is determined by quantum random generators in Alice’s, Bob’s and Charlie’s

laboratories. Considering these, the quantum matrix encryption is secure. We present a brief description

of Simon et al.’s QKD protocol in the next subsection.

3 QKD protocols

We first introduce Simon et al.’s original QKD protocol. Then we show how the protocol can be improved

in coding efficiency of entangled states when we use the Fibonacci, Lucas or Fibonacci-Lucas matrices

defined in Section 2.

3.1 Simon et al.’s QKD protocol

The main idea behind Simon et al.’s QKD protocol [21] is the use of a Vogel spiral [30]. This allows

either Alice or Bob (or even a third party) to prepare a source of entangled Fibonacci-valued orbital

angular momentum (OAM) states. Fibonacci-valued entangled pairs then leave the spiral and enter the

down-conversion crystal. The down-conversion breaks each Fibonacci value into two lower OAM values.

In both Alice’s and Bob’s laboratories, there is a beam splitter directing some regular proportion of

the beam to two different types of OAM sorters L and D. The beam splitters randomly transmit the

entangled photons to either the L or D sorter. The L sorter allows Fibonacci-valued entangled photons

to arrive at the arrays of single-photon detectors only. The D sorter allows “diagonal” superposition in

the form 1√
2
(|Fn〉+ |Fn+2〉) and filters out any non-Fibonacci entangled photon.

There are four possible cases for the sorters. Namely, the entangled photon is sent to

(1) L by the beam splitters in both Alice’s and Bob’s laboratories,

(2) L and D by the beam splitters in Alice’s and Bob’s laboratories respectively,

(3) D and L by the beam splitters in Alice’s and Bob’s laboratories respectively,

(4) D by the beam splitters in both Alice’s and Bob’s laboratories.

Note that the cases (1)–(3) are only available for the key establishment.
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3.2 Improved QKD protocol

We show how to use the three classes of Fibonacci, Lucas and Fibonacci-Lucas matrix coding, to improve

Simon et al.’s QKD protocol. According to Simon et al.’s QKD protocol, Alice randomly prepares m

two-photon entangled states {|ϕ〉1, |ϕ〉2, . . . , |ϕ〉m}, which are in the following states:
∑

n

(|Fn−1〉s|Fn−2〉i + |Fn−2〉s|Fn−1〉i); (25)

∑

n

(|Fn+1〉s|Fn−1〉i + |Fn−1〉s|Fn+1〉i), (26)

where the subscripts “s” and “i” represent the signal photon and the idler photon, respectively. For State

(25), one entangled photon goes to Alice and the other goes to Charlie through the unauthenticated

quantum channel. For State (26), one half entangled photon goes to Alice and Bob, respectively via the

insecure quantum channel. For Bob and Charlie, the received entangled photons can be both in states

either (25) or (26).

Each entangled photon goes to one of the three sorters {L,D1, D2} (note that D1, D2 are both included

inD, whereD1, D2 are used to filter and block any photons whose states are not Fibonacci or Lucas values

respectively) in the party laboratories randomly and independently. The parties record the obtained

outcomes. L allows photons to arrive at the arrays of single-photon detectors when their states represent

Fibonacci values. The parties: Alice, Bob and Charlie announce their results. There are three possible

results: (1) both the entangled photons go to D1; (2) both the entangled photons go to D2; and (3) one

entangled photon goes to D1 and the other goes to D2. The parties discard all the data and keep the

entangled photons left. For the photons, Alice (Bob) announces the set of states she (he) chooses via

authenticated classical channels. The parties now compare their measurements with the two entangled

states. They exchange the information among themselves using authenticated classical channels. They

also detect Fibonacci or Lucas values used in the relevant matrices.

For example, if the detected Fibonacci value is 8, the key matrix can be constructed as follows:

(

8 13

13 21

)

= Q7
1,













8 13 8 13

13 21 13 21

0 0 1 0

0 0 0 1













= Q7
2, . . . .

If the detected Lucas value is 11, the key matrix can be constructed as follows:

(

4 7

11 18

)

= P 3
1 ,













4 7 4 7

11 18 11 18

0 0 1 0

0 0 0 1













= P 3
2 , . . . .

