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Abstract The fusion of ordered propositions is an important and widespread problem in artificial intelligence,

but existing fusion methods have difficulty handling the fusion of ordered propositions. In this paper, we

propose a solution based on consistency and uncertainty measurements. The main contributions of this paper

are as follows. First, we propose the concept of convexity degree, mean, and center of basic support function

to comprehensively describe the basic support function of ordered propositions. Second, we introduce entropy

as a measure of uncertainty in the basic support function of ordered propositions. Third, we generalize the

indeterminacy of the basic support function and propose a novel method to measure the consistency between

two basic support functions. Finally, based on the above researches, we propose a novel algorithm for fusing

ordered propositions. Theoretical analysis and experimental results demonstrate that the proposed method

outperforms state-of-the-art methods.
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1 Introduction

Fusing information from multiple sources can yield higher quality information and significantly enhance

the effectiveness of decision making. In recent years, with the development of information technologies

such as information retrieval, and computer networks, the volume of information has grown explosively.

Thus, the significance of information fusion has gradually increased and it has become a critical technology

for intelligent information processing and big data processing.

It is infeasible to provide a universal fusion method for all information fusion problems. Individual

problems must be summarized and analyzed, and a specialized fusion algorithm must be used for each

problem. The fusion of ordered propositions is an important and widespread problem. A set of ordered

propositions describe same characteristics or features of a subject with a gradually increasing or decreasing

intensity. For example, professors evaluate students on a scale of “Excellent, Good, Fair, Poor” and
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agricultural experts evaluate the fertility of cultivated land by “high, middle, low”. A set of ordered

propositions can be represented as a basic support function (similar to a belief function) whose elements

denote the truth-value (belief value) of each proposition. Fusion of ordered propositions means combining

multiple basic support functions from different sources into a single basic support function. The truth-

value of a basic support function for a set of ordered propositions must satisfy the convex property,

meaning the curve of the function must be convex and unimodal, because we cannot say that fertility is

both high and low simultaneously.

The Dempster-Shafer theory [1,2] is a commonly used method for fusing propositions [3]. In this theory,

the problem domain is denoted by a finite nonempty set Θ, which is also called the frame of discernment.

A set of propositions are represented as a belief function and Dempster’s rule of combination is used for

combining belief functions. As an example, for the belief functions µ and ν, the fusion result ω is defined

as ω(A) =
∑

B∩C=A λ1(B)λ2(C)/(1−K), where A,B,C ∈ 2Θ, and K =
∑

B∩C=∅ µ(B)ν(C) denotes the

conflict degree between µ and ν. Dempster-Shafer theory based approaches have been widely used in

many fields including information fusion [4–11]. However, these approaches cannot handle the fusion of

ordered propositions because they cannot ensure that the fusion result satisfies the convex property.

Previously, fusion algorithms based on centroid were proposed [12–14] to fuse the belief functions of

ordered propositions and ensure satisfaction of the convex property. These types of algorithms work in

two phases. First, they find the most probable proposition based on the centroid of the mass. Second,

they reallocate the truth-value of each proposition to construct a new convex belief function as the fusion

result. However, this approach has a few shortcomings. First, the consistency between two basic support

functions is not considered, so it cannot adapt fusion strategies for different consistencies. Second, the

centroid does not precisely reflect the location of the proposition that is most likely to be true. As a

result, centroid-based algorithms sometimes obtain inaccurate results.

In order to overcome the shortcomings of the aforementioned methods, we propose a novel method

for the fusion of ordered propositions based on consistency and uncertainty measurements. We provide

a comprehensive analysis of the basic support functions of ordered propositions, introduce entropy as

a measure of the uncertainty of the basic support function, provide theoretical analysis, and present a

novel method for measuring the consistency between two basic support functions. Finally, based on these

concepts, we propose a novel algorithm for fusing ordered propositions.

The remainder of this paper is organized as follows. Section 2 provides a brief discussion of ordered

propositions and centroid-based algorithms. In Section 3, we explain the shortcomings of the centroid-

based algorithms. In Section 4, we provide definitions and properties for basic support functions, such

as convex degree and center. Section 5 discusses the proposed method for measuring the consistency and

uncertainty of basic support functions. The proposed fusion algorithm is described in Section 6. Section 7

presents experiments, case studies, and comparisons for the proposed method. Finally, our conclusion

and direction for future work are summarized in Section 8.

2 Preliminaries

In this section, we provide some background knowledge about ordered propositions [15].

We first present an example of “source-rock evaluation”. The evaluation results for source-rocks can

be represented by a quad-tuple. The first element of the quad-tuple denotes the truth-value of the

proposition “the source-rock richness is high”. The second element of the quad-tuple denotes the truth-

value of the proposition “the source-rock richness is normal”. The third element denotes the truth-value

of the proposition “the source-rock richness is low”. Finally, the fourth element of the quad-tuple denotes

the truth-value of the proposition “the source-rock richness is zero (meaning it is not a source-rock)”. The

range of truth-values for each proposition is [0, 1]. The quad-tuple is a basic support function, similar to

a belief function in the Dempster-Shafer Theory.

For instance, a resulting quad-tuple of (0.1, 0.6, 0.0, 0.0) means that the truth-value of the first

proposition is 0.1, the truth-value of the second proposition is 0.6, the truth-value of the third proposition
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is 0.0, and the truth-value of the fourth proposition is 0.

Definition 1 (Ordered proposition). For a set of propositions P1, P2, . . . , Pn, let |Pi| represent the

truth-value of Pi and |Pm| = max{|P1|, . . . , |Pn|}. P1, P2, . . . , Pn are ordered propositions, if

(1) ∀i = 1, 2, . . . , n, all subject items of Pi are S, and Pi has the form of Pi= “S is si”;

(2) ∀i = 1, 2, . . . , n, si describes the same characteristics or features of S;

(3) ∀i = 1, 2, . . . ,m− 1, |Pi| 6 |Pi+1|; and ∀i = m,m+ 1, . . . , n− 1, |Pi| > |Pi+1|.

Using source-rock evaluation as an example, S=source-rock richness and si is {high, normal, low, zero}.

Thus P1 is “the source-rock richness is high”, P2 is “the source-rock richness is normal”, P3 is “the source-

rock richness is low”, and P4 is “the source-rock richness is zero”. The degree of the characteristics or

features increases or decreases gradually. This gradient can be represented by “less than or equal to”

relationships between propositions.

Definition 2 (‘less than or equal to’ relationship). For a set of ordered propositions P = {P1, P2, . . . , Pn},

and 1 6 i, j 6 n, Pi is less than or equal to Pj (denoted Pi 6 Pj) if and only if: i 6 j and (P,6) is a

totally ordered set.

For ordered propositions, the basic support function is convex, meaning the curve of the function is

unimodal, because we cannot say “the source-rock richness is both high and low simultaneously”.

Definition 3 (Convex property). |P1|, |P2|, . . . , |Pn| have the convex property, if ∀i 6 j 6 k satisfies

|Pj | > min{|Pi|, |Pk|}.

|Pi| represents the truth-value of proposition Pi(1 6 i 6 n). Guan et al. [16] introduced the basic

support function to describe the truth-value of a set of propositions and we refined the definition for

ordered propositions.

Definition 4 (Basic support function of ordered propositions). For a set of ordered propositions S =

{s1, s2, . . . , sn}, a function λ is called a basic support function of the ordered propositions if

(1) λ is defined on {S} ∪ {{si}|1 6 i 6 n}, where S̄ indicates indeterminacy;

(2) λ(si) > 0, 1 6 i 6 n;

(3)
∑

1 6 i 6 n λ(si) 6 1;

(4) λ(S) = 1−
∑

1 6 i 6 n λ(si).

Take aforementioned example of “source-rock evaluation”, the evaluation result is a quadri-tuple (0.1,

0.6, 0.0, 0.0), this quadri-tuple implies a basic support function λ : λ(s1) = 0.1, λ(s2) = 0.6, λ(s3) =

0.0, λ(s4) = 0.0, λ(S̄) = 0.3, in detail,

λ(s1) = 0.1 means the truth-value of the 1st proposition “the source-rock richness is high” is 0.1;

λ(s2) = 0.6 means the truth-value of the 2nd proposition “the source-rock richness is normal” is 0.6;

λ(s3) = 0.0 means the truth-value of the 3rd proposition “the source-rock richness is low” is 0.0;

λ(s4) = 0.0 means the truth-value of the 4th proposition “the source-rock richness is zero” is 0.0;

λ(S̄) = 0.3 is indeterminate part of source-rock richness.

