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Abstract Differential privacy (DP) has become one of the most important solutions for privacy protection in

recent years. Previous studies have shown that prediction accuracy usually increases as more data mining (DM)

logic is considered in the DP implementation. However, although one-step DM computation for decision tree

(DT) model has been investigated, existing research has not studied the scenarios when the DP is embedded

in two-step DM computation, three-step DM computation until the whole model DM computation. It is very

challenging to embed DP in more than two steps of DM computation since the solution space exponentially

increases with the increase of computational complexity. In this work, we propose algorithms by making use of

Markov Chain Monte Carlo (MCMC) method, which can efficiently search a computationally infeasible space

to embed DP into DT generation algorithm. We compare the performance when embedding DP in DT with

different depths, i.e., one-step DM computation (previous work), two-step, three-step and the whole model. We

find that the deep combination of DP and DT does help to increase the prediction accuracy. However, when the

privacy budget is very large (e.g., ǫ = 10), this may overwhelm the complexity of DT model, and the increasing

trend is not obvious. We also find that the prediction accuracy decreases with the increase of model complexity.
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1 Introduction

With the increasing development of big data, data preserving techniques are becoming more and more

important. Exposure risks are being emphasized, especially for sensitive data. Data privacy protection

technologies mainly contain three aspects: data distortion, data encryption and limited data publication.

Many privacy protection methods combine different technologies. K-anonymity and L-diversity are

the two representative data publication based privacy protection methods. However, K-anonymity is
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vulnerable to homogeneity attack and background knowledge attack and L-diversity is vulnerable to

similarity attack. Neither of these technologies strictly define an attack model nor give a quantified

definition of the background knowledge that attackers have. In order to solve these problems, Dwork et

al. [1] put forward Differential Privacy (DP) protection technique.

DP has become the state-of-the-art privacy protection technique. Compared with other data pub-

lication based privacy protection solutions [2, 3], it can mathematically provide a very strong privacy

protection guarantee. DP can ensure that the output of any authenticated query/calculation is insensi-

tive to any individual record’s adding/removing in the database (DB). The previous work [4] has provided

many interesting observations on the performance of DP with decision tree (DT) based data mining (D-

M) algorithms in a large industrial telecommunication big data platform. One important observation

is that the prediction accuracy of DT would increase when more DM computations are considered in

DP implementation. However, the deepest combination of DP and DT in [4] is to implement DP with

one-step DM computation (i.e., nodes are split one layer during one computation in a decision tree). It

is very important and challenging to study more complex scenarios when DP is embedded in two-step

DM computation, three-step computation until the whole model computation.

In DP implementation, the Laplace mechanism [1] is used for computations with an output that is a

number and the Exponential mechanism [5] is used for computations with an output that is a category

value or a structure. DP can be used in many different data mining algorithms. In this paper, we discuss

the usage of DP in the decision tree algorithm. When generating a decision tree, the output of the

major computation is to select the best splitting structure. Thus, the Exponential Mechanism should be

used to select a structure by searching all possible structure space (solution space). With the increase of

computational complexity (i.e., different steps of computation are implemented in DT), the solution space

exponentially increases. For example, if the training data has 16 attributes and each attribute has 2 values,

the number of solutions of subtree with 2 layers (one-step computation), 3 layers (two-step computation),

4 layers (three-step computation) and 5 layers are 16, 16× 152 = 3600, 16× 152 × 144 = 138297600 and

16 × 152 × 144 × 138 = 1.12813601× 1017 respectively. Thus, it is very challenging to search the entire

solution space when DP needs to be embedded in more than two steps of DM computation. Proper

sampling solutions must be developed to implement deep embedding of DP in DT. In this paper, we

propose a solution that we use exhaustive search in one-step and two-step embedding algorithms and

Markov Chain Monte Carlo (MCMC) method [6] in deeper embedding algorithms. MCMC method is

a random process, which can efficiently search an exponential space using a sequence of limited number

instances. With this design, we can freely embed DP in DT with different depths.

This paper aims to study the effects of different embedding depths on DT model performance when

applying DP in DM. In summary, the following contributions are made:

• We propose a novel idea focused on deep embedding of DP in DT based DM applications with

different depths in order to improve DM performance.

• We propose algorithms by making use of MCMC method, which is time-efficient to embed DP deeply

into the decision tree generation algorithm.