If the detected Fibonacci and Lucas values are Fn = 8 = 0 (mod 2) and Ln = 11 = 1 (mod 2), the

Fibonacci-Lucas matrix should be

(

5 8

11 18

)

= T 4
1 ,













5 8 5 8

11 18 11 18

0 0 1 0

0 0 0 1













= T 4
2 , . . . .

4 Proposed QDS

Our QDS scheme has the following five stages: setup, key distribution, message blinding, signing and

verification. We assume that there are authenticated classical channels and insecure quantum channels
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Bob

Alice

Charlie

(Quantum channel)

(Classical channel)

Lucas-valued or Fibonacci-valued entangled photons for preparing key matrices 

The classical information exchange for key establishment

ng d p  p

Figure 1 (Color online) The sketch for quantum key distribution of our QDS scheme, where KAB, Ki

AB, KAC, Ki

AC,

KBC, and Ki

BC (i = 1, 2, . . . , α) are key matrices.

among Alice, Bob and Charlie. Every pair of parties share different quantum key matrices KAB, KAC

and KBC respectively. We use Simon et al.’s QKD algorithm to produce the key matrices KAB, KAC and

KBC, which are of the form Qn
p or Rn

p or T n
p .

4.1 Setup

In our signature, we have three participants: (1) the holder (owner) of a message, Alice who transforms

the message into an n-square matrix (n = 2, 3, . . .) and blinds the matrix, (2) the signer Bob who signs

blind messages, (3) the verifier Charlie who checks if a signature matches a message.

4.2 Key distribution

Alice and Bob, Alice and Charlie, Bob and Charlie establish the pairwise quantum key matrices KAB,

KAC and KBC (see Figure 1), respectively.

The parties use the QKD protocol described in Subsection 3.2 and establish their pairwise key matrices

(see Table 2): {K1
AB,K

2
AB, . . . ,K

α
AB} = KAB between Alice and Bob; {K1

AC,K
2
AC, . . . ,K

α
AC} = KAC

between Alice and Charlie; and {K1
BC,K

2
BC, . . . ,K

α
BC} = KBC between Bob and Charlie. Note that the

order of these key matrices is determined by Alice’s, Bob’s and Charlie’s quantum random generators.

4.3 Message blinding

Alice takes her message and transforms it into matrices (M1,M2, . . . ,Mα) = M , where Mk = (mtj)n×n,

k ∈ {1, 2, . . . , α}, t, j ∈ {1, 2, . . . , n}. Next she blinds the message matrix M using the key KAC (see

Table 2) and obtains the blind message

M ′
k = Mk ×Kk

AC, k ∈ {1, 2, . . . , α}. (27)

Then Alice encrypts the blind message M ′ with the key KAB as follows:

M ′′
k = M ′

k ×Kk
AB, k ∈ {1, 2, . . . , α}, (28)
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Table 2 An example for key distribution and digital signature

Vs
a) S1

b) S2
c) Vr

d) RK
e) MK

f) Mk
g) MK ×Mk

8 L L 8 2

(

8 13

13 21

) (

2 1

0 7

) (

16 99

26 160

)

11 L D1 11 2

(

4 7

11 21

) (

1 0

3 6

) (

25 42

74 126

)

8, 11 D2 L 8, 11 4













8 13 8 13

11 18 11 18

0 0 1 0

0 0 0 1





















1 2 0 7

0 3 6 0

0 4 1 1

















30 49 30 56

33 54 39 54

44 72 45 73









8 D2 D2 – 2 – – –

a) Vs: the value for the entangled state.

b) S1: one participant’s sorter.

c) S2: the other participant’s sorter.

d) Vr: the value for the recovered entangled state.

e) RK: the rank of key matrix.

f) MK: the key matrix.

g) Mk: the kth message matrix.

and Mk, Mk′ and M ′
k. Finally, Alice sends (M ′′

k , det(M
′
k)) to Bob, and det(Mk) to Charlie.