We now briefly describe the main idea of the centroid-based method. For two basic support functions

λ1 and λ2, the authorities (or weights) of λ1 and λ2 are Ω1 and Ω2. Let ω be the fusion result of λ1 and

λ2, then ω is defined as follows when using centroid-based method:

ω(si) =



















































∑

16 k6 i

{

Ω1 × λ1(sk)[1 + λ1(S)] + Ω2 × λ2(sk)[1 + λ2(S)]
}

/(g − k + 1), if i < g,

∑

16 k6 g

{

Ω1 × λ1(sk)[1 + λ1(S)] + Ω2 × λ2(sk)[1 + λ2(S)]
}

/(g − k + 1)

+
∑

g+16 k6n

{

Ω1 × λ1(sk)[1 + λ1(S)] + Ω2 × λ2(sk)[1 + λ2(S)]
}

/(k − g + 1), if i = g,

∑

i6 k6n

{

Ω1 × λ1(sk)[1 + λ1(S)] + Ω2 × λ2(sk)[1 + λ2(S)]
}

/(k − g + 1), if i > g,

where g(ω) =

{

⌈gd⌉ , if gd− ⌊gd⌋ > ∆2

⌊gd⌋ , if gd− ⌊gd⌋ 6 ∆1

and gd =
∑n

i=1 i{Ω1λ1(si)/[1− λ1(S)] + Ω2λ2(si)/[1− λ2(S)]}.
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g(ω) is the index of the most probable proposition in ω. If ∆1 < gd − ⌊gd⌋ < ∆2, two intermediate

fusion results are constructed. First, ω1 is constructed based on g = ⌊gd⌋, and ω2 is constructed based

on g = ⌈gd⌉. Second, the final fusion result ω is constructed by combining ω1 and ω2: let δ = gd− ⌊gd⌋,

then ω(sk) = (1− δ)ω1(sk) + δω2(sk) for all k such that 1 6 k 6 n.

3 Shortcomings of centroid-based methods

We first present some typical counter-examples to illustrate the shortcomings of centroid-based methods

for fusing ordered propositions.

Example 1. The basic support functions for fusion are λ1 = (0.65, 0.2, 0.1, 0.05) and λ2 = (0.7, 0.15, 0.1,

0.05), and the weights of them are Ω1 = Ω2 = 0.5.

λ1 and λ2 are so consistent that they both imply that the 1st proposition is most likely to be true.

Take “source-rock evaluation” as an example. λ1 and λ2 are both imply that source-rock richness is high.

Thus, the clarity of the fusion result should be increased, meaning the truth-value of the 1st proposition

ω(s1) should be greater than max{0.65, 0.7}.

However, using a centroid-based method, the centroid point of the basic support functions is calculated

as gd=
∑

16 i 6n 0.5× {λ1(si) + λ2(si)} × i=1.525. The final fusion result is constructed based on the

centroid point and the resulting basic support function is ω = (0.561, 0.367, 0.057, 0.015). ω(s1) = 0.561

is less than both 0.65 and 0.7. This result is incorrect and unintuitive.

Example 2. The basic support functions for fusion are λ1 = (0.25, 0.25, 0.25, 0.25) and λ2 =(0.25, 0.25,

0.25, 0.25), and their weights are Ω1 = Ω2 = 0.5.

The basic support functions are completely indeterminate. In the example of source-rock evaluation, λ1

and λ2 indicate nothing about source-rock richness. However, using the centroid-based method, gd = 2.5,

and the fusion result is ω = (0.104, 0.396, 0.396, 0.104), which is completely unreasonable.

Example 3. The basic support functions for fusion are λ1 = (0.1, 0.2, 0.2, 0.5) and λ2 = (0.1, 0.15, 0.15,

0.6), and their weights are Ω1 = Ω2 = 0.5.

λ1 and λ2 are consistent and they all imply the 4th proposition is most probable to be true, but using

the centroid-based method, gd = 3.175, and the fusion result is ω = (0.033, 0.121, 0.571, 0.275), it implies

the 3rd proposition is most probable to be true, and this is obviously incorrect.

Example 4. The basic support functions for fusion are λ1 = (0.05, 0.1, 0.15, 0.7) and λ2 = (0.05, 0.1, 0.15,

0.7), and their weights are Ω1 = Ω2 = 0.5.

λ1 and λ2 are completely consistent because they are identical. λ1 and λ2 imply that the 4th proposition

is most likely to be true. Thus, the clarity of the fusion result should be increased, meaning the truth-

value of the 4th proposition ω(s4) should be greater than 0.7. However, using the centroid-based method,

gd = 3.5, and the fusion result is ω = (0.015, 0.056, 0.344, 0.585). Although this result agrees with the

4th proposition, ω(s4) is less than 0.7, meaning the clarity of the fusion result is decreased.

In summary, the reasons for the aforementioned shortcomings of centroid-based methods include: (1)

The consistency between two basic support functions is not considered, so these methods cannot adapt

fusion strategies based on different consistencies. (2) The centroid cannot precisely reflect the location of

the proposition that is most likely to be true. These problems sometimes cause centroid-based methods

to yield incorrect results.

4 Some definitions and properties of basic support functions

For a set of ordered propositions S = {s1, s2, . . . , sn}, we present the following definitions to describe

their properties.

Definition 5 (Determinate part and indeterminate part of basic support function). For a basic support

function λ, the Determinate Part λ(S) and Indeterminate Part λ(S̄) are defined as

λ(S) =
∑

i=1,...,n
λ(si), λ(S) = 1− λ(S). (1)
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It can be observed from Definition 5 that the determinate part of a basic support function λ is the

sum of the truth-values of λ. The greater the determinate part is, the lower indeterminate part is. This

means that λ becomes more effective as the determinate part increases.

Definition 6 (Mean of a basic support function). The mean value of a basic support function λ is

defined as

λ = (1/n)

n
∑

i=1

λ(si). (2)

Definition 7 (Degree of convexity). The degree of convexity of a basic support function λ is defined as

convex(λ) = max {λ(s1), λ(s2), . . . , λ(sn)} − λ. (3)

It can be observed from Definition 7 that the maximum of convex(λ) is 1−λ̄. Thus, we can normalize (3)

to find a normalized convex(λ) as follows:

NC(λ) = (max {λ(s1), λ(s2), . . . , λ(sn)} − λ)/(1− λ). (4)

The greater the degree of convexity is, the more clear and determinate the basic support function is. The

degree of convexity reflects the degree of clarify of an opinion that the basic support function (evidence)

describes.

5 Measures of consistency and uncertainty of basic support functions

In this section, we propose methods to measure the degree of consistency and uncertainty of basic support

functions.

5.1 Consistency of basic support function

Definition 8 (Generalized indeterminacy). For basic support function λ = (λ(s1), λ(s2), . . . , λ(sn)), λ

is a generalized indeterminate basic support function if λ(s1) = λ(s2) = · · · = λ(sn) or λ(s1) ≈ λ(s2) ≈

· · · ≈ λ(sn)(0 6 λ(sk) 6 1/n, k = 1, . . . , n).

λ(sj) ≈ λ(sk) indicates that λ(sj) is approximately equal to λ(sk), meaning ∀1 6 j, k 6 n, |λ(sj) −

λ(sk)| 6 ǫ (ǫ > 0 is a small real number).

Definition 9 (Center of a basic support function). For a basic support function λ = (λ(s1), λ(s2), . . . ,

λ(sn)), the center of λ is defined as

CI(λ) =















argmax
i=1,...,n

λ(si), NC(λ) > θ,

∑

i=1,...,n∧λ(si)> τ ·λ̄ λ(si)× i
∑

i=1,...,n∧λ(si)> τ ·λ̄ λ(si)
, otherwise,

(5)

θ could be set to 0.55 based on our experience and experiments, 1 < τ 6 1.5.

Definition 10 (Consistency between basic support functions). If CI(µ) and CI(ν) are the centers of the

basic support functions µ and ν, then µ̄ and ν̄ are the mean value of µ and ν. The consistency between

µ and ν is defined as

∆G(µ, ν) = |CI(µ)− CI(ν)|/(n− 1). (6)

If ∆G =1, then µ and ν are inconsistent. If ∆G =0, then µ and ν are consistent. Otherwise, if

0 < ∆G < 1, then µ and ν are considered to be partially consistent. The consistency between µ and ν

can be divided into 3 degrees.

0 6 ∆G 6 δ1 : The consistency between µ and ν is high.

δ1 < ∆G 6 δ2 : The consistency between µ and ν is medium.

δ2 < ∆G : The consistency between µ and ν is poor.

Based on our experience and experiments, δ1 = 1/6 and δ2 = 1/3 are suitable for the proposed method.
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5.2 Uncertainty measure of basic support functions based on entropy

Uncertainty measures can supply additional viewpoints for analyzing data and help us to define the

substantive characteristics of datasets [17, 18]. We propose an entropy-based method to measure the

uncertainty of a basic support function. We first use three basic support functions as an example:

λ1 = (0, 1, 0, 0), λ2 = (0.15, 0.7, 0.1, 0.05), and λ3 = (0.25, 0.25, 0.25, 0.25). The degrees of uncertainty of

the basic support functions vary significantly. The degree of uncertainty of λ1 is the lowest, because it

is completely certain. The degree of uncertainty of λ2 is medium. The degree of uncertainty of λ3 is the

highest because it is completely uncertain.

