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Dear editor,

The extensive applications of robotic manipulators
have spurred active research on its control prob-
lem during the past decades. Since parametric
uncertainties are inevitable in many occasions, the
development of effective adaptive controllers is of
great importance for versatile applications of high-
speed and high-precision robots.

To keep stability and compensate for unknown
parameters, many adaptive control schemes for
robotic manipulators have been proposed in the
literature, and the majority of representative work
focuses on the continuous-time domain. Neverthe-
less, in real implementations, the computers are
usually utilized to produce digital control signals,
proposing the necessity for controller design in dis-
crete time. Characteristic modeling theory is a
very effective discrete-time control method, bear-
ing the simplicity of design, convenience of ad-
justment and strong robustness validated by prac-
tice. Different from the traditional modeling strat-
egy which captures the plant dynamics as precise
as possible, characteristic modeling is a control
oriented modeling approach taking both the dy-
namic characteristics of the controlled plant and
the performance specifications of the control sys-
tem into account [1]. Characteristic modeling the-
ory and characteristic model-based adaptive con-

troller have already been applied successfully to
more than 400 systems in the field of astronautics
and industry, especially, in the reentry lift control
of Shenzhou spacecraft [1], rendezvous and dock-
ing of Shenzhou spacecraft [2], and reentry guid-
ance of Chang’e 5 tester [3], achieving the control
accuracy at the world leading level.

In this letter, we deal with the discrete-time
adaptive regulation problem of robotic manipu-
lators via characteristic model-based control sce-
nario. After characteristic modeling of dynam-
ics of robot, the nonlinearity in the centripetal
and Coriolis matrix of dynamics of robot makes
the bounds of the characteristic model parameters
rely on the states, resulting in great difficulties for
controller design and stability analysis. To solve
this, we propose a state-relied projection estima-
tion algorithm, and construct an adaptive control
law via introducing a discrete-time sliding vector,
where the system is separated into two subsys-
tems, i.e., the kinematic module and the dynamic
module, cascaded by the sliding vector. Moreover,
performance analysis for the complicated nonlin-
ear closed-loop dynamics is performed by propos-
ing a recursive induction technique, which shows
that our scenario guarantees the asymptotic con-
vergence of the joint position and the boundedness
of the coefficients of the characteristic model as
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well. Finally, we conduct simulations to validate
the effectiveness of our theoretical scheme.

Characteristic modeling of the robot. The dy-
namic model of the robotic manipulator ignoring
gravitational forces can be written as [4]

H(q)q̈ + C(q, q̇)q̇ = τ, (1)

where q ∈ ℜn is the joint position, H(q) ∈ ℜn×n

is the inertia matrix of the robot, C(q, q̇) ∈ ℜn×n

is the coupled centripetal and Coriolis matrix and
τ ∈ ℜn is the exerted joint torque to the manipu-
lator. The dynamics (1) bears the following prop-
erty [4].

Property 1. For some positive constants
km1, km2 and kC , we have 0 < km1 6 ‖H(q)‖ 6

km2, ‖C(y1, y2)z‖ 6 kC‖y2‖‖z‖ for all vectors
y1, y2, z ∈ ℜn.

Now, we discretize (1) via the Euler discretiza-
tion method [1] and by simple manipulation, we
derive the typical two-order characteristic model
as

q(k + 1) = FC1(k)q(k) + FC2(k)q(k − 1)

+GC0(k)τ(k), (2)

where FC1(k) ∈ ℜn×n, FC2(k) ∈ ℜn×n and
GC0(k) ∈ ℜn×n are coefficient matrices, described
as

FC1(k) = 2In − TsH
−1(q(k))C

(

q(k),
e(k)

Ts

)

,

FC2(k) = −In + TsH
−1(q(k))C

(

q(k),
e(k)

Ts

)

, (3)

GC0(k) = T 2
sH

−1(q(k)).

Here, e(k) = q(k)−q(k−1), and Ts is the sampling
time. By (3) and Property 1, we get the properties
of the coefficient matrices as follows.

Lemma 1. The coefficient matrix GC0(k) is
symmetric and positive definite, and b0 6

‖GC0(k)‖ = T 2
s ‖H−1(q(k))‖ 6 b1, where b0 =

k−1
m2T

2
s , b1 = k−1

m1T
2
s , and km1 are km2 are given

in Property 1.

Lemma 2. The coefficient matrix FC2(k) satis-
fies

‖In + FC2(k)‖ 6 ke‖e(k)‖, (4)

where ke =
√
nk−1

m1kC , kC is introduced in Prop-
erty 1, and In denote the n× n identity matrix.

Lemma 3. The addition of FC1(k) and FC2(k)
satisfies

FC1(k) + FC2(k) = In. (5)

As is known, the initial position and velocity of
the robot are bounded, i.e., there exist constants
0 6 Q∗ < ∞ and 0 6 V ∗ < ∞, such that

‖q(0)‖ 6 Q∗, ‖v(0)‖ 6 V ∗, (6)

where v(0) = e(0)
Ts

denotes the initial velocity.
Main result. Inspired by the continuous-time

sliding vector design [5], we construct the kine-
matic part as

s(k + 1) = q(k + 1)− ǫq(k), (7)

where ǫ = 1−Ts. Substituting (2) into (7), we get
the dynamic module

s(k + 1) = −FC2(k)(s(k) − Tsq(k − 1))

+Tsq(k) +GC0(k)τ(k). (8)

The controller is then proposed as

τ(k) = ĜC0(k)
−1(− Tsq(k)

+ F̂C2(k)s(k)− TsF̂C2(k)q(k − 1)
)

, (9)

where F̂C2(k) and ĜC0(k), respectively, denote the
estimate of FC2(k) and GC0(k), updated by the
estimation law given in the subsequent Steps 1–3.
Before showing the updating algorithm, we first
reformulate (2) as

e(k + 1) = −FC2(k)e(k) +GC0(k)τ(k). (10)

Based on (10), we introduce Θ(k) = [FC2(k)
GC0(k)]

T, Θ̂(k) = [F̂C2(k) ĜC0(k)]
T, Φ(k) =

[−e(k)T τ(k)T]T. Then, it is time for us to give
the estimation steps as follows

Step 1. Utilize the classical gradient law to esti-
mate the coefficients FC2(k) and GC0(k) based on
(2), i.e.