4.4 Signing

Bob signs message M blindly by creating a signature for the message M ′. This means that Bob does not

know the contents of M . He executes the following steps:

(1) He checks the authenticity of (M ′′
k , det(M

′
k)). First he decrypts the M ′′

k with the key Kk
AB and

obtains

M ′
k = M ′′

k × (Kk
AB)

−1, (29)

where (Kk
AB)

−1 denotes the inverse matrix of Kk
AB. If the determinant of M ′

k recovered by Bob is not

equal to the value of the determinant obtained from Alice, Bob aborts this communication. Otherwise,

he performs the next step.

(2) He signs the blind message M ′
k using Kk

BC. The signature is

Sk = M ′
k ×Kk

BC. (30)

(3) He sends the signature S = {S1, S2, . . . , Sα} to Charlie (see Figure 2).

4.5 Verification

Charlie verifies the signature obtained from Bob. He uses the key KAC and the determinant det(M). He

executes the following steps.

(1) Having received the signature S, Charlie decrypts it using KBC and obtains the blind message M ′.

Next he un-blinds the message M ′ with KAC and obtains M .

(2) Charlie checks if the determinant of M recovered from the signature is the same as det(M) obtained

from Alice. If the check holds, he verifies the following equations:

det(Sk) = det(M ′
kK

k
BC) = det(M ′

k)× det(T n
p )

= (−1)n det(M ′
k) = (−1)2n det(Mk). (31)

If the verification holds as well, Charlie accepts Sk. Otherwise, he aborts this communication (see

Figure 2).



Lai H, et al. Sci China Inf Sci August 2017 Vol. 60 082501:11

Alice

Bob

Charlie

B

(C
la

ss
ic

al
 c

h
an

n
el

)
(Classical channel)

If yes, Bob computes

If yes, Charlie accepts the signature.

Det(EKAC
(M)) = Det(M′)

S

Figure 2 (Color online) The sketch for the process of signature and verification of our QDS scheme, where KAB =

{K1
AB,K

2
AB, . . . , K

α

AB}, KAC = {K1
AC,K2

AC, . . . , K
α

AC}, KBC = {K1
BC,K2

BC, . . . ,K
α

BC} are all in the form of matrices;

M ′ = EKAB
{M} = M ×KAB, M

′′ = EKAC
{M ′} = M ′ ×KAC, S = EKBC

{M ′} = M ′×KBC, det(M
′) is the determinant

of M ′.

5 Security analysis

In principle, at most one participant can be dishonest in the three-party QDS scheme. This is because

the majority vote is usually used to cope with disputes [14, 15, 22]. Our blind QDS protocol is suitable

for implementation with current technologies for QKD protocols based on Simon et al’s work [21,22]. In

this section, in the context of the relevant work on quantum blind signatures [19,20,31–34], we show that

our signature resists both the forgery and repudiation attacks. Alice can be traced, though the message

is blind. Moreover, we discuss the efficiency, the error detection and correction capability of our protocol.

5.1 Signature forgery

A forgery by either Alice or Charlie is much easier to create than by an external participant. Thus

we concentrate on forgery by an internal participant (either Alice or Charlie). We further assume that

only one of them can be dishonest (so, we exclude collusion of Alice and Charlie). Suppose that Alice

wishes to forge Bob’s signatures. This is impossible without the knowledge of the key matrix KBC.

Furthermore, the value for every entangled photon is a Fibonacci number. On the other hand, the value

for the corresponding entangled state can be either a Fibonacci or a Lucas number. For each pair of

entangled states, one goes to Bob’s laboratory directly. This means that Alice has to make a guess at

{K1
BC,K

2
BC, . . . ,K

α
BC} = KBC. The probability of guessing the correct Fibonacci or Lucas value is 1

4 .

Assume that 50 pairs of entangled states are used, then Alice guesses successfully all these entangled

states with the probability of 8× 10−31 (almost 0). In addition, the corresponding determinant values of

det(Mk), k = {1, 2, . . . , α} are sent to guarantee that the Bob signature is authentic.

Suppose Alice wants to entangle her quantum states with the entangled states for preparing KBC

in order to obtain some information about Bob’s signature. The quantum channel for the transmitted

message is one way. Therefore, she cannot obtain any information from the signature because she does

not know the key KBC. Most importantly, Charlie may identify Alice at the verification stage because

she is not able to provide a correct KBC. Consequently, Alice fails to forge the Bob signatures.
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5.2 Repudiation attacks

Note that Charlie can verify the authenticity of signatures using (22). If a signature passes it, Charlie is

sure that Bob has created the signature. If Bob disavows his signature, Charlie immediately can discover

that this is not true. In the verification stage, Charlie obtains S and translates it using KBC to get M ′.