Shannon [19] defined entropy as a measure of the uncertainty of information. We extend that definition

and introduce the concept of entropy for basic support functions.

Definition 11 (Entropy of a basic support function). Suppose Θ is a space containing all n-tuple basic

support functions other than (λ(s1) = 0, λ(s2) = 0, . . . , λ(sn) = 0), n > 2, and let x ln(1/x) = 0 if x = 0.

For a basic support function λ = (λ(s1), λ(s2), . . . , λ(sn)) ∈ Θ, the entropy of λ is defined as

H(λ) =

n
∑

i=1

λ(si) ln

(

1

λ(si)

)

. (7)

Eq. (7) shows that H(λ) reaches the maximum value of lnn if λ(s1) = λ(s2) = · · · = λ(sn) = 1/n.

Additionally, H(λ) reaches the minimum value of 0 if ∃1 6 k 6 n, λ(sk) = 1.

For a basic support function with a unique maximum truth-value, entropy measures how much uncer-

tainty exists in the basic support function. The greater the entropy, the greater the degree of uncertainty.

For example, take two basic support functions λ1 = (0.005, 0.99, 0.005, 0, 0) and λ2=(0.0049995, 0.990001,

0.0049995, 0, 0), then H(λ1) = 0.062933 and H(λ2) = 0.062928. The maximum truth-value of λ2 is 0.

990001, which is 0.000001 greater than maximum truth-value of λ1, which is 0.99. This means that the

degree of the uncertainty of λ1 is higher. Thus, H(λ1) is greater than H(λ2). We present Theorem 1 to

provide theoretical support for this conclusion.

Theorem 1. Suppose that Θ is a function space containing all n-tuple basic support functions other

than (0, . . . , 0), n > 2, λ = (x1, x2, . . . , xn) is a basic support function with a unique maximum in Θ. Let

xln(1/x) = 0 if x = 0. Suppose xk = max{x1, x2, . . . , xn} is the maximum truth-value in λ. Take another

basic support function λ′ = (x1−∆1, . . . , xk−1−∆k−1 , xk+∆k , xk+1−∆k+1 , . . . , xn−∆n) ∈ Θ, and

let 0 < ∆k, xk < 1;∆ 1,∆ 2, . . . ,∆ k−1,∆ k+1, . . . ,∆ n > 0,∆ k = ∆ 1+∆ 2+· · ·+∆ k−1+∆ k+1+· · ·+∆ n.

Then, H(λ) > H(λ′), meaning λ and λ′ both satisfy the following equation:





∑

j=1,...,n

xj ln
1

xj



−



(xk +∆k) ln
1

xk +∆k

+
∑

j=1,...,n ∧ j 6=k

(xj −∆j) ln
1

xj −∆j



 > 0.

Proof. By mathematical induction.

(1) Firstly we prove the theorem is true if n = 2.

Suppose λ = (x1, x2) ∈ Θ is a basic support function with single maximum, and x2 > x1 > ∆ >

0, x2 +∆ 6 1, x1 −∆ > 0, λ′ = (x1 −∆, x2 +∆).

We know xln(1/x) is monotonically decreasing on interval [1/e, 1], and monotonically increasing over

interval [0, 1/e], it gets maximum at x = 1/e. The gradient is (x ln(1/x))′ = − lnx− 1.

If x1 6 1/e 6 x2, then we have x2 ln(1/x2) > (x2 + ∆) ln(1/(x2 + ∆)) because of the monotonic

decreasing of x ln(1/x), and we also have x1 ln(1/x1) > (x1−∆) ln(1/(x1−∆)) because of the monotonic

increasing of xln(1/x). So we obtain x1 ln(1/x1) + x2 ln(1/x2) > (x1 − ∆) ln(1/(x1 − ∆)) + (x2 +

∆) ln(1/(x2 +∆)).

If 1/e 6 x1 6 x2, then for the gradient at x1 and x2, we have 0 > (x1 ln(1/x1))
′ = − lnx1−1 > − lnx2−

1 = (x2 ln(1/x2))
′, thus (x1 −∆) ln(1/(x1 −∆)) − x1 ln(1/x1) < x2 ln(1/x2)− (x2 +∆) ln(1/(x2 +∆)).

So we obtain x1 ln(1/x1) + x2 ln(1/x2) > (x1 −∆) ln(1/(x1 −∆)) + (x2 +∆) ln(1/(x2 +∆)).
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If x1 6 x2 6 1/e, then for the gradient at x1 and x2, we have (x1 ln(1/x1))
′ = − lnx1−1 > − lnx2−1 =

(x2 ln(1/x2))
′ > 0, thus (x2 + ∆) ln(1/(x2 +∆)) − x2 ln(1/x2) < x1 ln(1/x1)− (x1 −∆) ln(1/(x1 −∆)).

So we obtain x1 ln(1/x1) + x2 ln(1/x2) > (x1 −∆) ln(1/(x1 −∆)) + (x2 +∆) ln(1/(x2 +∆)).

That means the entropy of λ′ is less than λ, because λ′ is more determinate.

(2) Assume Theorem 1 is ture for k (2 6 k < n), we then prove that Theorem 1 is also ture for k = n.

Because λ = (x1, x2, . . . , xn) is convex, it can be derived that min {x1, . . . , xn} = {x1 , xn }. We might

as well assume xn = min{x1, x2, . . . , xn}, xk = max{x1, x2, . . . , xn}, 1 < k < n, then basic support

function (x1, x2, . . . , xn−1) satisfies Theorem 1 based on the inductive assumption.

(2.1) Prove that xn ln (1/xn)− (xn −∆n) ln (1/(xn −∆n)) > 0. We prove xn < 1/e by contradiction

at first.

If xn > 1/e, then ∀n > 3,
∑

j=1,...,n xj > n
∑

xn > n
∑

1/e > 3/e. Because e < 3, it can be derived

that
∑

j=1,...,n xj > 1. So xn < 1/e is proved.

If x = 1/e, then xln(1/x) gets maximum 1/e.

If 0 < ∆ < x < 1/e, then we get x ln(1/x) > (x−∆) ln (1/(x−∆)).

If 1/e < x 6 1, then we get x ln(1/x) > (x +∆) ln(1/(x +∆)).

If 0 < x < 1/e, then xn ln(1/xn) > (xn −∆n) ln (1/(xn −∆n)) > 0.

If xn = 0, then ∆n = 0, so xn ln(1/xn)− (xn −∆n) ln (1/(xn −∆n)) = 0.

(2.2) Based on the inductive assumption, we have




∑

j=1,...,n−1

xj ln(1/xj)



−



(xk +∆ k) ln(1/(xk +∆k)) +
∑

j=1,...,n ∧ j 6=k

(xj −∆j) ln (1/(xj −∆j))



 > 0.

From (2.1) we know that xn ln(1/xn)− (xn −∆n) ln(1/(xn −∆n)) > 0.

So it can be derived that




∑

j=1,...,n

xj ln(1/xj)



−



(xk +∆ k) ln(1/(xk +∆ k)) +
∑

j=1,...,n∧ j 6=k

(xj −∆j) ln(1/(xj −∆j))



 > 0.

Theorem 1 illustrates that if a basic support function has a unique maximum truth-value, then the

less entropy the basic support function has, the more determinate opinion this basic support function

represents.

However, let us consider basic support functions λ1 = (0.5, 0.5, 0.0, 0.0) and λ2 = (0.15, 0.7, 0.1, 0.05)

for source-rock richness. λ1 cannot identify whether source-rock richness is high or normal, and λ2 im-

plies that source-rock richness is normal, meaning λ2 is more determinate than λ1. However, H(λ1) =

0.693 and H(λ2) = 0.914, meaning the entropy of λ2 is larger than that of λ1. Similarly, λ3 =

(0.25, 0.5, 0.15, 0.1) is more determinate than λ4 = (0.4, 0.4, 0.15, 0.05) and λ5 = (1/3, 1/3, 1/3, 0), but

H(λ3) = 1.208 is greater than H(λ4) = 1.167 and H(λ5) = 1.099. Furthermore, λ4 is more determinate

than λ5, but H(λ4) is greater than H(λ5). These examples indicate that if a basic support function

has multiple maximum truth-values, simple entropy does not accurately measure uncertainty. In these

situations, we extend the entropy of basic support functions by using Definition 12.