Θ̂o(k) = Θ̂(k − 1)

+
λ1Φ(k − 1)(e(k)− Θ̂(k − 1)TΦ(k − 1))T

λ2 +Φ(k − 1)TΦ(k − 1)
, (11)

where 0 < λ1 < 1, λ2 > 0, and Θ̂o(k) is the
output of the gradient law, which can be denoted
as Θ̂o(k) = [F̂ o

C2(k) Ĝo

C0(k)]
T with F̂ o

C2(k) and

Ĝo

C0(k) being the estimate of FC2(k) and GC0(k),
respectively.

Step 2. Formulate ˆ̄GC0(k) to be a symmetric
matrix by setting

ˆ̄GC0(k) =
Ĝo

C0(k) + Ĝo

C0(k)
T

2
. (12)

Step 3. Project (F̂ o

C2(k),
ˆ̄GC0(k)) into the closed

convex set

Ds(k) =
{

(F̂C2(k), ĜC0(k))
∣

∣‖F̂C2(k) + In‖ 6 ke‖e(k)‖,
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B0In 6 ĜC0(k) 6 B1In
}

, (13)

where B1 and B0 are adjustable constants satisfy-
ing b0 6 B0 6

1
2 (b0 + b1) 6 B1 6 b1, and b0, b1

and ke are given in Property 1 and Lemma 1.
Stability analysis. Now, we proceed to discuss

the property of the closed-loop system based on
the proposed controller and estimation law. Sub-
stituting (9) into (8), we get the closed-loop dy-
namics

s(k + 1) = −∆θ̄2(k)s(k) + Ts∆θ̄1(k)q(k)

+Ts∆θ̄2(k)q(k − 1), (14)

where ∆θ̄1(k) = GC0(k)[GC0(k)
−1 − ĜC0(k)

−1],

and ∆θ̄2(k) = GC0(k)[GC0(k)
−1

FC2(k) −
ĜC0(k)

−1F̂C2(k)]. By Lemma 1, Lemma 2 and
(13), the properties of ∆θ̄1(k) and ∆θ̄2(k) can be
summarized as below.

Lemma 4. If B0 = B1 = 1
2 (b0 + b1)In, then

‖∆θ̄1(k)‖ 6 b2,

where b2 = b1−b0

b1+b0
, b1 and b0 are introduced in

Lemma 1, and B0 and B1 are introduced in (13).

Lemma 5. ∆θ̄2(k) satisfies

‖∆θ̄2(k)‖ 6 b2 + b3ke‖e(k)‖,

where b3 = 2+b2, ke and b2 are defined in Lemma 2
and Lemma 4, respectively.

The proof of Lemma 4 and Lemma 5 are given
in Appendix A and Appendix B.

Now, let us show the stability result.

Theorem 1. For the characteristic model of a
robotic manipulator represented by (2), if B0 =
B1 = 1

2 (b0 + b1)In, and

b1

b0
< 1 + µ, (15)

Ts <
µ− (µ+ 2)b2

µ+ b3ke(2µ+ 1)2(Q∗ + V ∗)
, (16)

where ke, bi, i = 0, . . . , 3, are given in Lemmas
1−5, respectively, 0 < µ 6 1 is an adjustable
constant, and Q∗ and V ∗ are given in (6), then
the adaptive control law (9) and the updating law
(11)−(13) ensure

‖e(k)‖ 6 Ts(µ+1+Tsµ)‖q(0)‖+Ts(µ+c∗)‖v(0)‖,

where c∗ = max{Ts(1 + µ), µ}. Furthermore, the
uniform ultimate boundedness (UUB) of q(k) is
guaranteed, and

lim
k→∞

‖q(k)‖ 6 µ[‖q(0)‖+ ‖v(0)‖]. (17)

Theorem 2. For the robotic characteristic
model (2), the controller (9) and the updating law
(11)−(12) guarantee the asymptotic convergence
of q(k), i.e., limk→∞ q(k) = 0, provided that

B0 = B1 = 1
2 (b0 + b1)In,

µ < min

{

1,
1

12ke(Q∗ + V ∗)

}

, (18)

b1

b0
< min

{

1 + µ, 1 + Ts

1− 12µke(Q
∗ + V ∗)

1 + 6µTske(Q∗ + V ∗)

}

,

(19)

and the sampling time Ts satisfies (16).

The proof of Theorem 1 and Theorem 2 are
demonstrated in Appendix C and Appendix D,
respectively. Our control protocol is testified by
numerical simulation, shown in Appendix E.

Conclusion. In this letter, we address the adap-
tive regulation problem of robotic manipulators
with uncertain dynamics by use of characteristic
model theory. Based on the multi-variable char-
acteristic model of the robot, we propose a state-
dependant projection estimation law, solving the
problem caused by the nonlinear centripetal and
Coriolis matrix. Then, we develop a characteristic
model-based adaptive control law by constructing
a discrete-time sliding vector. The stability analy-
sis is also given and joint positions are guaranteed
to be asymptotically convergent. Finally, numeri-
cal simulations are performed on a robotic manip-
ulator to validate the effectiveness of the proposed
strategy.
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