• We conduct extensive experiments to study how different embedding depths influence the DT model

performance. Experimental results show that deep combining DP and DT can significantly increase the

prediction accuracy.

The rest paper is organized as follows. Section 2 provides a brief review of the state of the art of

Differential Privacy. Section 3 presents our algorithm design. Section 4 reports the extensive experimental

results. We conclude this work in Section 5.

2 State of the art of differential privacy

This section provides a brief review of the latest development of Differential Privacy (DP) and the

preliminaries of DP embedding algorithms.
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2.1 Typical algorithms of differential privacy

Recent research work has been conducted on DP solutions due to DP’s strong mathematical control

of privacy leak [7], though some work still concentrates on previous privacy-preserving methods [8, 9].

Application of DP to the histogram method plays an important role in DP research. Dwork et al. [10]

highlighted that the advantages of applying DP to histogram method are that calculation of sensitivity

is independent of dimension and privacy protection can be realized by adding only a little noise for

contingency table and covariance matrix analysis with a high dimensional output. The study [11] provided

a generalization about histogram method with DP completely. Another important application of DP is

with the K-means clustering method. Blum et al. [12] applied DP in K-means algorithm and produced

a formula to calculate the sensitivity of the query function. Research on classifier models with DP is also

a popular research area. Chaudhuri et al. [13] applied DP in regular logistic regression and proposed a

DP method that is independent of sensitivity. The authors of [14] studied adapting DP for a decision

tree. In addition, several research work applies DP in other scenarios. Xiao et al. [6] designed a new

data publication model using graphs, which are tree structures. DP is used to protect this structure.

Erlingsson et al. [15] focused on using DP in crowdsourcing statistics, which come from end-user client

software. Wang et al. [16] explored the hardness for query answering mechanism on DP beyond the

stateless restriction. Additionally, DP has been used in other different situations, such as item set

mining [17], crowdsourcing [18] and geospatial data queries [19]. Machanavajjhala et al. [20] considered

DP to be a privacy measurement and studied the relationship between accuracy and privacy of social

recommendations.

One interesting observation in work [4] is that the prediction accuracy of DT usually increases when

more DM computations are considered in DP implementation. However, the combination of DP and

DT in [4] only implements DP with one-step DM computation [14]. In this work, we study algorithms

that provide deeper embedding of DP in DT by making use of exhaustive search and MCMC method.

We compare the performance when embedding DP in DT with different depths and reveal interesting

observations.

3 DP embedding algorithm design

This section formally presents the proposed algorithms that embed DP in DT with different depths. We

firstly introduce the common DT generation algorithm with DP (i.e., the previous work) and propose

our new ideas. We then design a new quality function used to evaluate the effectiveness of the splitting

structure (subtree). Next we talk about the details of our new embedding algorithms. Finally, we give

the time complexity analysis of the proposed algorithms.

3.1 The skeleton of decision tree generation algorithm with DP

There are three major calculations performed during decision tree generation: inner splitting, leaf node

label generation and stopping condition checking. Therefore, in order to embed DP, we need to implement

DP for these three calculations. It is obvious that the Laplace Mechanism can be used to apply DP for

the leaf node label generation and the Exponential Mechanism can be used to apply DP for splitting a

node. Stopping condition checking normally checks whether the tree has reached the pre-defined maximal

depth, or there are some attributes left to split, or all instances in the leaf node have the same label or the

number of instances in a leaf node is lower than a threshold. Only calculation of the number of instances in

a leaf node needs DP protection with the Laplace Mechanism. If these three calculations are protected by

DP, the decision tree generation is thereby protected. Since the calculations are independent for different

branches, according to DP’s Composability and Maximum properties, we only need to guarantee that the

sum of privacy budgets consumed by calculations on the same branch does not exceed the privacy budget

limit ǫ. A branch represents the path from the root node to a leaf node and each leaf node has a different
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Figure 1 DP implementation skeleton of decision tree. (a) Previous work; (b) this work.
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Figure 2 (Color online) Embedding DP in DT with different depths. (a) One-step computation (previous work); (b) two-

step computation; (c) three-step computation; (d) whole tree computation.

branch. Thus, each calculation uses ǫ
max(number of calculations in each branch) budget. This is how previous

work [4, 14] implements DP for decision tree. This implementation is demonstrated in Figure 1(a).