Definition 12 (Extended entropy of basic support functions). Suppose that Θ is a space contain-

ing all n-tuple basic support functions except (λ(s1) = 0, λ(s2) = 0, . . . , λ(sn) = 0), n > 2, and

let x ln(1/x) = 0 if x = 0. For a basic support function λ = (λ(s1), λ(s2), . . . , λ(sn)) ∈ Θ, let

λ(sk) = max{λ(s1), λ(s2), . . . , λ(sn)}, 1 6 k 6 n. If ∀βλ(sk) 6 λ(sj) 6 λ(sk), β > 0.9, then λ(sj) is

called quasi-maximum. The extended entropy of λ is defined as

E(λ) =















H(λ), if λ has single maximum and no quasi-maximum,

H(λ) + (ln n−H(λ))(n′/n)α, if λ is convex∧ 2 6 n′
6 n,

H(λ) + (ln n−H(λ))(|k − j|/n)
α

, if λ is not convex ∧ 2 6 |k − j| < n,

(8)

where α = 0.1, n′ is the total number of maxima and quasi-maxima in λ, k′ and j′ are the indices of top

two truth-values in λ that maximize |k′ − j′|.
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The 2nd line in (8) means that λ has a higher extended entropy when it has a greater number of maxima

and quasi-maxima. The 3rd line in (8) means that λ has a higher extended entropy if its extreme points

are further apart. These conditions both imply that λ is more indeterminate.

Take the aforementioned example of a basic support function λ1 = (0.5, 0.5, 0.0, 0.0) with H(λ1) ≈

0.693, ln(4) − H(λ1) ≈ 0.693, n′ = 2, (n′/n)α = 0.50.1. Then, E(λ1) ≈ 1.34, which is greater than

the entropy of λ2 and λ3, which is a reasonable result. H(λ4) ≈ 1.167, ln(4) − H(λ4) ≈ 0.219, α =

0.1, and (n′/n)α = 0.50.1. Then, E(λ4) ≈ 1.372;H(λ5) ≈ 1.099, ln(4) − H(λ5) ≈ 0.288, α = 0.1,

(n′/n)α = 0.750.1. Thus, E(λ5) ≈ 1.378 and E(λ4) < E(λ5) is reasonable. As a final example, consider

λ = (0.395, 0.07, 0.07, 0.07, 0.395), H(λ) ≈ 1.292, (|k′ − j′|/n)α = 0.80.1. Then, E(λ) = H(λ) + (ln5 −

H(λ))× 0.80.1 ≈ 1.602.

6 The proposed method for fusing the basic support functions of ordered

propositions

6.1 The general algorithm

Let µ and ν be the n-dimensional basic support functions for fusion. The weights of µ and ν are Ωµ and

Ων , ∆ is the set of all indeterminate basic support functions, and γ is the indeterminate basic support

function(1/n, . . . , 1/n). Additionally, the basic support function resulting from fusion is ω. The proposed

fusion algorithm is outlined in Algorithm 1.

Algorithm 1 Fusion of basic support functions of ordered propositions

Input: Basic support functions µ and ν, the weights Ωµ and Ων ;

Output: Fusion result ω;

1: /* One of the basic support functions is indeterminate */

2: if µ ∈ ∆ and ν ∈ ∆ then

3: ω ← γ;

4: return

5: else if µ ∈ ∆ and ν /∈ ∆ then

6: ω ← ν;

7: return

8: else if µ /∈ ∆ and ν ∈ ∆ then

9: ω ← µ;

10: return

11: end if

12: /* Calculate the initial fusion result */

13: for i = 1 to n do

14: ω′(si)← Ωµ · µ(si)(1 + µ(S)) + Ων · ν(si)(1 + ν(S));

15: end for

16: /* Calculate the center and consistency */

17: Calculate CI(ω′) with (5);

18: Calculate ∆G(µ, ν) with (6);

19: /* Fusion */

20: if CI(ω′) is Integer then

21: Execute the fusion strategy described in Subsection 6.2 for the situation that CI(ω′) is integer;

22: else

23: Execute the fusion strategy described in Subsection 6.3 for the situation that CI(ω′) is non-integer;

24: end if

6.2 Fusion strategy when CI(ω′) is an integer

The aim of this section is to construct the final fusion result ω from the initial fusion result ω′ when

CI(ω′) is an integer. Typically, if µ and ν are consistent, the clarity or determinacy of the fusion result

should increase, meaning that the entropy of the final fusion result should decrease. Conversely, if µ and

ν are inconsistent, the entropy of the final fusion result should be higher than that of the initial fusion

result. Thus, we use different strategies based on the degree of consistency between µ and ν.
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Table 1 Process of generating ω from ω′ by (9) with ς = 0.2

Truth-value

obtained by

ω(s1)

Truth-value

obtained by

ω(s2)

Truth-value

obtained by

ω(s3)

Truth-value

obtained by

ω(s4)

Truth-value

obtained by

ω(s5)

Truth-value distributed from

ω′(s1) to ω(s1), . . . , ω(s5)
0.01389 0.01667 0.01944 0 0

Truth-value distributed from

ω′(s2) to ω(s1), . . . , ω(s5) 0 0.06818 0.08182 0 0

Truth-value distributed from

ω′(s3) to ω(s1), . . . , ω(s5)
0 0 0.6 0 0

Truth-value distributed from

ω′(s4) to ω(s1), . . . , ω(s5)
0 0 0.08182 0.06818 0

Truth-value distributed from

ω′(s5) to ω(s1), . . . , ω(s5)
0 0 0.01944 0.01667 0.01389

Total truth-value of

ω(s1), . . . , ω(s5)
0.01389 0.08485 0.80252 0.08485 0.01389

(1) High consistency. If 0 6 ∆G(µ, ν) 6 δ1, this indicates that µ is very consistent with ν. Thus, each

truth-value in ω′ should be strongly correlated to the center of ω′, increasing the clarity of the fusion

result. Therefore, we obtain the final fusion result ω by using an arithmetic sequence with an initial term

of 1 and a common difference of 0.2 to positively regulate ω′ as follows:

ω(si) =



















































i
∑

k=1

ω′(sk) [1 + ς(i− k)]
∑CI(ω′)−k

j=0 (1 + jς)
, if i < CI(ω′),

∑

16k6CI(ω′)

ω′(sk) [1 + ς(i− k)]
∑CI(ω′)−k

j=0 (1 + jς)
+

n
∑

k=CI(ω′)+1

ω′(sk) [1 + ς(k − CI(ω′))]
∑k−CI(ω′)

j=0 (1 + jς)
, if i = CI(ω′),

n
∑

k=i

ω′(sk) [1 + ς(k − i)]
∑k−CI(ω′)

j=0 (1 + jς)
, if i > CI(ω′),

(9)

where ς = 0.2 is the common difference.

We use Example 5 to explain (9).

Example 5. The basic support functions for fusion are µ = (0.05, 0.15, 0.6, 0.15, 0.05) and ν = (0.05,

0.15, 0.6, 0.15, 0.05). The initial fusion result ω′ = (0.05, 0.15, 0.6, 0.15, 0.05),CI(ω′) = 3 is an integer.

The process of constructing the final fusion result ω from ω′ by using (9) with ς = 0.2 is illustrated in

Table 1.

The arithmetic sequence with an initial term of 1 and a common difference of 0.2 is 1, 1.2, 1.4, . . .. In the

1st row of Table 1, ω(s1) obtains 1/(1+1.2+1.4) of truth-value from ω(s1)
′, that is 0.05×1/3.6=0.01389.

ω(s2) obtains 1.2/(1+1.2+1.4) from ω(s1)
′, that is 0.05×1.2/3.6=0.01667. ω(s3) obtains 1.4/(1+1.2+1.4)

from ω(s′1), that is 0.05×1.4/3.6=0.01944. That also means the truth-value of ω(s1)
′ is divided into 3

parts: 0.01389, 0.01667, 0.01944, and 0.01389 is distributed to ω(s1), 0.01667 is distributed to ω(s2),

0.01944 is distributed to ω(s3). For the 2nd row of Table 1, ω(s2)
′ distributes 1/(1+1.2) of its truth-value

to ω(s2), that is 0.15×1/2.2=0.06818. And ω(s2)
′ distributes 1.2/(1+1.2) of its truth-value to ω(s3), that

is 0.15×1.2/2.2=0.08182. For the 3rd row of Table 1, ω(s3)
′ distributes 1/1 of its truth-value to ω(s3),

that is 0.6. Finally, we obtain ω = (0.01389, 0.08485, 0.80252, 0.08485, 0.01389).

(2) Medium consistency. If δ1 < ∆G(µ, ν) 6 δ2, this indicates that the consistency between µ and ν is

medium, so each truth-value in ω′ can normally converge to the center of ω′. Thus, we use an arithmetic

sequence with an initial term of 1 and a common difference of 0.1 to regulate the initial fusion result ω′

positively, meaning we use (9) with ς = 0.1 to generate the final fusion result ω.