Furthermore he uses KAC to obtain the clear message M . The message is authenticated by checking if

det(Mk) is equal to the determinant obtained from Alice. If the check holds, Charlie informs Alice and

Bob that the blind signature is authentic. Otherwise, the signature is considered to be invalid and the

signature protocol is aborted immediately. This means that neither Alice nor Bob can deny the signature.

5.3 Efficiency of QDS

Unlike the existing QDS protocols [5–15], our protocol can sign long messages and is not restricted to

binary ones. Signatures are generated using cryptographic matrices that correspond to entangled states

encoded by Fibonacci and Lucas sequences. The number of the elements in a matrix can be chosen at

random. Due to the recursive property of Fibonacci and Lucas matrices, the number of the entangled

states that are used to prepare Fibonacci and Lucas matrices can be greatly reduced. Besides, a message

can be packed into a matrix using different encodings. Matrix multiplication can be implemented very

efficiently. Our signature protocol deals with messages of an arbitrary length. An improvement in

efficiency is largely due to the fact that both Bob and Charlie send to Alice different entangled states.

This is in a stark contrast with previous protocols, where Alice sends to Bob and Charlie the same

signature states.

5.4 Error detection and correction of our QDS

Due to the introduction of Fibonacci, Lucas and Fibonacci-Lucas matrices, an additional feature of our

signature protocol is its ability to detect errors. This is done by the verification of blind messages and

their signatures.

Stakhov [26] has shown that Fibonacci and Lucas matrix signatures have an ability of error correction.

To be exact, if the dimension of a matrix is 2, the correction ability of Fibonacci Qn
1 and Qn

2 matrix

coding is 93.33% and 99.80%, respectively, and when p is larger, the correction ability is higher than

99.80%. This exceeds an ability of all other well-known error correcting codes.

5.5 Traceability

In case of a disagreement between Alice and Bob, Charlie can trace the owner of a message (Alice) using

(6), (19) and (22) and adjudicate whether or not the signature is valid.

5.6 Blindness

Our protocol allows Bob to sign a message blindly, i.e., Bob does not know the contents of the message.

However, Bob can confirm the authenticity of the blind message M ′, i.e., he knows that it comes from

Alice. Table 3 illustrates the main features of our QDS protocol and compares it with other relevant

protocols [10, 11, 16, 18, 19].

6 Conclusion

In this paper, we have presented a new protocol for secure information transmission over insecure quantum

channels and authenticated classical channels with symmetric key algorithms based on Simon et al’s

protocol [21, 22] and Fibonacci, Lucas, and Fibonacci-Lucas matrices. The proposed protocol will not

only enhance the efficiency of quantum digital signature but also save computation time and reduce power

requirements. Moreover, our protocol has an ability to detect and correct errors. The security of our

protocol is guaranteed by the quantum one-time pad and quantum key distribution [21]. Hence, it is
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Table 3 The feature comparisons

Protocol [10] [11] [16] [18] [19] Our QDS

Carrier for transmitting information SPh) ESi) ES SP SP ES

The state of message being signed BMj) BM BM BM BM DMk)

The state of signed message CMl) CM CM CM CM CM

Quantum key Yes Yes Yes Yes Yes Yes

The ability to recover the encrypted message Yes Yes Yes Yes Yes Yes

XOR operations Yes Yes Yes Yes Yes No

Matrix multiplication No No No No No Yes

Efficiency for signature 6 1 6
3
2

6 1 6 1 6 1 6 ℓM

Detection ability No No No No No Yes

Blind No Yes Yes No No Yes

h) SP: single photons.

i) ES: entangled states.

j) BM: bit message.

k) DM: digital message.

l) CM: classical message.

unconditionally secure. Also, our scheme adopts the technology of OAM entangled states distribution

and nonorthogonal states are indistinguishable. Thus, our protocol is practical and can be set up using

the current technology.
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