In this paper, we design a more advanced solution. When we split an inner node, we can have different

selections to apply DP. We can apply DP for just splitting only one inner node (one-step computation),

i.e., the previous work. We can also consider DP when we generate a three-layer subtree under this inner

node (the tree generation algorithm splits two layers each time). We can further generate a four-layer

subtree under this inner node with DP protection. If a tree is directly generated with the maximum

depth under the root node, DP can be implemented for the whole model generation (all inner splitting

computations are regarded as one computation). These new ideas are shown in Figure 2. These new

algorithms are compared with the existing method [14], the one-step computation algorithm, which were

not considered in previous work. All calculations, including the inner splitting and leaf node manipulating,

are combined together as one calculation behind the interface of database. The design skeleton is shown

in Figure 1(b). Since this work is focused on studying how to combine DP and DT with different depths,

different from previous work [4,14], we do not prune the tree. In the following sections, we will introduce

our detailed design.

3.2 Quality function

In DT generation algorithms, quality function is used to select the splitting attribute, which is based

on several impurity measurements, such as Information Gain, Information Gain Ratio or Gini Index.
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In CART algorithm, Gini Index has been commonly used to evaluate the effectiveness of the splitting.

Smaller value of Gini index indicates better splitting when generating a decision tree.

As in previous work [4, 14], on the basis of Gini Index, the quality function is q:

q(n) = −

t
∑

j=1

Tj

(

1−
∑

c∈C

(

Tj,c
Tj

)2
)

, (1)

where n represents a node and t is the number of children belonging to n. We define childj as the jth child

node of n. Tj represents the number of instances of childj and Tj,c represents the number of instances of

childj, whose value of class label C is c. The sensitivity of the function is △q = 2 [14] and larger value

of q indicates better splitting.

In this paper, in order to make use of the Exponential Mechanism to select a splitting structure, we

define a new quality function and estimate its global sensitivity. Since a subtree is generated in each

computation instead of one layer, the score of the subtree’s root node is used as the quality function.

When generating a subtree st from node n (node n is the root node of st), the score calculation formula is

q′(n) =

t
∑

j=1







q′(childj), (childj) ∈ Si,

−Tj

(

1−
∑

c∈C

(

Tj,c

Tj

)2
)

, (childj) ∈ Sl,
(2)

where Si and Sl are the set of inner nodes and the set of leaf nodes in st respectively.

It can be observed that (2) is an extension of (1), and it is easy to see they have the same form. Thus,

the global sensitivity of the new quality function in this paper is △q′ = 2.

3.3 DP embedding algorithm

The detailed implementation of DP embedding algorithm is shown in Algorithm 1. As well as the

training instance set T , attribute set A and class label C, the maximal tree depth D, embedding depth

d and the differential privacy budget ǫ are also input parameters. Privacy budget ǫ controls the privacy

protection strength. D represents the maximum depth of the tree without breaking privacy. d represents

how many steps of computation we want to combine with DP. In this algorithm, there are a maximum of

⌈D
d
⌉+1 computations in each branch. The budget is equally allocated to each computation, so each single

major computation gets a privacy budget ǫ

⌈D
d
⌉+1

. Since the inner splitting and leaf node manipulating

calculations are all moved into the database, in our framework, only the subtree structure and leaf node

labels are returned. Stopping condition checking becomes a hidden middle calculation step. Thus when

DP is embedded in one-step DM computation, our privacy budget for each calculation is ǫ
D+1 instead of

ǫ
2(D+1) in previous work [4,14], in which an extra counting query needs to output its result at each layer

in stopping condition checking. Each time, a (d+1)-layer subtree extension is completed. If there are

less than d layers left to reach the maximum depth, the tree is extended with D-(current depth) layers.

Each node has a tag stopF lag set in Algorithm 2 or Algorithm 3, representing whether this node meets

the terminating condition or not, i.e., whether it can be split any further.

When we want to embed DP in one-step or two-step computation, we can enumerate all the possible

subtree (splitting) selections and directly use the Exponential Mechanism to search the subtree space.

We call this implementation the Embedding Algorithm with Exhaustive Search. However, when DP is

embedded in more than two steps of computation, it is computationally infeasible to search all the

subtree selections and MCMC method is used to simulate the Exponential Mechanism. We call this

implementation the Embedding Algorithm with MCMC.