(3) Poor consistency. If ∆G(µ, ν) > δ2, this indicates that the consistency between µ and ν is poor.

Thus we regulate ω′ through two steps to generate ω: positive regulation and negative regulation. First,

the positive regulation is performed. This involves generating ω by regulating ω′ positively based on an
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Figure 1 Explanation of negative regulation for basic support function.

arithmetic sequence with an initial term of 1 and a common difference of 0, meaning using 9 with ς = 0.

Because µ and ν are poorly consistent, the final fusion result is expected to more indeterminate. Second,

we perform negative regulation. The process for negative regulation is to continuously squeeze the curve

of the truth-values in ω vertically to make the curve smoother, until its entropy approximately equals

the entropy of ω′, meaning E(ω′) ≈ E(ω). Theorem 1 implies that positive regulation for basic support

functions causes entropy to decrease and negative regulation causes entropy to increase. The principle of

negative regulation is illustrated in Figure 1.

The procedure for negative regulation is outlined in Algorithm 2.

Algorithm 2 Negative regulation of basic support function

Input: Initial fusion result ω′ and basic support function ω after positive regulation;

Output: Fusion result ω;

1: σ ← 1;

2: while |E(ω)−E(ω′)| 6 ǫ do

3: I ← index of maximum truth-value of ω;

4: k ← 1;

5: for k = I to n− 1 do

6: if ω(sk) > ω(sk+1) then

7: δ ← (ω(sk) − ω(sk+1))σ;

8: ρ← ω(sk) + ω(sk+1);

9: ω(sk+1)← ω(sk+1) + δω(sk+1)/ρ;

10: ω(sk)← ω(sk)− δ + δω(sk)/ρ;

11: end if

12: end for

13: for k = I; k > 1; k −− do

14: if ω(sk) > ω(sk−1) then

15: δ ← (ω(sk)− ω(sk−1))σ;

16: ρ← ω(sk) + ω(sk−1);

17: ω(sk−1)← ω(sk−1) + δω(sk−1)/ρ;

18: ω(sk)← ω(sk)− δ + δω(sk)/ρ;

19: end if

20: end for

21: if E(ω) < E(ω′)− ǫ then

22: σ ← 1;

23: else if E(ω) > E(ω′)− ǫ then

24: σ ← σ/2;

25: end if

26: end while

6.3 Fusion strategy when CI(ω′) is a non-integer

The aim of this section is to construct the final fusion result ω from the initial fusion result ω′ when

CI(ω′) is not an integer. Similarly to Subsection 6.2, we perform different strategies based on the degree

of consistency between µ and ν.
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(1) High consistency. If 0 6 ∆G(µ, ν) 6 δ1, this means that the consistency between µ and ν is high.

In order to construct the final fusion result ω, we use an arithmetic sequence with an initial term of 1

and a common difference(ς) of 0.2 to regulate the initial fusion result ω′ positively as follows:

ω(si) =











































































i
∑

k=1

ω′(sk) [1 + ς(i − k)]
((

∑⌈CI(ω′)⌉−k
j=0 [1 + jς ]

)

− ς
) , if i < ⌊CI(ω′)⌋ ,

ω′ (s⌊CI(ω′)⌋) + Γ (⌈CI(ω′)⌉ − CI(ω′)) , if i = ⌊CI(ω′)⌋ ∧ ω′(s⌊CI(ω′)⌋) 6= ω′(s ⌈CI(ω′)⌉),

ω′(s ⌈CI(ω′)⌉) + Γ (CI(ω′)− ⌊CI(ω′)⌋) , if i = ⌈CI(ω′)⌉ ∧ ω′(s⌊CI(ω′)⌋) 6= ω′(s ⌈CI(ω′)⌉),

ω′ (s⌊CI(ω′)⌋) + Γ/2, if i = ⌊CI(ω′)⌋ ∧ ω′(s⌊CI(ω′)⌋) = ω′(s ⌈CI(ω′)⌉),

ω′(s ⌈CI(ω′)⌉) + Γ/2, if i = ⌈CI(ω′)⌉ ∧ ω′(s⌊CI(ω′)⌋) = ω′(s ⌈CI(ω′)⌉),
n
∑

k=i

ω′(sk) [1 + ς(k − i)]
((

∑k−⌊CI(ω′)⌋
j=0 [1 + jς)]

)

− ς
) , if i > ⌈CI(ω′)⌉ ,

(10)

where

Γ = Γ1 + Γ2,

Γ1 =

⌊CI(ω′)⌋−1
∑

k=1

ω′(sk) [1 + ς(⌊CI(ω′)⌋ − k)]
(

∑⌈CI(ω′)⌉−k+1
j=1 [1 + (j − 1)ς ]

)

− ς
+

n
∑

k=⌈CI(ω′)⌉+1

ω′(sk) [1 + ς(k − ⌈CI(ω′)⌉)]
(

∑k−⌊CI(ω′)⌋+1
j=1 [1 + ς(j − 1)]

)

− ς
,

Γ2 =

⌊CI(ω′)⌋−1
∑

k=1

ω′(sk) [1 + ς(⌈CI(ω′)⌉ − k)− ς ]
(

∑⌈CI(ω′)⌉−k+1
j=1 [1 + (j − 1)ς]

)

− ς
+

n
∑

k=⌈CI(ω′)⌉+1

ω′(sk) [1 + ς(k − ⌈CI(ω′)⌉)]
(

∑k−⌊CI(ω′)⌋+1
j=1 [1 + ς(j − 1)]

)

− ς
.

(2) Medium consistency. If δ1 < ∆G(µ, ν) 6 δ2, we use an arithmetic sequence with an initial term of

1 and a common difference of 0.1 to regulate the initial fusion result ω′ positively using (10) with ς = 0.1.

(3) Poor consistency. If ∆G(µ, ν) > δ2, this means that the consistency between µ and ν is poor.

Similarly to Subsection 6.2, we first regulate ω′ positively using (10) with ς = 0, and then perform

negative regulation using Algorithm 2 to obtain the final fusion result ω.

6.4 Theoretical analysis of proposed algorithm

We provide theoretical support for the legitimacy and effectiveness of the proposed algorithm in Theorems

2–5.

Theorem 2. If µ and ν are basic support functions for ordered propositions and ω is the fusion result

of µ and ν when using Algorithm 1, then ω is a basic support function.

Proof. (1) If Algorithm 1 terminates at Lines 4, 7, or 10 of the algorithm, obviously ω is a valid basic

support function.

(2) For initial fusion result ω′, we have
∑n

i=1 ω
′(si) = Ωµ

∑n
i=1 µ(si)(1 + µ(S̄)) + Ων

∑n
i=1 ν(si)(1 +

ν(S̄)). Due to µ(S̄) = 1 −
∑n

i=1 µ(si), which implies
∑n

i=1 ω
′(si) = Ωµ

∑n
i=1 µ(si)(2 −

∑n
i=1 µ(si)) +

Ων

∑n
i=1 ν(si)(2−

∑n
i=1 ν(si)).

We know the function f(x) = x(2 − x) = −x2 + 2x 6 1 at interval x ∈ [0, 1], and 0 6
∑n

i=1 µ(si),
∑n

i=1 ν(si) 6 1, so we obtain
∑n

i=1 ω
′(si) 6 Ωµ +Ων 6 1.

(3) If µ and ν are highly consistent or moderately consistent, Algorithm 1 uses ω′ to construct the
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fusion result ω by an arithmetic sequence with common difference of ς . For 1 6 i < CI(ω′), we have

CI(ω′)−1
∑

i=1

ω(si) =

CI(ω′)−1
∑

i=1

i
∑

k=1

ω′(sk)(1 + ς(i − k))
CI(ω′)−k

∑

j=0

(1 + jς)

=

CI(ω′)−1
∑

i=1

i
∑

k=1

ω′(sk)(1 + ς(i− k))

(CI(ω′)− k + 1)(1 + ς(CI(ω′)− k)/2)

=

CI(ω′)−1
∑

i=1

(

ω′(s1)(1 + (i− 1)ς)

CI(ω′)(1 + ς(CI(ω′)− 1)/2)
+

ω′(s2)(1 + (i− 2)ς)

(CI(ω′)− 1)(1 + ς(CI(ω′)− 2)/2)

+ · · ·+
ω′(si)

(CI(ω′)− i+ 1)(1 + ς(CI(ω′)− i)/2)

)

.

Similarly, for CI(ω′) < i 6 n, we have

n
∑

i=CI(ω′)+1

ω(si) =

n
∑

i=CI(ω′)+1

n
∑

k=i

ω′(sk)(1 + ς(k − i))
∑k−CI(ω′)

j=0 (1 + jς)

=

n
∑

i=CI(ω′)+1

n
∑

k=i

ω′(sk)(1 + ς(k − i))

(k − CI(ω′) + 1)(1 + ς(k − CI(ω′))/2)

=

n
∑

i=CI(ω′)+1

(

ω′(sn)(1 + (n− i)ς)

(n− CI(ω′) + 1)(1 + ς(n− CI(ω′))/2)

+ · · ·+
ω′(si)

(i − CI(ω′) + 1)(1 + ς(i− CI(ω′))/2)

)

.

So for 1 6 i 6 n, the sum of ω(si) can be derived as follows:

n
∑

i=1

ω(sk) =
ω′(s1)(CI(ω

′) + ς(1 + 2 + · · ·+CI(ω′)− 1))

CI(ω′)(1 + ς(CI(ω′)− 1)/2)
+ · · ·+

ω′(sn)(1 + (n− i)ς)

(n− CI(ω′) + 1)(1 + ς(n− CI(ω′))/2)

=
ω′(s1)(CI(ω

′) + ςCI(ω′)(CI(ω′)− 1)/2)

CI(ω′)(1 + ς(CI(ω′)− 1)/2)

+ · · ·+
ω′(sn)(n− CI(ω′) + 1 + ς(n− CI(ω′))(n− CI(ω′) + 1)/2)

(n− CI(ω′) + 1)(1 + ς(n− CI(ω′))/2)

=
ω′(s1)CI(ω

′)(1 + ς(CI(ω′)− 1)/2)

CI(ω′)(1 + ς(CI(ω′)− 1)/2)
+ · · ·+

ω′(sn)(n− CI(ω′) + 1)(1 + ς(n− CI(ω′))/2)

(n− CI(ω′) + 1)(1 + ς(n− CI(ω′))/2)

= ω′(s1) + · · ·+ ω′(sn) 6 1.

(4) If µ and ν are in poor consistency, the algorithm firstly conducts positive regulation to ω′, we know

the result of positive regulation, ω, is a basic support function according to (3). Secondly, the negative

regulation is conducted to ω by Algorithm 2, in each iteration of this process, for I 6 k 6 n, ω(sk)

decreases by δ − δωk/ρ, and ω(sk+1) increases by δω(sk+1)ρ, due to ρ = ωk + ω(sk+1), which implies

ωk/ρ+ ω(sk+1)ρ = 1, i.e., ω(sk+1)ρ = 1− ωk/ρ. It can be derived that δω(sk+1)ρ = δ − δωk/ρ, i.e., the

decrease of ω(sk) equals the increase of ω(sk+1). Likewise, the decrease of ω(sk) equals the increase of

ω(sk−1) for 1 6 k 6 I. So the sum of ω(sk) of the result of negative regulation is less than or equal to 1.

Synthesizing (1)–(4), we obtain
∑n

i=1 ω(si) 6 1, and obviously ω(si) > 0 for all i such that 1 6 i 6 n.

Therefore, the fusion result ω is a valid basic support function.

Lemma 1. Suppose µ and ν are basic support functions for ordered propositions and let ω be the fusion

result of µ and ν when using Algorithm 1. Let m be the index of the maximum truth-value in ω. Then,

ω is monotonically increasing over the interval [1, m] and is monotonically decreasing over the interval

[m, n].

Proof. Let ω′ be the initial fusion result in Algorithm 1.

(1) If µ and ν are in high or medium consistence, ω will be generated by conducting positive regulation

to ω′, i.e., using an arithmetic sequence with common difference of ς .
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For all i, j such that 1 6 i 6 j 6 m, based on (3) of the proof of Theorem 2, we have

ω(sj)− ω(si) >
ω′(s1)(j − i)ς

m(1 + ς(m− 1)/2)
+

ω′(s2)(j − i)ς

(m− 1)(1 + ς(m− 2)/2)

+ · · ·+
ω′(si)(j − i)ς

(m− i+ 1)(1 + ς(m− i)/2)
+ · · ·+

ω′(sj)

(m− j + 1)(1 + ς(m− j)/2)
.

Due to m > j,m > i, and j > i, each item of above equation is greater than or equal to 0, thus

ω(sj)− ω(si) > 0.

Similarly, for all i, j such that m 6 i 6 j 6 n, we have

ω(si)− ω(sj) >
ω′(sn)(j − i)ς

(n−m+ 1)(1 + ς(n−m)/2)
+ · · ·+

ω′(sj)(j − i)ς

(j −m+ 1)(1 + ς(j −m)/2)

+ · · ·+
ω′(si)

(i−m+ 1)(1 + ς(i −m)/2)
> 0.

(2) If µ and ν are in poor consistency, the algorithm generates ω firstly by conducting positive regulation

to ω′, from (1) we know the result of positive regulation is a basic support function. Secondly, the negative

regulation is conducted to ω by Algorithm 2.

For m 6 k 6 n, in each iteration of negative regulation, ω(sk) and ω(sk+1) are updated, let ω̂(sk) and

ω̂(sk+1) be the value after update, i.e., ω̂(sk+1) = ω(sk+1)+δω(sk+1)/ρ and ω̂(sk) = ω(sk)−δ+δω(sk)/ρ;

we have

ω̂(sk)− ω̂(sk+1) = ω(sk)− δ + δω(sk)/ρ− ω(sk+1)− δω(sk+1)/ρ

= ω(sk)− ω(sk+1)− (ω(sk)− ω(sk+1))σ + δ(ω(sk)− ω(sk+1))/ρ

= (ω(sk)− ω(sk+1))(1− σ + δ/ρ).

Due to ω(sk) > ω(sk+1) and ρ 6 1, it implies ω̂(sk) − ω̂(sk+1) > 0. Likewise, for 1 6 k 6 m, in each

iteration of negative regulation, ω̂(sk) − ω̂(sk−1) > 0. That means during negative regulation, ω keeps

its monotonic increasing on interval [1, m] and monotonic decreasing on interval [m,n].

Finally, synthesizing (1)–(2), ω is monotonically increasing on the interval [1, m], and monotonically

decreasing on the interval [m, n].

Theorem 3. If the basic support function ω is the result of Algorithm 1, then ω satisfies the convex

property.

Proof. Let m be the index of maximum truth-value of ω, from Lemma 1, for all i, j, k such that 1 6 i 6

j 6 k 6 n:

If 1 6 j 6 m, then ω(sj) > ω(si) > min{ω(si), ω(sk)}, because ω is increasing on this interval.

If m 6 j 6 n, then ω(sj) > ω(sk) > min{ω(si), ω(sk)}, because ω is decreasing on this interval.

Therefore, according to Definition 3, ω satisfies convex property.

Theorems 2 and 3 ensure the legitimacy of the proposed algorithm.

Theorem 4. In Algorithm 1, the negative regulation to basic support function ω will increase the

entropy of ω.

Proof. From Lemma 1 we know the input basic support function ω for negative regulation satisfies

convex property, let m be the index of maximum truth-value of ω, for m 6 k 6 n, from (4) of proof of

Theorem 2, we know in each iteration ω(sk) and ω(sk+1) become ω(sk) − ∆ and ω(sk+1) + ∆,∆ > 0.

Based on (1) of proof of Theorem 1, we obtain that the entropy increases. Likewise, for 1 6 k 6 m, in

each iteration, ω(sk) and ω(sk−1) become ω(sk)−∆ and ω(sk−1) +∆,∆ > 0, and the entropy increases,

too.

If µ and ν have high or medium consistency, Algorithm 1 will generate a more determinate result

by using positive regulation. If µ and ν have poor consistency, Theorem 4 ensures that the algorithm

generates a convex basic support function whose entropy is is as close to the initial fusion result (not

convex) as possible, meaning the final fusion result has both the convex property and a large degree of

uncertainty, which is reasonable. Thus, the rationality and precision of the algorithm is confirmed.
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Table 2 Comparisons of uncertainty measures to basic support function

No. Basic support function Nonspecificity/AM AU Jousselme distance Extended entropy

λ1 (0.2, 0.2, 0.2, 0.2, 0.2) 0 1.609 0.632 1.609

λ2 0.3, 0.15, 0.1, 0.15, 0.3) 0 1.522 0.563 1.608

λ3 (0.45, 0.05, 0, 0.05,0.45) 0 1.018 0.505 1.596

λ4 (0.5, 0, 0, 0, 0.5) 0 0.693 0.5 1.589

λ5 (0.33, 0.33, 0.33, 0.01, 0) 0 1.144 0.577 1.586

λ6 (0.39, 0.39, 0.15, 0.07, 0) 0 1.205 0.525 1.574

λ7 (0.45, 0.45, 0.05, 0.05 ,0) 0 1.018 0.505 1.558

λ8 (0.5, 0.5, 0, 0, 0) 0 0.693 0.5 1.529

λ9 (0.23, 0.5, 0.17, 0.1, 0) 0 1.216 0.413 1.216

λ10 (0.15, 0.7, 0.1, 0.05, 0) 0 0.914 0.25 0.914

λ11 (0.05, 0.85, 0.05, 0.05, 0) 0 0.588 0.122 0.588

λ12 (0.005, 0.99, 0.005, 0, 0) 0 0.063 0.009 0.063

λ13 (0, 1, 0, 0 ,0) 0 0 0 0

Theorem 5 (Commutativity). If the fusion result of the basic support functions µ and ν when using

Algorithm 1 is ω1, and the fusion result of ν and µ is ω2, then ω1 = ω2.