3.4 Exhaustively search the splitting selections

When embedding DP with one-step or two-step DM computation (d = 1 or d = 2), the subtree space

is not too large and all possibilities can be enumerated. The algorithm is shown in Algorithm 2. When

splitting a node, the attributes that require checking cannot overlap with the splitting attributes used
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Algorithm 1 DP Embedding algorithm—DPEA(T , A, C, D, d, ǫ)

Require: T —training dataset, A—attribute set, C—class label, D—maximal tree depth, d—steps of computation to

embed DP, ǫ—privacy budget;

Ensure: dt—a decision tree;

1: ǫ′ = ǫ

⌈D
d
⌉+1

2: dt = root

3: innerNodes = {[root, stopFlag=False]}

4: while |innerNodes| > 0 do

5: innerNode = pop one node from innerNodes

6: left = D − (current depth)

7: if left < d then

8: if left 6 2 then

9: subTree st = exhaustive search Exp(innerNode, T , A, C, D, left, ǫ′)

10: else

11: subTree st = mcmc search Exp(innerNode, T , A, C, D, left, ǫ′)

12: end if

13: else

14: if d 6 2 then

15: subTree st = exhaustive search Exp(innerNode, T , A, C, D, d, ǫ′)

16: else

17: subTree st = mcmc search Exp(innerNode, T , A, C, D, d, ǫ′)

18: end if

19: end if

20: for each leaf node ln in st do

21: if ln.stopF lag == False then

22: innerNodes = innerNodes ∪ {ln}

23: end if

24: end for

25: extend dt with st from innerNode

26: end while

27: return dt

Algorithm 2 Exhaustively search the subtree space—exhaustive search Exp(innerNode, T , A, C, D, d, ǫ′)

Require: innerNode—the node to split, T —training dataset, A—attribute set, C—class label, D—maximal tree depth,

d—steps of computation to embed DP, ǫ′—privacy budget;

Ensure: st—a subtree;

1: ST [] = all (d+1)-layer subtrees rooted at innerNode whose attributes do not appear in innerNode’s ancestors

2: for each ST [i] ∈ ST do

3: calculate ST [i].score

4: P [i] = exp(
ǫ′∗ST [i].score

2∗△q′
)

5: end for

6: sum =
∑|P |−1

i=0 P [i]

7: for each P [i] do

8: P [i] = P [i]/sum

9: end for

10: r = random(0, 1)

11: st = ST [i]|where r falls in P[i]

12: for each leaf node ln in st do

13: if ln reach the stopping condition then

14: ∀c ∈ C : Nc = NoiseCount(c in ln, ǫ′)

15: ln.label = argmaxc(Nc)

16: ln.stopF lag = True

17: else

18: ln.stopF lag = False

19: end if

20: end for

21: return st
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Algorithm 3 Search the subtree space with MCMC—mcmc search Exp(innerNode, T , A, C, D, d, ǫ′)

Require: innerNode—the node to split, T —training dataset, A—attribute set, C—class label, D—maximal tree depth,

d—steps of computation to embed DP, ǫ′—privacy budget;

Ensure: st—a subtree;

1: st = a random (d+1)-layer subtree rooted at innerNode whose attributes do not appear in innerNode’s ancestors

2: t = tag = 0

3: while buffer.varience > threshold and t < stepLimit do

4: compute st.score

5: buffer[(tag++) % buffer.size ] = st.score

6: st′ = randomly replace one inner node in st

7: compute st′.score

8: st = st′ with probability

min



1,
exp( ǫ

′∗st′.score
2∗△q′

)

exp( ǫ
′∗st.score
2∗△q′

)





9: t++;

10: end while

11: for each leaf node ln in st do

12: if ln reach the stopping condition then

13: ∀c ∈ C : Nc = NoiseCount(c in ln, ǫ′)

14: ln.label = argmaxc(Nc)

15: ln.stopF lag = True

16: else

17: ln.stopF lag = False

18: end if

19: end for

20: return st

by its ancestors. We exhaustively find all the subtrees satisfying the above condition. We assign a score

to each possible splitting selection and generate the probability according to the Exponential Mechanism

formula. The score is calculated by (2). When the probability of selecting each splitting solution is

obtained, a normalized probability array is generated to implement the Exponential Mechanism. A

random number is used to select a subtree st according to the normalized probability array P . Here we

give an example. We assume that there are three subtrees in total, i.e., the lengths of ST and P are both

3. The initial elements of the array P are assumed to be 0.3, 0.5 and 0.4. After normalizing, P becomes

[ 0.31.2 ,
0.5
1.2 ,

0.4
1.2 ](0.3 + 0.5 + 0.4 = 1.2). After accumulating, P becomes [ 0.31.2 ,

0.3+0.5
1.2 , 1]. A number r is then

generated randomly and its value is assumed to be 0.73. As a result, we will select the third subtree to

split since 0.3+0.5
1.2 < 0.73 < 1. All the leaf nodes in st have a flag to represent whether it can be split

or not. If we get a leaf node, we use noised counting through the Laplace Mechanism to assign label

to it. The function NoiseCount() [14] adds noise to the counting results of nodes through the Laplace

Mechanism.