Proof. (1) If Algorithm 1 terminates at Lines 4, 7, or 10, obviously the result is same for µ, ν and ν, µ.

(2) At Line 14, due to ω′(si) = Ωµ·µ(si)(1+µ(S))+Ων ·ν(si)(1+ν(S)) = Ων ·ν(si)(1+ν(S))+Ωµ ·µ(si)(1+

µ(S)), so ω′(si) is same for µ, ν and ν, µ. (3) At Line 18, from (6), we obtain ∆G(µ, ν) = ∆G(ν, µ). (4)

From Line 17 to Line 23, the fusion result is generated from ω′(si), so the final fusion result is same for

µ, ν and ν, µ. Finally, synthesizing (1)–(4), the proposed fusion method satisfies commutativity.

7 Case study and comparison

7.1 Comparison of uncertainty measures

We first compare the proposed extended entropy measure with several most commonly used and state-of-

the-art uncertainty measures [20–24]: the nonspecificity measure, AU measure, ambiguity measure, and

Jousselme distance-based measure. We select various typical basic support functions to test the measures.

The results are displayed in Table 2.

In Table 2, the degree of uncertainty of the basic support functions decreases gradually, i.e., λi is

more uncertain than λi+1(1 6 i 6 12). It can be seen in Table 2 that the nonspecificity measure and

ambiguity measure (AM) are ineffective for the basic support functions. If the basic support function has

a unique maximum truth-value or is completely indeterminate, the AU measure, distance based measure,

and extended entropy can measure its uncertainty effectively. The greater the value is, the higher the

degree of uncertainty is. In particular, if a basic support function is completely indeterminate, such as

λ1, the value of the measure is maximized, and if a basic support function is completely determinate,

such as λ13, the value of the measure is minimized.

However, if a basic support function has multiple maximum truth-values or is not convex, the AU

measure and Jousselme distance cannot measure the uncertainty accurately, but the extended entropy

can. For instance, λ6 is more determinate than λ5, but AU(λ6) >AU(λ5). λ9 is more determinate than

λ3 through λ8, but AU(λ9) is greater than AU(λ3) through AU(λ8). λ10 is more determinate than λ4

and λ8, but AU(λ10) is greater than AU(λ4) and AU(λ8), which is unreasonable. However, the results

for Jousselme distance and extended entropy are reasonable.

On the other hand, λ8 is more determinate than λ4. For example, if si is {high, a little high,medium,

a little low, low}, λ4 indicates that one cannot decide whether the object is high or low, which is close to

completely indeterminate. λ8 indicates that one knows the object is fairly high, which is more determinate.

However, AU(λ4) = AU(λ8), and JD(λ4) = JD(λ8), meaning the AU measure and Jousselme distance

cannot measure the uncertainty accurately in such kind of cases. λ3 and λ7 also fall into this category.
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Table 3 Comparison of the algorithms for fusing µ = (0.1, 0.6, 0.3) and ν = (0.6, 0.3, 0.1)

Fusion algorithm Fusion result Centroid/Center of basic support functions Extended entropy

Centroid-based algorithm (0.245, 0.66, 0.095) 1.926 0.842

Proposed algorithm (0.3426, 0.4555, 0.2019) 1.629 1.048

Table 4 Comparison of the algorithms for fusing µ = (0.1, 0.2, 0.2, 0.5) and ν = (0.1, 0.15, 0.15, 0.6)

Fusion algorithm Fusion result Centroid/Center of basic support functions Extended entropy

Centroid-based algorithm (0.033, 0.121, 0.571, 0.275) 3.325 1.044

Proposed algorithm (0.019, 0.072, 0.217, 0.692) 4 0.851

Additionally, λ5, λ6, and λ7 are more determinate than λ4, but JD(λ5), JD(λ6), and JD(λ7) are all greater

than JD(λ4). The result is the same for the AU measure. Similarly, λ5 and λ6 are more determinate than

λ3, but JD(λ5) and JD(λ6) are both greater than JD(λ3). The AU measure again produces the same

results. In these types of cases, the results of the AU measure and Jousselme distance are unreasonable.

However, the proposed extended entropy can measure the uncertainty accurately.

We now provide some theoretical analysis and explanations for the aforementioned measures. In the

nonspecificity measure and ambiguity measure, the cardinality of each subset of frame of discernment is

1 for basic support functions. Thus, according to the definitions of the measures, the value equals 0 for

all basic support functions. The AU measure and Jousselme distance-based measure only consider the

truth-value of each proposition and do not consider the distribution of truth-values in the basic support

function. Thus, for basic support functions which have the same truth-values (λ4 and λ8), the measures

return the same value. However, the extended entropy considers not only the truth-value, but also the

distribution of truth-values in each proposition of the basic support function. Therefore, more reasonable

results can be obtained by using the proposed measure.

7.2 Comparison with centroid-based algorithm

We use five typical cases as examples, present the procedure of the proposed fusion algorithm, and

compare the results with traditional centroid-based algorithm [12–14].

(1) The basic support functions are µ = (0.25, 0.25, 0.25, 0.25) and ν = (0.25, 0.25, 0.25, 0.25), and their

weights are Ω1 = Ω2 = 0.5. The centroid-based algorithm obtained gd = 2.5 and a fusion result of ω =

(0.104166, 0.395833, 0.395833, 0.104166). However, the belief shifted from indeterminacy to determinacy,

meaning the result is not reasonable. For the proposed method, the fusion result is (0.25, 0.25, 0.25,

0.25), which it is reasonable.

(2) The basic support functions are µ = (0.1, 0.6, 0.3) and ν = (0.6, 0.3, 0.1), and Ω1 = Ω2 = 0.5. Using

the proposed algorithm, the initial fusion result is ω′ = (0.35, 0.45, 0.2), and CI(ω′) = 1.62, E(ω′) =

1.04865. The results of the centroid-based algorithm and the proposed algorithm are listed in Table 3.

Because µ is not well consistent with ν, the result ω is expected to be indeterminate, and E(ω) should

not differ greatly from E(ω′). Therefore, the result of the proposed algorithm is more reasonable.

(3) The basic support functions are µ = (0.1, 0.2, 0.2, 0.5) and ν = (0.1, 0.15, 0.15, 0.6), and Ω1 = Ω2 =

0.5. Using the proposed algorithm, the initial fusion result is ω′ = (0.1, 0.175, 0.175, 0.55), CI(ω′) = 3.77,

and E(ω′) = 1.169. Additionally, CI(µ) = 3.70,CI(ν) = 3.83, and ∆G(µ, ν) = 0.043. The fusion results

are displayed in Table 4. µ and ν are consistent well, and they both imply that the 4th proposition

is most likely to be true, so the resulting basic support function should reach its maximum at index 4

and the extended entropy of the result should be increased. The results of the proposed algorithm meet

these requirements. However, the centroid-based algorithm generates a result indicating that the 3rd

proposition is most likely to be true and the extended entropy is lower, which is not reasonable. Thus,

the proposed algorithm obviously outperforms the centroid-based algorithm in this case.

(4) The basic support functions are µ = (0.05, 0.1, 0.15, 0.7) and ν = (0.05, 0.1, 0.15, 0.7), Ω1 = Ω2 =

0.5. Using the proposed algorithm, the initial fusion result is ω′ = (0.05, 0.1, 0.15, 0.7) and the degree of

convexity of ω′ is NC(ω′) = 0.6 > 0.55, so CI(ω′) = 4 and E(ω′) = 0.914. The fusion results are shown in
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Table 5 Comparison of the algorithms for fusing µ = (0.05, 0.1, 0.15, 0.7) and ν = (0.05, 0.1, 0.15, 0.7)

Fusion algorithm Fusion result Centroid/Center of basic support functions Extended entropy

Centroid-based algorithm (0.015, 0.056, 0.344, 0.585) 3.63 0.904

Proposed algorithm (0.010, 0.039, 0.115, 0.836) 4 0.570

Table 6 Comparison of the algorithms for fusing µ = (0.6, 0.2, 0.15, 0.05) and ν = (0.05, 0.1, 0.15, 0.7)

Fusion algorithm Fusion result Centroid/Center of basic support functions Extended entropy

Centroid-based algorithm (0.108, 0.338, 0.429, 0.125) 2.571 1.230

Proposed algorithm (0.142, 0.306, 0.388, 0.164) 2.598 1.303

Table 5. Because µ = ν, meaning µ and ν are completely consistent, the entropy of the final fusion result

should be decreased, and the maximum truth-value should be emphasized. The results of the proposed

algorithm are obviously more reasonable than the results of the centroid-based algorithm.