3.5 Search the splitting selections with MCMC method

Exhaustive search is not efficient when d > 2, since the subtree space becomes too large to enumerate. In

this case, we make use of MCMC method to handle it. The details can be found in Algorithm 3. Firstly,

a (d+1)-layer subtree st is generated in a random manner. MCMC simulates the Exponential Mechanism

using a sequence of local transitions in st. It is checked whether st meets either of the terminating

conditions: the number of operations has reached its limit or st has been convergent. Convergence means

that variance of latest specified number of scores is less than the threshold value. Buffer is an array that

stores the latest specified number of scores. If the terminating conditions are not achieved, we randomly

replace one inner node in st to get st′ and update the current state in the following way:

st =

{

st′, with probability α,

st, with probability 1− α,
(3)
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where

α = min

(

1,
exp( ǫ

′∗st′.score
2∗△q′

)

exp( ǫ
′∗st.score
2∗△q′

)

)

.

Then we check whether st meets the terminating conditions again. If not, the algorithm repeats the

replacing process. When a terminating condition is achieved, the algorithm obtains st. After checking

and assigning labels to leaf nodes, the algorithm returns st. Since the number of attribute combinations

in the subtree is not infinite and the subtree can change from one state to any other state through finite

replacements with specific probabilities, the process of MCMC will become convergent eventually.

When the embedding depth plus one equals the maximum tree depth (d + 1 = D), the whole DM

model computations are regarded as one computation to embed DP in. The privacy budget assignment

becomes ǫ′ = ǫ
2 and there is only one element in innerNodes during the algorithm, i.e., the root node.

A D-layer subtree is randomly generated to start the MCMC method.

3.6 Time complexity analysis

Finally in this section, we would like to provide the computational complexity analysis of the pro-

posed algorithms. Firstly, some parameters are defined: N—number of attributes that do not appear

in innerNode’s ancestors, M—number of instances in innerNode, K—max(number of values of each

attribute that does not appear in innerNode’s ancestors) and stepLimit—number limit of operations.

For Algorithm 2, when d = 1, the computational complexity is O(MN). When d = 2, the maximum

computational complexity is O(MN×(N − 1)K). For Algorithm 3, the computational complexity is

O(dMstepLimit). K ′ represents the maximum number of values of each attribute in A. For d-step

computation embedding, Algorithm 1 invokes Algorithm 2 or Algorithm 3 a maximum of 1−K
′⌈D

d
⌉

1−K′ times.

This is a polynomial time algorithm. Note that classification using DT is an offline data mining task and

the classification accuracy is the key optimization objective.

4 Experimental results

4.1 The dataset and evaluation strategy

Our algorithms are tested on three public datasets from UCI Machine Learning Repository, namely

Congressional V oting Records (vote)1), Mushroom (mushroom)2) and T ic-Tac-Toe Endgame

(tic-tac-toe)3). These three datasets all have one class label and contain 16, 22 and 9 attributes re-

spectively. The average prediction accuracy of 10-fold cross-validation is used to evaluate the decision

trees. 10-fold cross-validation is a widely used method to represent the prediction effect of a classifier.

In 10-fold cross-validation, the initial dataset is equally divided into 10 partitions, with which 9 of them

are used as training dataset and 1 is used as test dataset. The process repeats 10 times by making each

partition work as test data one time. The definition of prediction accuracy is T ′

T
, where T is the number

of instances in the test dataset and T ′ is the number of instances whose class label is correctly predicted

by the decision tree.

In our experiments, the performance of four algorithms is evaluated with different embedding depths.

We choose d = 1, 2, 3, D−1 and call the four algorithms one-step embedding algorithm (previous work) [14],

two-step embedding algorithm, three-step embedding algorithm and the whole tree embedding algorithm

respectively. The performance of these four algorithms is tested under different privacy budgets and ǫ

is varied from 0.01 to 10. Note that the privacy budget should be typically smaller than 1 and most

1) UCI Machine Learning Repository dataset, Congressional Voting Records. http://archive.ics.uci.edu/ml/datasets/

Congressional+Voting+Records.
2) UCI Machine Learning Repository dataset, Mushroom. http://archive.ics.uci.edu/ml/datasets/Mushroom.
3) UCI Machine Learning Repository dataset, Tic-Tac-Toe Endgame. http://archive.ics.uci.edu/ml/datasets/Tic-Tac-

Toe+Endgame.

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
http://archive.ics.uci.edu/ml/datasets/Mushroom
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studies have a preference for using values such as 0.1 and 1 [1, 14, 21]. In order to remove randomness,

each algorithm is run 300 times to obtain the average performance.

For the first dataset vote, one-step and two-step embedding algorithms both use the function [exhaus-

tive search Exp(innerNode, T , A, C, D, d, ǫ′)]. The three-step and whole tree embedding algorithms use

the function [mcmc search Exp(innerNode, T , A, C, D, d, ǫ′)]. In the three-step embedding algorithm,

the terminating conditions of MCMC method are a buffer size of 50 with the number of operations limited

to 1000. This means that if the variance of latest 50 scores is less than the threshold value or the number

of operations reaches 1000, the subtree generation process is complete. For the whole tree embedding

algorithm, since the number of attribute combinations is much larger than that for the three-step em-

bedding algorithm, more old nodes need to be replaced. The buffer size is set as 500 and the number of

operations is limited to 10000. On the other side, when the number of instances in a node is less than

20, this node cannot be split any further.

For the second dataset mushroom, due to much larger number of instances and attributes, some pa-

rameters are slightly changed. The large number of attributes results in too many subtree selections

during each split even for the two-step embedding algorithm, which is computationally infeasible. There-

fore for mushroom, the two-step embedding algorithm uses the function [mcmc search Exp(innerNode,

T , A, C, D, d, ǫ′)] instead of [exhaustive search Exp(innerNode, T , A, C, D, d, ǫ′)]. More operations

in MCMC are also required. The algorithm parameters are set as follows. In the two-step algorithm, the

number of operations is limited to 500 and the buffer size is set as 50. In the three-step algorithm, the

number of operation is limited to 3000 and the buffer size is set as 75. In the whole tree algorithm, the

number of operation is limited to 30000 and the buffer size is set as 500. The threshold for the number

of instances in a node is set as 50.

For the third dataset tic-tac-toe, due to its size being between vote and mushroom, we use the function

[mcmc search Exp(innerNode, T , A, C, D, d, ǫ′)] in two-step, three-step and whole three embedding

algorithms. In two-step algorithm, the number of operations is limited to 500 and the buffer size is set

as 50. Other parameters are the same as those for vote.

4.2 MCMC convergence

To confirm the correctness of using MCMC to realize Exponential Mechanism and the convergence of

MCMC, we follow the method used in [6]. The main purpose of MCMC method is to draw a random

sample from the desired distribution. Additionally, the essence of Exponential Mechanism is a method

to draw a sample x from X with probability proportional to exp( ǫ∗q(x)2∗△q
), where q(x) is the score function

and △q is the sensitivity of this function. Therefore, when the distribution of MCMC matches the target

distribution required by Exponential Mechanism, MCMC method can be used to realize Exponential

Mechanism.

In this paper, the transition ratio of MCMC is set as

min

(

1,
exp( ǫ

′∗st′.score
2∗△q′

)

exp( ǫ
′∗st.score
2∗△q′

)

)

,

where st′.score represents q′(st′). Hence when MCMC becomes convergent, we draw a sample st′ from

the distribution of MCMC with the probability:

Pr(st′) =
exp( ǫ

′∗st′.score
2∗△q′

)
∑

st∈ST exp( ǫ
′∗st.score
2∗△q′

)
. (4)

This is equivalent to the distribution required by Exponential Mechanism that outputs st′ with prob-

ability proportional to exp( ǫ
′∗st′.score
2∗△q′

). Therefore, we can conclude that if MCMC is able to become

convergent eventually, the application of MCMC method in our algorithms achieves differentially priva-

cy [6]. Interested readers can learn more from Shen et al. [22], which firstly proposed the idea of applying

MCMC method to achieve Exponential Mechanism.
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Figure 3 (Color online) Trace of st.score for mushroom. (a) ǫ = 0.01 or 0.1; (b) ǫ = 1.0 or 10.