(5) The basic support functions are µ = (0.6, 0.2, 0.15, 0.05) and ν = (0.05, 0.1, 0.15, 0.7), Ω1 = Ω2 =

0.5. Using the proposed method, the initial fusion result is ω′ = (0.325, 0.15, 0.15, 0.375), and CI(ω′) =

2.598, E(ω′) = 1.302. In addition, CI(µ) = 1.194, CI(ν) = 3.969, ∆G(µ, ν) = 0.925. The fusion results

are shown in Table 6. µ and ν have poor consistency and both algorithms generate results indicating

that the 3rd proposition is most likely to be true, which is reasonable. Because µ and ν are conflicting,

it is reasonable that the degree of uncertainty in the result is high and close to the initial fusion result.

The extended entropy of the result of the proposed algorithm is higher than that of the centroid-based

algorithm and is closer to the entropy of the initial fusion result. Thus, the proposed algorithm generates

more reasonable results than the centroid-based algorithm.

7.3 Comparison with related work

In this section, we compare the proposed algorithm with related work especially based on Dempster-Shafer

theory.

In the classical Dempster-Shafer theory [1,2], two evidences µ and ν are combined by Dempster’s rule

of combination. For cases (1)–(4) in Subsection 7.2, the fusion results generated by Dempster-Shafer

theory are (0.25, 0.25, 0.25, 0.25), (0.222, 0.667, 0.111), (0.027, 0.081, 0.081,0.811), and (0.005, 0.019,

0.043, 0.933). These results are consistent with the results of proposed algorithm. However, for case

(5), the Dempster-Shafer theory generates a result of (0.279, 0.186, 0.209, 0.326), which does not satisfy

convex property, meaning it is not a valid basic support function for ordered propositions, and is inferior

to the proposed algorithm. We then provide a theoretical explanation by Theorem 6.

Theorem 6. Suppose that µ and ν are basic support functions for ordered propositions, ω is the fusion

result of µ and ν by Dempster-Shafer theory. Let m = argmaxi µ(si)ν(si) and f(i) = µ(si)ν(si). If

the function f is monotonically increasing on the interval [1, m], and monotonically decreasing on the

interval [m, n] then ω is a basic support function for ordered propositions, meaning ω satisfies the convex

property. Otherwise, ω does not satisfy the convex property.

Proof. For ordered propositions, if set A /∈ {S} ∪ {{si}|1 6 i 6 n}, then µ(A) = 0, so ω(si) =

µ(si)ν(si)/(1−K), K is normalization constant and is the same for all ω(si), (1 6 i 6 n), that is to say

ω has the same monotonicity with f , according to Definition 3 and based on the proof of Theorem 3, the

theorem is proved.

Corollary 1. Suppose that µ and ν are basic support functions for ordered propositions, ω is the fusion

result of µ and ν by Dempster-Shafer theory. Let mµ = argmaxi µ(si) and mν = argmaxi ν(si). If

mµ = mν , then ω satisfies the convex property. Otherwise, it is not guaranteed that ω always satisfies

the convex property.

Proof. Let m = mµ = mν . On interval [1, m], we have

µ(s1) 6 µ(s2) 6 · · · 6 µ(sm), and ν(s1) 6 ν(s2) 6 · · · 6 ν(sm),
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which implies

µ(s1)ν(s1) 6 µ(s2)ν(s2) 6 · · · 6 µ(sm)ν(sm).

Similarly, on interval [m, n], we have

µ(sm)ν(sm) > µ(sm+1)ν(sm+1) > · · · > µ(sn)ν(sn),

according to Theorem 6, we obtain ω satisfies convex property.

Ifmµ 6= mν , we provide a counter example such that Case (5) in Subsection 7.2, the result of Dempster-

Shafer theory does not satisfy convex property.

Therefore, when µ and ν are substantially consistent, the Dempster-Shafer theory is equivalent to the

proposed algorithm. However, when µ and ν are conflicting, Dempster-Shafer theory cannot guarantee

reasonable results, especially when K=1, e.g., µ = (0.9, 0.1, 0, 0) and ν = (0, 0, 0.1, 0.9), Dempster-Shafer

theory cannot be applied in this case because the denominator of Dempster’s rule of combination is 0.

Based on Theorems 2 and 3, we know that the proposed algorithm can generate reasonable result in such

cases.

Murphy [4] proposed an approach that first averages the belief functions of the evidences, and then

combines the two average belief functions by Dempster’s rule of combination to generate the final fusion

results. Han et al. [5] proposed a weighted evidence combination approach based on the variance of

evidence. Song et al. [6] defined a weighted coefficient based on the credibility and falsity of evidence,

and used the weighted coefficient to average the belief functions, which are then combined by Dempster’s

rule of combination. These three methods are equivalent when combining two basic support functions

of ordered proposition. For cases (1)–(4) of Subsection 7.2, the results of the three methods are (0.25,

0.25, 0.25, 0.25), (0.336, 0.555, 0.109), (0.027, 0.082, 0.082, 0.809), (0.005, 0.019, 0.043, 0.933), which are

reasonable. However, for case (5), the three methods generate a result of (0.363, 0.077, 0.077, 0.483),

which does not satisfy the convex property.

Yang et al. [7] proposed a combination approach based on multi-criteria ranking, they evaluated and

ranked the evidences according to the criteria of evidence precision, credibility, and conflict. They then

selected the top ranked evidence as the final fusion result. When combing conflicting evidences, although

the result satisfies the convex property, it only considers the opinion of one evidence, and ignores the

opinion of the other evidences, e.g., the result for case (5) is (0.05, 0.1, 0.15, 0.7), which ignores the

opinion of µ. Thus it is not considered a reasonable result for ordered propositions.

Florea et al. [8] proposed a robust combination rule in which the weights are a function of the conflict

between evidences. Smarandache and Dezert [9] proposed a series of proportional conflict redistribution

(PCR) combination rules, PCR5 is the most efficient version of their proposed rules, PCR5 is the most

efficient version of their proposed rules, the fusion result ω of µ and ν is defined as

ω(A) =
∑

A1∩A2=A
µ(A1)ν(A2) +

∑

A∩B=∅

[

µ(A)2ν(B)

µ(A) + ν(B)
+

ν(A)2µ(B)

ν(A) + µ(B)

]

.

Fu et al. [10] proposed a combination rule based on proportional generalized conflict redistribution called

PGCR-A, in their rule, the fusion result ω of µ and ν is defined as

ω(A) =
∑

A1∩A2=A

|A1 ∩ A2|

|A1||A2|
µ(A1)ν(A2) +

1

2
[µ(A) + ν(A)]GC,

where GC is generalized conflict and defined as sum of potential conflict and Shafer’s conflicting. The

results generated for case (5) by these three methods are (0.033, 0.022, 0.025, 0.038), (0.351, 0.094, 0.092,

0.463), and (0.32, 0.154, 0.156, 0.37). None of the results satisfy convex property, which is unreasonable

for ordered propositions.

In summary, when µ and ν are substantially consistent, most DS-based methods are comparable to

the proposed algorithm. However, when µ and ν are poorly consistent, the DS-based methods cannot

ensure the convex property in the fusion results. The proposed algorithm can provide more reasonable

results in such cases.



Liu D Y, et al. Sci China Inf Sci August 2017 Vol. 60 082103:18

8 Conclusion and future work

In order to overcome the shortcomings of previous method for fusing ordered propositions, we proposed a

novel method based on consistency and uncertainty measurements. We adopted basic support functions

to represent the truth-values of each ordered proposition, and then proposed the concept of using the

convexity degree, mean, and center of basic support functions to comprehensively describe the basic

support functions of ordered propositions. We introduced entropy as a measure of the uncertainty of

basic support functions for ordered propositions. Additionally, we generalized the indeterminacy of

basic support functions and proposed a novel method to measure the consistency between two basic

support functions. Finally, we proposed a novel algorithm to fuse the basic support functions of ordered

propositions. Our theoretical analysis and experimental results demonstrate the effectiveness of the

proposed method. In future, we will perform research on the properties of associativity and idempotency

in the proposed method. The uncertainty measurement proposed in this paper has the potential to be

applied to other types of propositions or arguments. If we want to do this, we must find a way to handle

situations that the cardinality of a focal element is greater than 1, meaning the proposition contains

multiple characteristics or features of an object. We will also need to adjust the formulation of the

measures based on the specific types of propositions or arguments. This is an interesting topic that we

concentrate on in future work.
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