Then, we also use the same method used in [6] to discuss the convergence of MCMC. MCMC’s con-

vergence is diagnosed by tracing the q(st), i.e., st.score, where st represents a subtree. We conducted

experiments on dataset mushroom. For mushroom, MCMC method is used in the two-step, three-step

and whole tree embedding algorithms. Since the subtree generated in two-step and three-step algorithms

is equivalent to a whole tree (depth of tree is 3 and 4 respectively). We only plot the trace of st.score

in the whole tree embedding algorithm and set the maximal depth of tree as 20. The trace of st.score is

showed in Figure 3.

For mushroom, the buffer size is set as 500 in the whole tree embedding algorithm. That means if the

variance of latest 500 scores is less than the threshold value, the subtree generation process is complete.

From Figure 3, we can observe that MCMC method is able to become convergent, i.e., st.score becomes

stable eventually. Figure 3 also shows that if privacy budget ǫ becomes larger, st.score will becomes more

unstable and MCMC method needs more iterations to become convergent. Therefore, the application

of MCMC method to realize Exponential Mechanism in our algorithms is valid and can achieve DP.

Additional discussion about MCMC convergence can be found in [6, 23, 24].

4.3 Experimental results

Figure 4 demonstrates the average performance of the four algorithms on vote: the one-step embedding

algorithm, the two-step embedding algorithm, the three-step embedding algorithm and the whole tree

embedding algorithm. Four privacy budgets, 0.01, 0.1, 1 and 10 are tested for each of the algorithms.

Figure 4(a) gives the results when ǫ = 0.01. The x axis is the maximal depth of the decision tree

and the y axis is the average prediction accuracy. It can be observed that the whole tree embedding

algorithm outperforms the other algorithms. The three-step embedding algorithm performs better than

the one-step and the two-step embedding algorithms in most cases. Since the privacy budget is very

small, a lot of noise is added. The results fluctuate and the two-step embedding algorithm does not show

clear benefits over the one-step embedding algorithm.

Figure 4 (b) and (c) show the results when ǫ = 0.1 and 1 respectively. We can clearly observe that

the whole tree embedding algorithm is better than the three-step embedding algorithm, the three-step

embedding algorithm is better than the two-step embedding algorithm and the two-step embedding

algorithm performs better than the one-step embedding algorithm. This confirms that deeply combining

DP and DM does help to increase the prediction accuracy.

Figure 4(d) shows the results when ǫ = 10. When privacy budget is very large (ǫ = 10) to overwhelm

the complexity of DT model, the randomness of algorithms holds the dominant position, causing uncertain

results. In this situation, the advantages of more steps of embedding algorithms cannot perform very well.

For dataset vote, the performance differences between the four algorithms are not as clear as ǫ = 0.1 and

ǫ = 1 when the maximal depth of decision tree is less than 8. While when the depth is larger than 8, we can

still clearly observe most deeper embedding algorithms perform better than shallow embedding algorithms

(i.e., the three-step embedding algorithm performs better than the two-step embedding algorithm and
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Figure 4 (Color online) Accuracy of algorithms on vote with different embedding depths and different privacy budgets.

(a) ǫ = 0.01; (b) ǫ = 0.1; (c) ǫ = 1.0; (d) ǫ = 10.

the two-step embedding algorithm performs better than the one-step embedding algorithm). We think

that the reason for this is that the complexity of DM model is too small when the depth is less than

8. Thus a big privacy budget such as ǫ = 10, which adds a small amount of noise, does not change

the relatively simple structure in the DT model. One exception is the whole tree embedding algorithm,

which shows the poorest performance. The experiment is repeated several times with similar results.

The reason for this is that when the privacy budget is as large as 10, the DP’s influence is very small

compared to the real distribution of data. Thus, the randomness in MCMC will introduce extra cost. It

should be emphasized that in order to provide protection, the privacy budget should be typically smaller

than 1 [1, 14, 21].

Bringing the four figures in Figure 4 together, it can be observed that with the increase of ǫ, the

prediction accuracy of decision tree increases a lot. It is obvious that relaxing privacy protection condition

helps to maintain the DM effect with DP protection. From Figure 4 (b)–(d), we can also see that with

the increase of depth, the prediction accuracy drops. Large depth means more complex model and more

attributes are used in the DT model, which means the “variety” of data used in decision tree increases.

Similar to Figure 4, Figures 5 and 6 report the results on datasets mushroom and tic-tac-toe respectively.

We can observe the same phenomena as vote. Deeper embedding algorithms clearly perform better than

shallow embedding algorithms with useful privacy budget settings (smaller than 1 [1,14,21]). In summary,

the experimental results of these three datasets verify the effectiveness of our embedding algorithms. The

deep combination of DP and DT helps to increase the classification accuracy.

4.4 Comparison with Private-RDT

In order to prove the advance of our research work, we compare our method with the existing approach

Private-RDT proposed by Jagannathan et al [25]. As we are supposed to compare our algorithm with

Private-RDT , we decide to use the same parameter settings of Private-RDT in Jagannathan’s paper.

Values of privacy budget ǫ are set as 0.5, 0.75 and 1 respectively. The depth of decision trees generated
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Figure 5 (Color online) Accuracy of algorithms on mushroom with different embedding depths and different privacy

budgets. (a) ǫ = 0.01; (b) ǫ = 0.1; (c) ǫ = 1.0; (d) ǫ = 10.
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Figure 6 (Color online) Accuracy of algorithms on tic-tac-toe with different embedding depths and different privacy

budgets. (a) ǫ = 0.01; (b) ǫ = 0.1; (c) ǫ = 1.0; (d) ǫ = 10.
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Figure 7 (Color online) Comparison of Private-RDT and our algorithms on two datasets. (a) vote; (b) mushroom.

is p/2, where p represents the number of attributes of instances in the dataset. That is to say, the depth of

generated trees is 8 for vote and 11 for mushroom. In Private-RDT , the number of trees in the ensemble

is not beyond 5 for vote and is set as 10 for mushroom [25]. In the experiments, our algorithms are run

300 times. We compare these two approaches by using average prediction accuracy, where prediction

accuracy is calculated by using cross-validation technique.

Figure 7(a) presents the results of experiments on vote. The x axis is the budget ǫ and the y axis

is the average prediction accuracy. We can observe that the one-step embedding algorithm (previous

work) and the two-step embedding algorithm perform worse than Private-RDT . However, the three-

step embedding algorithm and the whole tree embedding algorithm perform better than Private-RDT .

Figure 7(b) presents the results of experiments on mushroom. The dataset mushroom has much more

instances than vote. We can obviously observe that our algorithms perform better than Private-RDT .

Therefore, we can conclude that our method is better than the existing approach Private-RDT in [25]

and is very meaningful.

4.5 Running time

In this section, we discuss the efficiency (running time) of our algorithms. Our experiments were run on

a server with a 3.10 GHz Intel Core i5 processor and 8 GB main memory. Figure 8 shows the average

time of generating a single decision tree when the depth is 20 for dataset mushroom. In experiments, we

use 500, 1000, 2000, 4000 and 8000 instances from mushroom respectively and we can see the running

time of our algorithms almost increases linearly as the data size scales up.

From Figure 8, we can also observe that more running time is required for deeper embedding algorithms.

A DT can be generated within a maximum of 150 s with DP protection. We have analyzed that the

proposed algorithms are polynomial time algorithms in Subsection 3.6. Since the classification using DT

is an offline data mining task, its efficiency is not a key challenge for our algorithms and the classification

accuracy is the primary optimization objective. Deeper embedding of DP in DT increases the accuracy

a lot, so it is worthy the cost of a few additional seconds of running time.

5 Conclusion

In this work, we have developed algorithms to flexibly embed differential privacy (DP) in the decision

tree model with different depths. Experiments have shown that deeply combining DP and decision tree

(DT) does effectively increase the prediction accuracy. This work verifies that one way to apply DP is

to embed DP in data mining (DM) algorithms as deep as possible. We have also found that with DP

protection, the accuracy of the model is related with privacy budget, the embedding depth and the model

complexity. In future work, we would like to study different privacy budget assignment strategies as well

as applying deep DP embedding to other DM models.
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Figure 8 (Color online) Running time of algorithms on mushroom with different number of instances and different privacy

budgets. (a) ǫ = 0.01; (b) ǫ = 0.1; (c) ǫ = 1.0; (d) ǫ = 10.
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